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4Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034 Barcelona, Spain

5Donostia International Physics Center, E-20018 San Sebastián, Spain
6IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain

7Theory Division, Los Alamos National Laboratory, MS-B213, Los Alamos, New Mexico 87545, USA

(Received 7 September 2020; accepted 30 October 2020; published 25 November 2020)

We introduce a model of trapped bosons with contact interactions as well as Coulomb repulsion or
gravitational attraction in one spatial dimension. We find the exact ground-state energy and many-body
wave function. The density profile and the pair-correlation function are sampled using Monte Carlo method
and show a rich variety of regimes with crossovers between them. Strong attraction leads to a trapped
McGuire quantum soliton. Weak repulsion results in an incompressible Laughlin-like fluid with flat
density, well reproduced by a Gross-Pitaevskii equation with long-range interactions. Stronger repulsion
induces Friedel oscillations and the eventual formation of a Wigner crystal.
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Low-dimensional quantum gases can be engineered with
ultracold atomic vapors by freezing the dynamics along
a given axis under tight confinement. In one spatial
dimension, quantum fluctuations are enhanced, and yet,
the stability of the system extends to strongly interacting
regimes, in contrast with the three-dimensional case.
One-dimensional quantum gases offer a test bed for
integrability and provide a faithful implementation of a
range of exactly solvable models [1,2]. Among them, the
homogeneous gas with contact interactions described by a
δ-function pseudopotential, exactly solved in 1963 by Lieb
and Liniger (LL model) [3,4], is a paradigmatic reference
model. Olshanii showed that ultracold atomic gases
confined in tight waveguides experience resonance in the
effective one-dimensional interactions and can be used
to realize the LL model [5,6]. Following this observation,
the LL model has been routinely realized in the laboratory
[7–17].
From the theoretical point of view, a rich variety of

powerful mathematical methods such as the Bethe ansatz is
available to analyze the LL model, making it a favorite test
bed for these techniques [18,19]. The limit of strong
interactions, known as the Tonks-Girardeau gas, corre-
sponds to hard-core bosons [20] and has helped to elucidate
the fact that quantum exchange statistics is ill defined as an
independent concept in one dimension, being inextricably
woven to interparticle interactions. Its study revealed the
existence of Bose-Fermi duality and its generalizations
[21,22]. More recently, it has been pointed out that the
LL gas constitutes the universal nonrelativistic limit of a

variety of integrable quantum field theories [23]. In non-
linear physics, the quantum version of both bright and dark
solitons has been found in the LL model. In particular, the
cluster solution of the attractive LL gas was explicitly
found by McGuire via Bethe ansatz [24]. For repulsive
interactions, many-body states describing gray solitons,
characterized by a dip in the density profile of finite depth,
have been discussed in Refs. [25–30]. Dark solitons with
vanishing density at the dip have also been found in the
Tonks-Girardeau regime that describes hard-core bosons
[29,31,32].
The LL model is known to admit an exact treatment by

Bethe ansatz in homogeneous external potentials such as a
ring [3], a box [33–35], or the continuum [36]. While the
Bethe ansatz method has proved to be very powerful and
useful [18,19], it cannot account exactly for the presence
of a nonuniform confinement that is ubiquitous in exper-
imental settings with trapped ultracold gases. In the
presence of a harmonic trap, away from the Tonks-
Girardeau limit [37], the understanding of the LL gas
relies on a combination of approximate, effective theories
and numerical methods [1,38,39]. In this context, it is thus
of great importance to find other exactly solvable many-
body models in a trapped geometry.
In this work we introduce a novel exact solution for a

one-dimensional Bose gas in the presence of a harmonic
trap and with both short-range contact and long-range
linear pairwise interparticle interactions. The long-range
contribution corresponds physically to one-dimensional
Coulomb repulsion or gravitational attraction. The exact
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ground state is found in closed form and is shown to reduce
to the McGuire soliton solution for attractive interactions
when the frequency of the harmonic confinement vanishes.
We characterize the ground-state properties and demon-
strate that a wide variety of regimes can be accessed in this
system, including solitonlike, ideal Bose gas, incompress-
ible fluid, and Wigner-crystal regimes.
We start by considering a very general system consisting

of N atoms of mass m confined in a harmonic trap of
frequency ω, interacting via both the contact interaction
with coupling strength g and a long-range potential of
strength σ. The system Hamiltonian is

H ¼
XN
i¼1

�
−
ℏ2

2m
∂2

∂x2i þ
1

2
mω2x2i

�
þ
XN
i<j

½gδðxijÞ þ σjxijj�;

ð1Þ

where xi are particle coordinates and xij ¼ xi − xj the
relative distances. The long-range interaction potential in
Eq. (1) corresponds to the solution of the Poisson equation
for a point source distribution of mass or charge
ΔVðrÞ ¼ κδðrÞ. For any dimension d ≥ 1 the Fourier
transform of the Laplacian equals to −k2, where k ∈ Rd

is the wave vector. For a point source distribution of mass or
charge, the Fourier transform of the static potential V is
given by �Q=k2, where Q is the electric charge or mass
of the particles. Taking the inverse Fourier transform
yields V ¼∓ Qjxj in one dimension (the familiar case
V ¼ �Q=jrj is found in d ¼ 3).
The exchange operator formalism introduced by

Polychronakos [40] has brought great insight into one-
dimensional quantum integrable models and we use it to
analyze Hamiltonian (1). We show that the latter admits a
decoupled form, in terms of phase-space variables. To do
this, we consider the Hermitian generalized momenta of N
particles,

πi ¼ pi þ i
X
j≠i

VijMij; ð2Þ

defined in terms of the canonical momenta pj ¼
−iℏð∂=∂xjÞ for particles j ¼ 1;…; N. The particle permu-
tation operator Mij is idempotent M2

ij ¼ 1, symmetric
Mij ¼ Mji, and acts on an arbitrary operator Aj as
MijAj ¼ AiMij, MijAk ¼ AkMij. We choose the so-called
prepotential function Vij ¼ VðxijÞ to be proportional to the
sign function,

Vij ¼ −
ℏ
as

sgnðxijÞ; ð3Þ

with as being a real constant (negative or positive) with
units of length. Later, we shall see that as is physically
equivalent to an s-wave scattering length.

First we consider a homogeneous case and construct a
purely kinetic Hamiltonian of the form

H0¼
1

2m

X
i

π2i

¼
X
i

p2
i

2m
þ 1

2m

�X
i<j

ðℏV 0
ijMijþV2

ijÞ−2
X
i<j<k

VijkMijk

�
;

ð4Þ

where Vijk ¼ VijVjk þ VjkVkl þ VklVij, Mijk ¼ MijMjk,
and the prime denotes the spatial derivative. Explicit
computation shows that V2

ij ¼ ℏ2=a2s and V 0
ij ¼ −ð2ℏ=asÞ

δðxijÞ for the two-body term, while the three-body term
reduces to a constant Vijk ¼ −ℏ2=a2s . This yields the
many-body Hamiltonian of a one-dimensional gas with
pairwise contact interactions,

HLL ¼ H0 þ E0 ¼ −
ℏ2

2m

XN
j¼1

∂2

∂x2j þ g
X
i<j

δðxijÞMij; ð5Þ

where the coupling constant is related to the one-
dimensional s-wave scattering length as g ¼ −2ℏ2=ðmasÞ
and

E0 ¼ −
mg2

ℏ2

NðN2 − 1Þ
24

: ð6Þ

For Bose statistics, Mij reduces to the identity and
Hamiltonian (5) describes N one-dimensional bosons
subject to s-wave pairwise interactions, i.e., Lieb-Liniger
[3,4] and McGuire [24] systems. It is known that for
repulsive interactions, g > 0, only scattering states are
possible and the homogeneous gas is stable. On the
contrary, for attractive interactions, g < 0, the system
collapses into a many-body bound state that describes a
bright quantum soliton, and thus, the thermodynamic limit
does not exist [24].
To include a harmonic trap, it is convenient to introduce

analogs of the creation and annihilation operators,

ai ¼
πi − imωxiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mωℏ
p ; a†i ¼

πi þ imωxiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mωℏ

p ; ð7Þ

satisfying

½ai; a†i � ¼ 1þmg
ℏ2

X
j≠i

jxijjMij: ð8Þ

The relation ðℏω=2ÞPifai; a†i g ¼ HLL þ
P

i
1
2
mω2x2i and

the identity a†i ai ¼ 1
2
fai; a†i g − 1

2
½ai; a†i � allow us to derive

the Hamiltonian of the system embedded in a trap:
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H¼ℏω
X
i

a†i aiþE0

¼
XN
i¼1

�
−
ℏ2

2m
∂2

∂x2i þ
mω2x2i

2

�
þ
X
i<j

�
gδðxijÞ−

mωgjxijj
ℏ

�
:

ð9Þ

This is an instance of the Hamiltonian class (1) in which the
trap frequency ω, the coupling constant g, and the strength
of the long-range interaction σ satisfy the following
relation:

σ ¼ −mωg=ℏ: ð10Þ
Thus, for repulsive contact interactions (g > 0), the linear
long-range term corresponds to Coulomb repulsion
between equal charges in one dimension. Similarly, for
attractive contact interactions (g < 0) the linear long-range
term describes gravitational attraction between equal
masses in d ¼ 1. Thus, short- and long-range interactions
are either both attractive or both repulsive. As the value of
the coupling σ depends on the frequency of the trap, the
particle mass, and the coupling constant g, using ultracold
gases as a platform, one could adjust the value of g
independently of the mass using a Feshbach resonance.
The exact expression for the ground-state energy of

Hamiltonian (9) can be written explicitly as

E0 ¼
Nℏω
2

−
mg2

ℏ2

NðN2 − 1Þ
24

; ð11Þ

which is independent of the sign of the coupling constant g,
and scales as ∝ N3 for large atom number, as will be
commented in more detail later. For bosons (Mij ¼ 1), the
ground-state wave function satisfies aiΨ0ðxÞ ¼ 0, which
can be written in terms of the logarithmic derivative,

∂xiΨ0

Ψ0

¼ −
xi
a2ho

−
X
j≠i

sgnðxijÞ
as

;

where aho ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmωÞp

is the harmonic oscillator length.
Hence, it follows that the exact ground-state wave function
of Hamiltonian (1) is

Ψ0ðxÞ ¼ N −1
Y
i<j

exp

�
−
jxijj
as

�Y
i

exp

�
−
1

2

x2i
a2ho

�
; ð12Þ

where N −1 denotes the normalization factor. As expected
from Kohn’s theorem, it is possible to factorize the center of
mass R ¼ ð1=NÞPi xi [41],

Ψ0ðxÞ¼N0−1exp
�
−
NR2

2aho2

�Y
i<j

exp

�
−
ðjxijjþNa2ho=asÞ2

2Na2ho

�
;

ð13Þ

where we used the identity,
P

N
i x2i ¼ NR2 þ ð1=NÞP

i<jðxijÞ2, and N 0 ¼ N expf4a2s=½a2hoN2ðN − 1Þ�g.
For g > 0 (i.e., as < 0) the ground state thus describes a

crystal-like order in the sense that the wave function is
maximal for jxijj ¼ Na2ho=as.
In order to analyze different physical regimes, it is con-

venient to recast the Hamiltonian in dimensionless form (9),

H̃ ¼
XN
i¼1

�
−
1

2

∂2

∂x̃2i þ
x̃2i
2

�
þ c

X
i<j

½δðx̃ijÞ − jx̃ijj�; ð14Þ

where tilde symbols denote that ℏω is used as a unit of energy
and harmonic oscillator length aho as a unit of distance.
System properties are governed by two dimensionless para-
meters which are number of particles N and dimensionless
interaction strength c defined as

c¼ gm1=2

ℏ3=2ω1=2¼−
σ

ℏ1=2m1=2ω3=2¼
ffiffiffiffiffiffiffiffijgσjp
ℏω

sgnðgÞ¼−
2aho
as

:

ð15Þ

Its value quantifies the relative strength of the interaction
potential (contact and gravitational or Coulomb) with respect
to the trapping potential: c > 0 refers to repulsive contact
and Coulomb potentials, while c < 0 corresponds to attrac-
tive short- and long-range interactions. For strong short-
range attraction, c → −∞, the solution for the Hamiltonian
(5) reduces to the McGuire bound-state solution,

Ψ0ðxÞ ¼
Y
i<j

exp

�
−
jxijj
as

�
; ð16Þ

describing a quantum bright soliton. Indeed, the system
energy (11) is similar to that of a bright soliton for
c ≪ −

ffiffiffiffiffi
24

p
=N. In this regime, Eq. (14) can be identified

as the (parent) Hamiltonian with a trapped McGuire soliton
as ground state [42].
Mean-field theory and the Gross-Pitaevskii equation.—

In one spatial dimension, the mean-field limit is reached
as the density is increased, when the distance between
particles is small with respect to the scattering length. The
ground state of a large number of particles is then
well described by the Hartree-Fock approximation,
Ψðx1;…; xNÞ ¼

Q
N
i¼1 ϕðxiÞ, where ϕðxiÞ is a single-

particle wave function. The variation of the free-energy
functional obtained for this field leads to a nonlinear
Schrödinger equation for Φ ¼ ffiffiffiffi

N
p

ϕðxÞ [43],
�
−
ℏ2

2m
∂2

∂x2 þ
mω2

2
x2 þ gjΦðxÞj2

�
ΦðxÞ

−mα

Z
dx0jx − x0jjΦðx0Þj2ΦðxÞ ¼ μΦðxÞ; ð17Þ
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where μ is the chemical potential, α ¼ ωg=ℏ is an effective
coupling constant with dimensional units of acceleration,
and the normalization condition

R
dx nðxÞ ¼ N is given

in terms of the local density of particle is nðxÞ ¼ jΦðxÞj2.
This equation can be recognized as the Gross-Pitaevskii
equation modified with an additional nonlinear long-range
potential,

VðxÞ ¼ −mα

Z
dx0jx − x0jjΦðx0Þj2;

which is a solution of the one-dimensional Poisson
equation,

ΔVðxÞ ¼ −2αρðxÞ;
where the local mass distribution equals

ρðxÞ ¼ mnðxÞ ¼ mjΦðxÞj2;

andΔ ¼ d2=dx2 denotes the Laplacian in d ¼ 1. This long-
range potential can be interpreted as a gravity and anti-
gravity interaction between particles depending on whether
the sign of α is negative or positive, respectively. For α > 0
the potential can also describe electrostatic interaction, after
rewriting the coupling strength jαj ¼ ωjgj=ℏ which is
independent of the mass. In this case, by tuning the
coupling constant g, we can vary the value of the effective
charge q of the particle ωjgj=ℏ ¼ jqj2=ð4πε0r2⊥mÞ, where
ϵ0 is the vacuum permittivity and r⊥ is a dimension
reduction characteristic length.
It follows that Eq. (17) can be interpreted as a mean-field

equation for a one-dimensional system of N particles
interacting with a short-range δ-function pseudopotential
and a long-range gravity (α < 0) or Coulomb or antigravity
(α > 0) potential. In the Thomas-Fermi regime, where
the kinetic energy is negligible compared to the energy
of the short-range interaction between particles, the
coupling strength is greater than a critical value g > gc≡
ℏωa0=ð2NÞ, assuming that Ekin ∼ ℏ2=ð2ma20Þ and Eshort∼
gN=a0. In this critical regime, the energy of the long-range
interaction is of the same order as that of the short-range
potential, Elong ∼mωgNa0=ℏ ¼ gN=a0; hence both short-
and long-range contributions are significant. By neglecting
the kinetic term in Eq. (17) we obtain the integral equation
for the modified Thomas-Fermi (MTF) density

nMTFðxÞ ¼
1

g

�
μ −

mω2

2
x2
�
þmω

ℏ

Z
dx0jx − x0jnMTFðx0Þ

¼ nTFðxÞ þ δnðxÞ; ð18Þ

where nTFðxÞ is the standard Thomas-Fermi density func-
tion obtained by taking α ¼ 0 in Eq. (17), and δnðxÞ is the
additional non-local term. Fortunately, Eq. (18) can be
solved explicitly, as shown in the Supplemental Material
[41]. This yields the local density profile:

nðxÞaho ¼
(

1
2c ½1 − coshð ffiffi

2
p

x=ahoÞ
coshð ffiffi

2
p

L=ahoÞ� jxj ≤ L

0 jxj > L;
ð19Þ

where L is the size of the density profile determined by the
equation nðxÞ ¼ 0 together with the normalization con-
dition

R
L
−L dxnMTFðxÞ ¼ N. After numerical computation

we find these values and show the density profile in Fig. 1.
We also find the value of the chemical potential using
Eq. (18). The normalization condition imposes that for
g ≫ gc ≡ ℏω=N, the density function is homogeneous
nMTFðxÞ ≈ ℏω=ð2gÞ for jxj ≤ L with L ≈ gN=ðℏωÞþ
a0=

ffiffiffi
2

p
. In the opposite case with g ≪ gc, the cloud radius

equals L ≈ ð3gN=2mω2Þ1=3, which corresponds to the
standard Thomas-Fermi spread in one dimension.
Discussion.—A remarkable feature of the linear long-

range potential is that a negative coefficient in front of
absolute value of separation jxijj in Hamiltonians (9) and
(14) actually results in repulsion rather than attraction.
Indeed, upon identifying infinitely separated particles as
noninteracting, the term −jxijj results in a higher potential
energy at small separations.
Further, the value of the ground-state energy (11) is

independent of the sign of c. This property stems from
condition (10) which allows us to make the system
solvable. Nonetheless, opposite signs describe drastically
different regimes. For example, large values of jcj corre-
spond to a bright soliton in the attractive (gravitational)
case while they correspond to a Wigner crystal in the
repulsive (Coulomb) case. In the soliton limit, self-focusing
of attractive bosons leads to a collapsed state with a density

FIG. 1. Density profile nðxÞ (upper row), pair distribution g2ðxÞ
(bottom row) for N ¼ 5 (left-hand column) and N ¼ 100 (right-
hand column) particles and for different values of interaction
strength. Solid lines are results of Monte Carlo sampling, while
dashed lines show the mean-field profile, Eq. (19). Harmonic
oscillator units are used.
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profile dominated by the term expð−2Njxj=asÞ; see
Eq. (12). An increase in the number of bosons reduces
the linear size ∝ as=N, enhancing the central density
nð0Þ ∼ N2=as and binding energy E ∼ Ngnð0Þ=2 ∼
−N3ℏ2=ðma2sÞ that diverge in the thermodynamic limit;
see also Ref. [44].
Knowledge of the exact wave function and its

simple pair-product form facilitates the analysis of the
ground-state correlations. The local density profile nðxÞ ¼R
dx2…dxN jΨ0 ðx1 ¼ x; x2;…; xNÞj2 and density-density

correlation function g2ðxÞ ¼ NðN − 1Þ R dx1…dxNδðx −
jx1 − x2jÞjΨ0ðx1;…; xNÞj2 can be numerically obtained
by Monte Carlo integration of the square of the exact
ground-state wave function. The obtained results are shown
in Fig. 1 for different characteristic values of the interaction
strength c and number of particles N.
In the noninteracting case, c ¼ 0 shown with black lines

in Fig. 1, the density profile has a Gaussian shape typical
for a harmonic oscillator while the pair-correlation function
is continuous at the contact position, x ¼ 0. In the repulsive
case, the probability of finding two particles at the same
position is reduced and g2ðxÞ exhibits a kink at x ¼ 0,
which becomes more pronounced with increasing c, as
shown in Fig. 1 for N ¼ 5; 100. There are two types of
correlations contributing to the shape of g2ðxÞ: the large x
envelope is dominated by the one-body density profile,
while the two-body correlations provide an important
contribution to the behavior in the vicinity of x ¼ 0. For
weak repulsion g2ðrÞ is dominated by the one-body rather
than two-body correlations and the mean-field approach is
applicable. The density profile decreases monotonously
from the center to the edges and for large number of
particles is well predicted by the mean-field prediction of
Eq. (19), shown in dashed lines. A distinguishing feature
is the formation of a flattopped mesa profile, typical of
incompressible liquids where the addition of more particles
does not change the density of a droplet but rather increases
its size. According to Eq. (19) the density of the plateau,
n0aho ¼ 1=ð2cÞ, is fixed by the interaction strength c and
the system size L is directly proportional to N for the large
number of particles. Yet, the system differs from the usual
liquids as the external potential is present. The origin of its
incompressibility resembles that of Laughlin states [45] as
the exact solution (12) is analogous to the Laughlin’s wave
function and it allows Laughlin’s plasma analogy [46].
For strong repulsion, c ≈ 1, two-body correlations

become important in g2ðxÞ and result in Friedel oscillations
observed in the density profile (see c ¼ 0.5, 0.8 and
N ¼ 5). The mean-field approach is then no longer
applicable. Finally, for even stronger repulsion, c ≫ 1,
there is vanishing probability of finding two particles in the
same position, gð0Þ → 0. The strong Coulomb interaction
leads to formation of a Wigner crystal which is seen as a
periodic modulation of the total density (see c ¼ 3 and
N ¼ 5). Different regimes are reached via continuous

crossovers in accordance to what is expected in one-
dimensional and finite-size system.
In conclusion, we have introduced a model of trapped

one-dimensional Bose or Fermi atoms subject to contact
and long-range interactions. The latter can account for
either a Coulomb potential or a gravitational interaction, in
the repulsive and attractive case, respectively. Our main
results are the Hamiltonian (9), its ground-state energy
(11), and wave function (12), characterized by a rich phase
diagram. The exact ground state is found in a closed
Laughlin-like form. For strong attractive interactions the
model describes a trapped bright quantum soliton. Varying
the interaction strength, the system exhibits a crossover to
ideal Bose gas, incompressible-fluid mean-field regime,
and a Wigner crystal. The ground-state density in the mean-
field regime acquires a profile resembling a flat top mesa
which is correctly described by a Gross-Pitaevskii equation
with long-range interactions and admits a closed-form
solution in the Thomas-Fermi regime. This rich and
solvable many-particle quantum system of interacting
particles under confinement is expected to find applications
in nonlinear physics, soliton theory, ultracold physics, and
the description of collective quantum effects in Coulomb
and gravitational systems.
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