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Predicting the behavior of heterogeneous nonequilibrium systems is currently analytically intractable.
Consequently, complex biological systems have resisted unifying principles. Here, I introduce a mapping
from dynamical systems to battery-resistor circuits. I show that in these transformed variables (i) arbitrary
numbers of heterogeneous dynamical transitions can be reduced to a Thevenin equivalent resistor which is
invariant to driving from equilibrium, (ii) resistors (together with the external driving sources) are sufficient
to describe system behavior, and (iii) the resistor’s directional symmetry leads to universal theorems of
nonequilibrium behavior. This mapping is used to derive two general steady-state relations. First, for any
cyclic process, themaximumamplification of any state is tightly bounded by the total dissipation of all states;
experimental data are used to show that the master signal protein Ras achieves this bound. Second, for any
process, the response of any reaction due to driving any other reaction is identical to the reciprocal response
rescaled by the ratio of the corresponding Thevenin resistors. This result generalizes Onsager’s reciprocal
relation to the strongly driven regime and makes a testable prediction about how systems should be designed
or evolved to maximize response. These analytic results represent a new perspective applicable to biological
complexity and suggest that this mapping provides the natural variables to study heterogeneous non-
equilibrium systems.
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For an equilibrium system, which reaches the detailed-
balance condition that the rate of all time-averaged reac-
tions are equal to that of their reverse reactions, the
Boltzmann distribution directly gives the relative proba-
bility of any state irrespective of the interaction complexity
and heterogeneity [1]:

P�
i e

βGi ¼ P�
je

βGj; ð1Þ

whereGi is the free energy of state i and β ¼ ðkBTÞ−1 is the
reciprocal of Boltzmann’s constant times the temperature.
Equilibrium probabilities in this work are denoted with a “*”
superscript. Most systems in nature operate far from equi-
librium. Examples include molecular and cellular biology,
cognition, evolution, and socioeconomics [2–6]. The energy
driving these systems is necessary to enable features—such
as irreversible or sharp decisionmaking—that are impossible
at equilibrium [7]. Such systems do not obey Eq. (1).
The most direct general approach to compute nonequili-

brium steady-state probabilities is to solve the master
equations describing the transition rates within the network
of system states. If the network is homogeneous, corre-
sponding to a periodic graph structure parametrized by a
small number of repeating rate constants, the master equa-
tions can sometimes be analytically solved using the method
of generating functions [8,9]. For heterogeneous systems
with irregular graph structure or nonrepeating rate constants,

the symbolic solution becomes intractable if the system has
more than a few states. For example, the graph theoretic
approach of Hill and Schnakenberg, which follows from the
matrix tree theorem [10], leads to representations whose
complexity grows (super)exponentially with the number of
states [11–13]. This drawback thus limits the ability to
interpret, generalize, or simplify the dynamical complexity
within the network of states. A parallel approach is to relate
trajectory probabilities to dissipation, which has led to
fundamental equalities [14–17] and inequalities [18,19]
out of equilibrium. Near equilibrium, this approach can
recover useful relations between measurable quantities such
as the celebrated linear-response Onsager reciprocal relation
connecting near-equilibrium transport coefficients [20].
However, far from equilibrium, this approach generally does
not relate observables to the system parameters. Therefore,
unifying organizational principles of heterogeneous non-
equilibrium systems are lacking. In particular, the complex-
ity of living systems is still largely regarded as irreducible
and case specific.
Here, I show that the master equations describing any

dynamical system can be mapped to a probability flow
circuit. In such a circuit, net probability flows in the
directions that decrease a state variable: the probability
potential. There are only three types of circuit elements in
this mapping: batteries (energy sources), grounds (mass
sources), and resistors (passive dissipative processes). With
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this mapping, I derive a probability flux equation (PFE).
The resistors in the PFE are symmetric with respect to the
net direction of probability flow and obey Ohm’s law. The
PFE is “path local” because it relates the currents along any
trajectory to the probabilities of the initial and final states of
the trajectory. The PFE is valid for systems driven arbi-
trarily far from equilibrium, including those that have not
reached steady state. For the “equipotential” special case
for which there is no net current (i.e., detailed balance),
the path-local PFE reduces to the “state-local” Boltzmann
distribution as a special case.
I use the PFE to derive two general relations for non-

equilibrium steady states. (1) Resistors in a probability
circuit can be merged into an equivalent resistance to reduce
complex systems to their irreducible modular representa-
tions; for arbitrary cyclic systems, this property is used to
prove that the total dissipation tightly bounds the amplifi-
cation of any signal, no matter how weak. (2) The mapping
allows general theorems from electronic circuit theory to be
brought to bear on nonequilibrium steady states, from which
they take on new meaning. I show that, regardless of system
details, the response of one process due to driving another
process obeys a simple reciprocal relation that is invariant to
magnitude of driving, a generalization of Onsager’s recip-
rocal relation arbitrarily far from equilibrium.
Consider first a discrete-state system at equilibrium. Such

a system is completely characterized by forward rate
constants between adjacent states kmn and their free energies
Gm; the reverse rate constants knm are then uniquely
determined by Eq. (1). A driven system can be defined
relative to such an equilibrium reference system: the rate
constants in the driven system are equal to those of the
reference equilibrium system plus nonequilibrium rate con-
stants, kmn þ αmn. For example, in the context of biochemi-
cal reactions coupled to hydrolysis of adenosine triphosphate
(ATP) into adenosine diphosphate (ADP) plus phosphate,
αmn corresponds to the excess rate constant of binding ATP
due to maintaining the ATP concentration above its equi-
librium concentration; the rate constants of the transitions
that are not explicitly dependent on ATP concentration are
not affected. The net probability flux, denoted by the current
Imn, from state m to n is Imn ¼ Pmðkmn þ αmnÞ − Pnknm.
Henceforth, the terms “flux” and “current” will be used
interchangeably. Define the probability “potential” that
drives such a flux (Fig. 1):

Vm ≡ PmeβGm: ð2Þ

In this work,Gm always denotes the reference free energy of
state m in the absence of driving, whereas Pm always
denotes the nonequilibrium probability of state m due to
driving. The additive gauge freedom of Gm leads to
multiplicative gauge freedom of Vm, which sets it apart
from a canonical thermodynamic potential. If the multipli-
cative constant is chosen to be the equilibrium partition

function, Vm is the probability of state m divided by its
equilibrium probability. Differences in the Vm drive prob-
ability fluxes. If there are source or sink boundary states
whose probability (i.e., potential) remains unchanged by
probability flux, such states correspond to “grounds.” In
molecular biology, grounds may correspond to birth or death
processes such as protein translation or degradation. With
birth or death processes, Pm should be interpreted as the
relative occupancy of state m. The occupancy of a ground
state can be considered to be infinite, with a reference free
energy of negative infinity such that the potential remains
fixed. Although not considered further in this work, systems
coupled to multiple ground potentials can experience net
probability flux. The net probability flux, also called the
current I, can be related to the potential V by defining the
“resistance” Rmn between states m and n (Fig. 1):

Rmn ≡ eβGm

kmn
¼ Rnm: ð3Þ

Note that the second equality in Eq. (3) follows because
the equilibrium forward flux is equal to the backward
flux: the resistance is directionally symmetric, just like the
behavior of standard resistors in electronic circuits. Finally,
define the “battery” driving transitions fromm to n (Fig. 1):

Emn ≡ αmn

kmn
eβGmPm; ð4Þ

which is zero when the transition between m and n is not
directly driven. Emn is proportional to the potential at m as
defined by Eq. (2); this feedback character differentiates
linear versus nonlinear response near and far from equi-
librium, respectively.
Equations (2)–(4) define a mapping (see Fig. 1), from

which we derive a probability flux equation for any
trajectory connecting any pair of states i and j [see
Fig. 2(a) and Supplemental Material [21] ]:

Vj − Vi ¼
Xn¼j

m¼i

ðEmn − RmnImnÞ; ð5Þ

FIG. 1. Mathematical mapping between nonequilibrium sys-
tems and probability circuits. The microscopic transitions in state
space correspond to elementary circuit elements.
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where the sequence of m, n defines the trajectory; note that
resistors in the PFE obey Ohm’s law.
Equation (5) applies to systems driven far from equilib-

rium, and holds for all times, not just at steady state. This
may give insightful bounds on time-dependent fluxes if
time-dependent probabilities can be measured for a few
states. At steady state, the PFE is sufficient to solve for
currents and probabilities as a function of the elementary
parameters, for example, by decomposing into mesh cur-
rents; this sets it apart from previous analogies made between
dynamical systems and circuits [13,22,23]. For the special
equilibrium case, αmn ¼ 0 for all m and n, all currents are
zero, and all states are equipotential, then the PFE [Eq. (5)]
simplifies to the Boltzmann distribution Eq. (1). Note that for
molecular systems coupled to a temperature bath, the driven
transitions (batteries) are clearly identified by the sources of
external energy. For abstract master equations parametrized
by arbitrary rate constants, there is freedom in defining the
reference detailed-balance system, which then uniquely
determines the driven transitions; any such choice of circuit
variables will satisfy the PFE.
As in electronic circuits, the resistors in a probability

circuit can be systematically combined using the rules for
combining resistors in parallel or in series, or the star-mesh
transform [24]. Using these rules, a complex system can be
simplified to a minimal set of Thevenin equivalent resistors
which are explicit functions of the microscopic equilibrium
parameters [Figs. 2(b)–2(d)]. The reducibility of any
system is therefore dictated by the number and placement
of driven transitions within the state space. Seemingly
different or unrelated dynamical systems may reduce to the
same equivalent circuit.

Amplification limit of cyclic processes.—Many molecu-
lar machines, such as enzymes and signaling molecules
[Fig. 3(a)] belong to the cyclic class of systems whose state
space consists of N states arranged in a loop driven by an
energy consuming step, which is defined to be from state 1
to 2 without loss of generality [Fig. 3(b)]. The steady-state
current for cyclic Markov systems has been solved [25],
and the frequency of forward versus backward cycle
traversals has been related to the driving force [26].
However, how the probabilities (e.g., signaling amplitude)
deviate from equilibrium as a function of driving remains
unexplored. When mapped to a probability flux circuit,
sequential undriven steps along the loop correspond to
resistors in series. The total resistance of any portion of the
loop from state i to j is the sum of the individual resistances
in the portion: Ri;j ≡Pj

m¼i Rmmþ1. The total resistance of
the loop is Rtot ≡ R1;N (N þ 1 ¼ 1 due to periodicity).
Solving Eq. (5) yields the probabilities for any cyclic
system:

Pi ¼ P�
i

�Rtot þ ð1 − δi1Þ α
k12

Ri;N

Rtot þ α
k12

P
N
j¼2 Rj;NP�

j

�
; ð6Þ

where P�
i is the equilibrium probability of state i and δij is

the Kronecker delta. Amplifying intrinsically low proba-
bility states is a major mechanism of cellular information
processing [27,28]. The ratio in Eq. (6) is the amplification
of the equilibrium probability, which can be selectively
tuned by changing the resistors (e.g., lowering energy
barriers via catalysts), a feature unavailable to equilibrium
systems. From Eq. (6) we establish a simple tight
upper bound on the attainable amplification of state i
when driving the transition between state 1 and 2 (see
Supplemental Material [21]):

Pi

P�
i
<

�Xi

j¼2

P�
j

�
−1
: ð7Þ

Therefore, the extent to which a target state can be
amplified by driving a reaction is limited by the equilib-
rium-probability-weighted distance between the target
state and the driven reaction. Until this limit is reached,
Eq. (6) also sets the minimal energy cost as a function of
amplification:

���� ln
�
Pi

P�
i

����� < Q
kBT

: ð8Þ

Equation (8) is a tight bound, in which Q is the energy
dissipated per net cycle of the entire system, obtained
from calculating the rate of entropy production (see
Supplemental Material [21]). No state of any cyclic process
can be amplified or suppressed by a factor more than the
exponential of the total dissipation per cycle. This result

FIG. 2. Top-down simplification of heterogeneous systems. All
of the transitions between states of a system (a) are described by
forward and reverse rate constants. At equilibrium, all net fluxes
equal zero. Injections of matter (red circles) or energy (red
arrows), respectively, drive the system out of equilibrium (a),(b),
and are governed by Eq. (5) along any trajectory between two
nodes (for example, the probability potential difference between i
and j can be obtained by taking the PFE over the path containing
m,n or the path containg m0,n0). The passive resistors can be
simplified in a top-down manner using circuit modularization
rules (c),(d).
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cannot be obtained by energy conservation arguments
because Pi could be very small despite having been
amplified by many orders of magnitude. As an example,
I computed the probability amplification of the master
signaling G protein Ras using experimentally measured
and inferred rate constants [Fig. 3(a), left] [28–30]. The
states of the five-state model are shown in black or
white depending on the presence of the regulatory protein
Sos. Some states of this protein are close to the amplifi-
cation limit, which is set by the energy released upon
hydrolyzing the fuel molecule guanidine triphosphate

(GTP) [Fig. 3(c)]. Note that the amplification effect of
driving can be suppressed by increasing R12 so that Rtot
dominates in Eq. (6), for example, by removing a molecule
that catalyzes the reaction from state 1 to 2, and therefore
Pi → P�

i . By modulating R12 at fixed driving, Pi can be
tuned from P�

i to the limit in Eq. (8). In contrast, changing
R12 has no effect on the equilibrium probabilities in the
undriven system. Therefore, the amplification limit also
describes how the dynamic range of signaling is expanded
in a driven system versus its undriven counterpart.
General reciprocal relation between response

functions.—Why systems are robust to some changes
and highly sensitive to others is a question of long-standing
importance. I derive here a general relation between the part
of a system being driven (i.e., where a battery is placed) and
the sensitivity in the rest of the system (i.e., the resulting
currents everywhere else). Starting with any equilibrium
system, consider driving the transition from state i to j by
adding αij to the equilibrium rate constant for transitioning
from i to j. The driven rate constant is a monotonic function
of the current that it induces, αij½Iij�. As a consequence,
nonlocal currents are also induced between other states in
the rest of the circuit. Denote such a nonlocal induced
current, say between states m and n, as Iij→mn (Fig. 4, left).
In the weakly driven case, the indirectly induced currents
are approximately proportional to the driving rate constant:
Iij→mn ¼ Lij→mnαij½Iij�=kij, where Lij→mn is the linear
response coefficient. Alternatively, if the driven transition
were from m to n instead of from i to j, there would
likewise be an induced current between i and j: Imn→ij ¼
Lmn→ijαmn½Imn�=kmn (Fig. 4, right). Onsager famously
showed that [20]

Lmn→ij ¼ Lij→mn: ð9Þ

Equation (9) is valid for observables that are linear
combinations of currents. For example, in the thermoelec-
tric effect, the electric current is induced with the same
sensitivity to a temperature gradient as the heat flux is
induced by an electrochemical potential [31]. However,
beyond the perturbative regime, no general reciprocal
relationship between cause and effect is known.
In the circuit mapping, probability fluxes obey Lorentz’s

reciprocity theorem [32]: the current induced between m
and n due to a battery between i and j is equal to the current
induced between i and j if the same battery were instead
placed between m and n. This theorem is applicable
because of the directional symmetry of the resistance,
Rmn ¼ Rnm, which holds even when the network is being
driven such that the symmetry of the probability flux (i.e.,
detailed balance) is broken. Equation (5) and Lorentz
reciprocity yields the generalized reciprocal relation that
is valid arbitrarily far from equilibrium (see Supplemental
Material [21]):

FIG. 3. Amplification limit of cyclic systems. Biomolecular
systems commonly possess a cyclic state space (a), which can be
mapped to circuits with resistors in series, whose total resistance
is the sum of the resistors (b). The extent to which any state of
such systems can be (de)amplified is bounded by the energy
expenditure per cycle, as described by Eq. (8) (yellow regions are
forbidden). Some states of the master signaling protein Ras
approach this limit (c), including the GTP-bound (“on”) state [(a),
left], which is amplified orders of magnitude above equilibrium
levels due to hydrolysis of GTP (parameters obtained from
Refs. [28–30]). The catalyst Sos protein further tunes the on
state probability, which corresponds to changing a resistor in the
circuit.

PHYSICAL REVIEW LETTERS 125, 218101 (2020)

218101-4



Iij→mn

Iij
¼

�
Rij þ Rij;Thev

Rmn þ Rmn;Thev

�
Imn→ij

Imn
; ð10Þ

where the Thevenin equivalent resistance Rmn;Thev is the
total resistance of the rest of the circuit as measured between
states m and n (Fig. 4). Remarkably, the reciprocal current
response is invariant to the degree of driving; even far from
equilibrium, it is completely determined by the reference
equilibrium system (in the form of Thevenin resistors) in the
absence of driving. For the special case in which the system
is driven close to equilibrium, Pi=P�

i ≈ 1, and the PFE is
approximately αij½Iij�=kij ≈ ðRij þ Rij;ThevÞIij. Substituting
this and the definition ofLij into Eq. (10) recoversOnsager’s
near-equilibrium result Eq. (9) as a special case.
It follows from this relation that, in any system, the

transition ijwith the maximum Rij þ Rij;Thev is the one that
the system is most “sensitive” to: driving this transition
induces the maximum asymmetric current response with
respect to every other transition of the system, regardless of
the driving strength. Equation (10) can be used to tune
resistances and placement of energy sources in order to
optimize desired responses to driving. In light of this
principle, it will be of interest to experimentally determine
whether biological processes have evolved such that
ATP or GTP binding occurs between states of maximal
Rij;Thev.
Here, I generalize the Boltzmann distribution to a

probability flow equation on a circuit whose nodes are
the discrete states of any Markovian system. The circuit
mapping is unique in the way in which it separates driven
from undriven transitions. This allows new general

conclusions to be drawn about systems far from equilib-
rium. Using this mapping, I show that broad classes of
systems obey simple invariance relations regardless of
system size and complexity. Near-equilibrium properties,
such as Onsager’s reciprocal relations, are revealed to be
limiting cases of these results.
Probability currents are driven by differences in prob-

ability potential and external driving forces. The potential
of a state is the conjugate of the probability to the
exponential of the equilibrium free energy, the latter being
the central concept in equilibrium thermodynamics. The
currents in the circuit are conjugated to a new quantity: the
resistance. This concept is not needed at equilibrium
because all currents vanish in that case. However, this
work demonstrates that the resistance is as important as the
free energy when considering nonequilibrium systems. The
resistors can be systematically combined to simplify
circuits into their irreducible forms. Coarse-grained resis-
tors in the irreducible circuit have two useful properties.
First, being a function of the equilibrium parameters, they
remain constant regardless of the extent of driving, and so
can give insight into the invariant behavior of the system
regardless of its numerical value. Second, they can be
obtained without knowledge of their constituent micro-
scopic processes by measuring the net current through
the coarse-grained resistor. This approach to simplification
[Figs. 2(c) and 2(d)], commonly applied to electronic
circuits [24], is especially useful for molecular biology,
for which a sparse subset of transitions are directly coupled
to an external energy supply, consequently driving the
remainder of the transitions away from equilibrium.
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