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We study a class of two-dimensional models of classical hard-core particles with Vicsek type “exchange
interaction” that aligns the directions of motion of nearby particles. By extending the Hohenberg-Mermin-
Wagner theorem for the absence of spontaneous magnetization and the McBryan-Spencer bound for
correlation functions, we prove that the models do not spontaneously break the rotational symmetry in their
equilibrium states at any nonzero temperature. This provides a counterexample to the well-known argument
that the mobility of particles is the key origin of the spontaneous symmetry breaking in two-dimensional
Vicsek type models. Our result suggests that the origin of the symmetry breaking should be sought in the
absence of a detailed balance condition, or, equivalently, in nonequilibrium nature.
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Introduction.—Idealized theoretical models of flocking,
the formation of clusters of collectively moving self
-propelled elements (such as birds), have recently been
attracting considerable interest from the physics community
[1–6]. Such models are important not only because they shed
light on the biological nature of flocking but also because
they lead to novel universality classes in statistical physics. A
prototypical model, known as the Vicsek model, in which
nearby self-propelled elements tend to align the directions of
motion with each other, was studied numerically in the
pioneering work of Vicsek, Czirók, Ben-Jacob, Cohen, and
Shochet [7]. It was soon realized through intensive studies of
the corresponding continuum dynamical model by Toner,
Tu, and Ramaswamy [8–11] that Vicsek type models may
exhibit spontaneous breaking of the rotational symmetry in
two or higher dimensions. See Fig. 6(b) of [5] or Fig. 4(a)
of [6] for definitive numerical evidence for the existence of
spontaneous symmetry breaking in the Vicsek model. The
ordered phases were observed experimentally in biological
systems (with nematic order) [12,13] and found numerically
in granular systems (with ferromagnetic order) [14–17].
There are almost no mathematically rigorous results con-
cerning the ordered phases in rotationally symmetric models
of flocking. See [18] for interesting rigorous results in
different active matter systems.
The spontaneous breakdown of the rotational symmetry

in a two-dimensional model is in an apparent contradiction
with the well-known fact, proved first by Hohenberg for
quantum particle systems [19] and by Mermin and Wagner
for quantum spin systems [20], that a two-dimensional
system in thermal equilibrium does not spontaneously
break continuous symmetry. This fact has been proven
in various models of classical and quantum statistical
mechanics. See, e.g., [21–23].
There is of course no true contradiction here since

these theorems do not apply to the steady state of the

Vicsek model, which is not a thermal equilibrium state.
Nevertheless it is natural to ask which physical mechanism
is relevant for the violation of the Hohenberg-Mermin-
Wagner type theorems. A common informal explanation is
that the motion of self-propelled elements generates effec-
tively long-ranged interaction between the directions of
motion of particles, thus violating an essential condition
for Hohenberg-Mermin-Wagner type theorems. In a more
sophisticated discussion one focuses on the coupling
between the fluctuation of the order parameter (i.e., the
direction of the collective motion) and the macroscopic
flow of the elements. See Sec. 3.3 of [4].
Such arguments lead us to ask whether a Vicsek type

model with detailed balance dynamics can exhibit sponta-
neous breaking of the rotational symmetry in its steady
state, namely, the thermal equilibrium state. In fact some
Hamiltonian models of flocking were studied, and it was
reported that behaviors similar to the Vicsek model were
observed [24–26].
In the present paper we study a class of systems of

hard-core particles in two dimensions with Vicsek-type
“exchange interaction” that aligns the directions of motion
of nearby particles. By proving analogs of the Hohenberg-
Mermin-Wagner theorem [19,20] and the McBryan-
Spencer bound for correlations [21], we rigorously
establish that the models do not break the rotational
symmetry of the velocities in their equilibrium states.
Note that these equilibrium states are realized as the unique
stationary states of the Vicsek-like dynamics in which
particles move according to Newtonian mechanics,
while their velocities are varied stochastically from time
to time in such a manner that detailed balance condition
holds [27]. We thus conclude that the mobility of particles
in Vicsek type models is not sufficient to explain the
emergence of spontaneous symmetry breaking in two
dimensions.
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It should be clear that the original proof of Mermin and
Wagner [20], which relies on the Fourier transformation on
the regular lattice, cannot be extended to our models. We
here make use of the method of complex translation
introduced by McBryan and Spencer [21], which allows
us to cover a wide range of models. Our theorems readily
extend to Hamiltonian flock models with extra “spins” as in
[24–26] provided that the particle-particle interaction has a
hard core.
The model and main results.—We study a classical

system of N identical particles in the square region ½0; L�2
with periodic boundary conditions. For r; r0 ∈ ½0; L�2, we
denote by jr − r0j the Euclidean distance that takes into
account the boundary conditions. We denote the positions
and velocities of the particles as rj ∈ ½0; L�2 and vj ∈ R2,
respectively, where j ¼ 1;…; N is the label for particles.
Our model is described by the Hamiltonian H ¼ Hp þHv.
The Hamiltonian for particles is standard, and is given by

Hp ¼
XN
j¼1

ϵðjvjjÞ þ
XN
j;k¼1
ðj<kÞ

uðrj; rkÞ; ð1Þ

where ϵðvÞ is an arbitrary one-particle kinetic energy. One
usually sets ϵðvÞ ¼ mv2=2, but can take a function that has
a sharp minimum at certain v0 to mimic the constant speed
setting in the Vicsek model. The two-body potential
uðr; r0Þ satisfies the hard-core condition, uðr; r0Þ ¼ ∞ if
jr − r0j < a0, and is arbitrary otherwise. We only consider
particle number N such that configurations withP

j<k uðrj; rkÞ < ∞ exist. The exotic Hamiltonian that
depends on the directions of the velocities is given by

Hv ¼ −
XN
j;k¼1
ðj<kÞ

Jðrj; rkÞ
vj
jvjj

·
vk
jvkj

− h
XN
j¼1

vxj
jvjj

: ð2Þ

The first term represents the Vicsek-type “exchange inter-
action.” We assume that jJðr; r0Þj ≤ J0, and Jðr; r0Þ ¼ 0 if
jr − r0j > a1. The second term in (2) is included to test for
possible spontaneous symmetry breaking of the rotational
symmetry, and h ≥ 0 is the symmetry breaking field. One
has h ¼ 0 in the standard setting. The constants J0, a0, and
a1 (where we assume a0 < a1) are fixed throughout the
Letter.
The equilibrium state of the model at inverse temperature

β > 0 is described by the expectation

h� � �iβ;h ¼ Z−1
β;h

Z
dRdVð� � �Þe−βH; ð3Þ

where the partition function Zβ;h is determined from the
normalization condition h1iβ;h ¼ 1. We wrote dR ¼Q

N
j¼1 d

2rj and dV ¼ Q
N
j¼1 d

2vj.

Although the original problem (of classical dynamics) is
not rotationally invariant because of the geometry of the
region and possible anisotropy in u and J, the equilibrium
expectation (3) is completely invariant under a uniform
rotation of all the velocities. This is a peculiar feature of
classical equilibrium statistical mechanics. We are inter-
ested in possible spontaneous breaking of this rotational
symmetry.
Our first result is the following extension of the

Hohenberg-Mermin-Wagner theorem.
Theorem 1.—For any 0 < β < ∞ one has

lim
h↓0

lim
L↑∞

1

N

XN
j¼1

hvxjiβ;h ¼ 0; ð4Þ

where the particle number N may depend in an arbitrary
manner on the system size L (although it is most natural to
fix N=L2 constant).
Since the symmetry breaking field h > 0 forces hvxjiβ;h

to be positive, (4) establishes that the equilibrium state does
not spontaneously break the rotational symmetry. Recall
that the order of the limits in (4) is essential; one trivially
has limh↓0hvxjiβ;h ¼ 0 for any finite L by continuity.
Let us turn to a more standard setting with h ¼ 0, and

define the correlation function for the directions of the
velocities of two particles by the conditional expectation

ClðβÞ ¼
h vj
jvjj ·

vk
jvkj χ

l
j;kiβ;0

hχlj;kiβ;0
; ð5Þ

for any j ≠ k, where the characteristic function

χlj;k ¼
�
1 if jrjj ≤ a0=2 and jrk − ðl; 0Þj ≤ a0=2;

0 otherwise

ð6Þ

selects configurations in which the particles j and k are near
the origin and ðl; 0Þ, respectively. Then we prove the
following extension of the McBryan-Spencer inequality.
Theorem 2.—For any 0 < β < ∞ and a1 ≤ l ≤ L=2,

one has

jClðβÞj ≤
�
l
a0

�
−η
; ð7Þ

with a positive constant η that depends only on β, J0, a0,
and a1. [See (31) and (32).] There is no restriction on the
particle number N.
Recall that the correlation function ClðβÞ should decay

exponentially in l when β is sufficiently small. (The
exponential decay can be proved by invoking suitable
expansion techniques.) When the system becomes ordered
(as in the two-dimensional Ising model at low tempera-
tures) the correlation function at h ¼ 0 does not decay to
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zero, exhibiting long-range order. The bound (7) estab-
lishes that, at any nonzero temperature, the correlation
function ClðβÞ decays at least by a power law, and hence
never exhibits long-range order. Note also that the bound is
consistent with the expectation that the model undergoes a
Berezinskii-Kosterlitz-Thouless type phase transition at a
low temperature.
We shall prove (7) by using the complex translation

method of McBryan and Spencer [21], along with
its simplification by Picco [28]. The Hohenber-Mermin-
Wagner type result (4) can be proved by using essentially
the same techniques, as was first noted in [23].
Proof of (7).—Let us write vj ¼ vjðcos θj; sin θjÞ with

vj ∈ ½0;∞Þ and θj ∈ ½0; 2πÞ. The velocity-dependent
Hamiltonian (2) is written as

Hv ¼ −
X
j<k

Jðrj; rkÞ cosðθj − θkÞ − h
X
j

cos θj: ð8Þ

It is also crucial to note that Hp is independent of θj.
Let h ¼ 0. We shall prove (7) by setting j ¼ 1 and k ¼ 2

without losing generality. Noting that the expecta-
tion value is invariant under θj → −θj for all j, we see
that hðv1=jv1jÞ · ðv2=jv2jÞχl1;2iβ;0 ¼ hcosðθ1 − θ2Þχl1;2iβ;0 ¼
heiðθ1−θ2Þχl1;2iβ;0. We then note that

heiðθ1−θ2Þχl1;2iβ;0 ¼ Z−1
β;0

Z
dRdVe−βHpχl1;2Y1;2ðRÞ; ð9Þ

where dV ¼ Q
N
j¼1 dvjvj and R ¼ ðr1;…; rNÞ. We have

defined

Y1;2ðRÞ ¼
Z

dΘeiðθ1−θ2Þþ
P

j<k
J̃j;k cosðθj−θkÞ; ð10Þ

where dΘ ¼ Q
N
j¼1 dθj and J̃j;k ¼ βJðrj; rkÞ. We under-

stand that Y1;2ðRÞ is defined only for R such thatP
j<k uðrj; rkÞ < ∞ and χl1;2 ¼ 1.
For a fixed configuration R, we choose φj ∈ R for each j

and make the substitution θj → θj þ iφj in the integral
(10). The integral is unchanged since contributions from
the lateral contours cancel due to the 2π periodicity
of the integrand [29]. Recalling the identity cosðθ þ iφÞ ¼
cos θ coshφ − i sin θ sinhφ, we see that

Y1;2ðRÞ ¼ e−φ1þφ2

Z
dΘeiAþ

P
j<k

J̃j;k cosðθj−θkÞ coshðφj−φkÞ;

ð11Þ

where A ¼ θ1 − θ2 −
P

j<k J̃j;k sinðθj − θkÞ sinhðφj − φkÞ
is a real quantity. We can then bound jY1;2ðRÞj as

jY1;2ðRÞj ≤ e−φ1þφ2

Z
dΘe

P
j<k

J̃j;k cosðθj−θkÞ coshðφj−φkÞ

≤ e−φ1þφ2þ
P

j<k
jJ̃j;kjfcoshðφj−φkÞ−1gY0ðRÞ ð12Þ

with

Y0ðRÞ ¼
Z

dΘe
P

j<k
J̃j;k cosðθj−θkÞ: ð13Þ

To get the second inequality in (12), we noted
that cos θ coshφ ¼ cos θfcoshφ − 1g þ cos θ, and used
j cos θj ≤ 1.
Following [28], we set φj ¼ 2η logfl=ðjrj − r1j þ a0Þg

if jrj − r1j ≤ l − a0 and φj ¼ 0 if jrj − r1j ≥ l − a0. Note
that φ1 ¼ 2η logðl=a0Þ > 0 and φ2 ¼ 0 since χl1;2 ¼ 1. We
shall show below that the constant η can be chosen so that
the inequality

X
j<k

jJ̃j;kjfcoshðφj − φkÞ − 1g ≤ η log
l
a0

ð14Þ

holds. Then (12) implies jY1;2ðRÞj ≤ ðl=a0Þ−ηY0ðRÞ.
Noting that

hχl1;2iβ;0 ¼ Z−1
β;0

Z
dRdVe−βHpχl1;2Y0ðRÞ; ð15Þ

we see from (5) and (9) that

jClðβÞj ¼
j R dR

R
dVe−βHpχl1;2Y1;2ðRÞjR

dR
R
dVe−βHpχl1;2Y0ðRÞ

≤
�
l
a0

�
−η
; ð16Þ

which is the desired McBryan-Spencer bound (7).
Proof of (4).—As was noted in Sec. 4.4.3 of [23], the

Hohenberg-Mermin-Wagner type theorem (4) can also be
proved by using the complex translation method.
Let h > 0. Again by symmetry one has hvx1iβ;h ¼

hvx1 þ ivy1iβ;h ¼ hv1eiθ1iβ;h. As in (9), we have

hvx1iβ;h ¼ Z−1
β;h

Z
dRdVv1e−βHpX1ðRÞ; ð17Þ

with

X1ðRÞ ¼
Z

dΘeiθ1þ
P

j<k
J̃j;k cosðθj−θkÞþβh

P
j
cos θj : ð18Þ

By using the same complex translation, we can prove that

jX1ðRÞj≤e−φ1þ
P

j<k
jJ̃j;kjfcoshðφj−φkÞ−1gþβh

P
j
ðcoshφj−1Þ

×X0ðRÞ; ð19Þ

where

X0ðRÞ ¼
Z

dΘe
P

j<k
J̃j;k cosðθj−θkÞþβh

P
j
cos θj : ð20Þ

Let us denote by ΓηðlÞ the maximum possible value of
βh

P
jðcoshφj − 1Þ for the same choice of φj as above.

We only need to know that ΓηðlÞ is finite and independent
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of the system size L (provided that l < L=2). Then (17)
and (19), with (14), imply

lim
L↑∞

jhvx1iβ;hj ≤ e−η logðl=a0ÞþβhΓlðηÞ lim
L↑∞

hjv1jiβ;h ð21Þ

for any h > 0 and l. This means that for any h such that

0 < h ≤
1

2

1

βΓηðlÞ
η log

l
a0

; ð22Þ

one has

lim
L↑∞

jhvx1iβ;hj ≤ e−ðη=2Þ logðl=a0Þ lim
L↑∞

hjv1jiβ;h: ð23Þ

By letting l↑∞ while choosing h in such a way that h↓0
and (22) is always valid, we see that the left-hand side of
(23) converges to zero as h↓0. Recalling that the particles
are identical, we get the desired (4).
Proof of (14).—It remains to prove (14). We shall

consider configurations in which particles are closely
packed, and overestimate the sum in (14). We use the
hard-core condition only in this estimate.
Let us set r1 ¼ ð0; 0Þ for simplicity. A rough estimate of

the left-hand side of (14) is obtained by approximating
coshðφj − φkÞ − 1 by ðφj − φkÞ2=2, and by evaluating the
sum as

X
j<k

ðφj − φkÞ2 ∼
Z

d2rj∇φðrÞj2 ∼
Z
jrj≤l

d2r
ðjrj þ a0Þ2

∼ logðl=a0Þ: ð24Þ
Our task is to make this estimate into a rigorous bound. It is
tedious but is only technical.
For any rj, rk with jrjj ≤ l − a0 and jrj − rkj ≤ a1, we

see that

jφj − φkj ≤ 2η

���� log jrkj þ a0
jrjj þ a0

���� ≤ 2η log
jrjj þ a1 þ a0

jrjj þ a0

¼ 2η log

�
1þ a1

jrjj þ a0

�
≤

2ηa1
jrjj þ a0

: ð25Þ

For any x0 > 0, it holds that cosh x − 1 ≤ ðcosh x0 − 1Þ×
ðx=x0Þ2 for any x such that jxj ≤ x0 [29]. Since we have
jφj − φkj ≤ 2ηa1=a0 from (25), we find

coshðφj − φkÞ − 1 ≤ ζ0

�
a0
2ηa1

ðφj − φkÞ
�

2

≤ ζ0

�
a0

jrjj þ a0

�
2

; ð26Þ

where we again used (25) and set ζ0 ¼ coshð2ηa1=a0Þ − 1.
For a fixed rj such that jrjj ≤ l − a0, we thus have

X
k

jJ̃j;kjfcoshðφj − φkÞ − 1g

≤
�
a1 þ a0

a0

�
2

βJ0ζ0

�
a0

jrjj þ a0

�
2

; ð27Þ

where we anticipated the worst case where the particles at rj
are closely surrounded by other particles within the radius
a1 and bounded the magnitude of the interaction by J0.
We therefore find that

X
j<k

jJ̃j;kjfcoshðφj − φkÞ − 1g

≤
�
a1 þ a0

a0

�
2

βJ0ζ0
Xn
j¼1

�
a0

jrjj þ a0

�
2

; ð28Þ

where r1 ¼ ð0; 0Þ, and other particles are closely packed in
the sphere of radius l − a0. The sum is clearly bounded by
an integral as

Xn
j¼1

�
a0

jrjj þ a0

�
2

≤
C0

ða0Þ2
Z
jrj≤l

d2r

�
a0

jrj þ a0

�
2

≤ C log
l
a0

; ð29Þ

where C0 and C are numerical constants. We thus get from
(28) that

X
j<k

jJ̃j;kjfcoshðφj − φkÞ − 1g

≤ CβJ0

�
a1 þ a0

a0

�
2
�
cosh

�
2ηa1
a0

�
− 1

�
log

l
a0

: ð30Þ

By choosing η as a unique positive solution of

η ¼ CβJ0

�
a1 þ a0

a0

�
2
�
cosh

�
2ηa1
a0

�
− 1

�
; ð31Þ

we get the desired (14). Note that the solution always exists,
and behaves as

η ≃
�
2CβJ0

ða1 þ a0Þ2ða1Þ2
ða0Þ4

�
−1
; ð32Þ

when β is sufficiently large so that η ≪ a0=a1
and coshð2ηa1=a0Þ − 1 ≃ ð2ηa1=a0Þ2=2.
Discussion.—We have proved that a class of two-

dimensional particle systems with Vicsek type “exchange
interaction” never exhibits spontaneous breakdown of the
rotational symmetry. The conclusion is natural if one
notices that, for each fixed particle configuration, the
statistical behavior of the directions of the velocities is
described by an effective XY spin system on a random
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network formed by particles. This observation indeed
played a key role in our proof.
Our results support the idea that the origin of the

spontaneous symmetry breaking in the Vicsek and related
models must be sought in the absence of the detailed
balance condition [8–11,30]. It is an interesting challenge
to rigorously understand what type of violation of detailed
balance in microscopic dynamics leads to spontaneous
symmetry breaking or, almost equivalently, to continuum
dynamics as in [8–11]. See [31,32] and references therein
for promising directions.
Our theorems readily extend to a more general class of

models with hard-core interactions, short-ranged
exchange interactions, and global rotational symmetry
for the velocities. Rigorously speaking, our theorems do
not cover the Hamiltonian flock models studied in [24–26]
since they do not satisfy the hard-core condition. As is
clear from our proof, however, the same conclusions
should hold provided that particles do not exhibit
pathological condensation. It is likely that the apparent
magnetic order observed numerically in [25,26] is a
manifestation of quasi-long-range order characteristic in
the Berezinskii-Kosterlitz-Thouless phase. We also note
that the theorems can easily be extended to models in
which the exchange interaction in (2) is replaced by the
nematic interaction, which is relevant to systems studied
in [12,13]. See [29].
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