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We use continuum simulations to study the impact of friction on the ordering of defects in an active
nematic. Even in a frictionless system, þ1=2 defects tend to align side by side and orient antiparallel
reflecting their propensity to form, and circulate with, flow vortices. Increasing friction enhances the
effectiveness of the defect-defect interactions, and defects form dynamically evolving, large-scale,
positionally, and orientationally ordered structures, which can be explained as a competition between
hexagonal packing, preferred by the −1=2 defects, and rectangular packing, preferred by theþ1=2 defects.
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Active materials are out-of-equilibrium systems that
continuously consume energy and exert stress on their
environment [1]. Examples include bacterial suspensions
[2–4], living cells [5–7], and vibrating granular rods [8].
The continuous injection of energy—or activity—and the
resulting stress can lead to phenomena such as collective
motion [9–11] and active turbulence [12,13] behaviors that
cannot be captured by conventional equilibrium statistical
mechanics [14–18].
Many active systems have nematic symmetry, and such

active materials extend the physics of passive nematics
[19]. The activity destroys long-range nematic order,
resulting in the proliferation of topological defects in the
orientation field. Moreover, in active systems, gradients in
the director field induce stresses and hence þ1=2 topo-
logical defects are self-propelled [20–22]. Flows driven by
the defects and by other gradients give rise to active
turbulence [Fig. 1(a)], a chaotic flow state characterized
by short-range nematic order, high vorticity, and localized
bursts of velocity [23,24].
A key experimental system for investigating the proper-

ties of active turbulence is a dense suspension of micro-
tubules propelled by two-headed kinesin motors [10,25].
Investigation of the defect motion in a thin layer of this
material showed that the þ1=2 topological defects can
themselves display long-range nematic order while retain-
ing their motile nature [26]. Very recent simulations of
active nematics with hydrodynamics, “wet systems,” have
shown short-range defect ordering [27,28]. Simulations and
analytical approaches to active nematics with strong
friction have ignored viscous stress and reproduced
þ1=2 defect ordering, but this is polar rather than nematic
[29–31]. Such polar defect ordering has been attributed to
archlike configurations of the nematic director field [32]. In
another study in the same regime, rotational contributions
of the flow are ignored, and a static lattice of defects with
positional and orientational order has been observed [33].

A lattice was also observed in the high friction regime in the
presence of viscous stress [34].
To clarify how defects order in wet active nematics, we

perform large-scale continuum simulations to measure both
the positional and orientational order of topological defects
with varying friction. We confirm that þ1=2 defects prefer
to position themselves side by side and align antiparallel
[27,28], while the −1=2 defects prefer to impose a threefold
symmetry on their surroundings. Increasing friction
decreases the hydrodynamic screening length, which mea-
sures the competition between viscosity and friction and
increases the effectiveness of the defect-defect interactions,
and the defects start to form dynamically evolving orienta-
tionally and positionally ordered structures even in the
regime where defects are still motile. This can be explained
in terms of the competition between hexagonal packing
preferred by the −1=2 defects and rectangular packing
preferred by the þ1=2 defects. The range of the ordering
increases with increasing friction in agreement with
experiments [26].
To investigate the orientational arrangements of defects,

we solve the continuum equations of motion for a 2D active
nematic [6,23] using a hybrid lattice Boltzmann method
[35–44]. This is now well documented, so we summarize
relevant points here, giving the full equations and simu-
lation details in the Supplemental Material [45]. The
relevant hydrodynamic variables are an orientational order
parameter Q, which describes the magnitude and direction
of the nematic order and the velocity. We consider low
Reynolds number and work above the nematic transition
temperature, so any nematic order is induced solely by the
activity, and consider a flow-aligning fluid. The equations
of motion are identical to those describing the nemato-
hydrodynamics [46,47] of passive nematic liquid crystals
except for an additional term in the stress −ζQ, which
implies that any gradients in the nematic ordering drive
flows and, for extensile activity, ζ > 0, results in active
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turbulence [48]. Finally, we include a friction coefficient f
in the Navier-Stokes equation modeling energy loss from
the 2D active plane to its surroundings.
Defect distributions.—To measure positional and orien-

tational correlations between defects, we treat theþ1=2 and
−1=2 defects as two different types of quasiparticle with
different symmetries [Fig. 1(b)] [49]. Defects are found by
measuring the local winding number [50,51] (see
Supplemental Material for details [45]). We consider a
reference defect i and choose a coordinate system with the
reference defect as the origin and the Cartesian axes
oriented relative to the defect as shown in Figs. 1(c) and
1(d). To define the relative position of the second defect, we
use polar coordinates ðr; θÞ, defining θ as the angle from
the x axis. We measure the relative position of the other
defects j present at a given time step [Figs. 1(c) and 1(d)],
and then sum over all the measured defect pairs, taking data
every 1000 time steps to get the pairwise positional
distribution function

g��ðr; θÞ ¼
V

N��

X

t

X

��pairs

δðr − rij; θ − θijÞ; ð1Þ

where the subscripts of g indicate the type of the defect pair
ij, e.g., −þ refers to the positioning of þ1=2 defects
around a −1=2 defect. The normalization V=N�� is the
area divided by the total number of defect pairs N��.

We introduce this normalization to set g ¼ 1 at r → ∞ to
normalize to bulk densities at large distances. To acquire
sufficient statistics, each distribution function is based on
measurements of at least 106 defect pairs, which requires
runs ∼3 orders of magnitude longer than the average defect
lifetime (see Supplemental Material [45]).
In addition to the relative defect positions, we are also

interested in the average defect orientation relative to the
reference defect. To obtain this information, we calculate
the orientation distribution vector,

S��ðr; θÞ ¼ N ��
X

t

X

��pairs

δðr − rij; θ − θijÞ
�
cos κjψ j

sin κjψ j

�
;

ð2Þ

where ψ j is the polar angle of the orientation of defect j in
the coordinate frame defined by the reference defect i
[Figs. 1(c) and 1(d)]. Here κj ¼ 2ð1 − kjÞ, where kj is the
charge of the jth defect, accounts for the threefold rota-
tional symmetry of the −1=2 defects. Taking the normali-
zation constant as N �� ¼ V=ðN��g��ðr; θÞÞ means that
the magnitude of S is zero in the absence of orientational
correlations and one if the defect orientations are perfectly
correlated. To avoid statistically insignificant data, we set
g ¼ 0 and S ¼ 0 if the defect count for any site is lower
than 5.

(a) (b)
(f) (g)

(h) (i)

(c) (d)

(e)

FIG. 1. Defect ordering in wet active turbulence: (a) Snapshot of active turbulence for very low friction, F ¼ 0.023. The white
(magenta) symbols are þ1=2 ð−1=2Þ defects. Background color denotes the vorticity. (b) Schematic representation of þ1=2 and −1=2
defects. þ1=2 defects have a single polar axis (blue line) and −1=2 defects have three axes. (c),(d) For a referenceþ (c) or − (d) defect i
we define an associated polar coordinate system. (e) Spacing between þ1=2 defects [defined as the position of the maximum in gþþ (in
lattice units) as a function of the active length scale

ffiffiffiffiffiffiffiffiffi
K=ζ

p
]. Activity ζ and elasticity K were varied. (f)–(i) Pair distribution function

gabðr; θÞ where a and b represent þ and/or − defects showing the positional distribution of b-type defects around an a-type defect. The
white arrows represent the orientational distribution vector S with arrow size normalized by the magnitude of S and axes are in
lattice units.
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Emergent defect ordering at low friction.—We first
consider very low friction and high activity, recovering
well-developed wet active turbulence [Fig. 1(a)].
Figure 1(f) shows how positive defects behave in the
vicinity of another positive defect: even in this highly
turbulent regime, there is a clear preference for neighboring
þ1=2 defects to line up along the x axis in an antiparallel
configuration with a preferred distance between neighbors.
This preferred defect spacing scales with the active nematic
length scale,

ffiffiffiffiffiffiffiffiffi
K=ζ

p
[Fig. 1(e)]. Therefore, we choose to

measure the friction in terms of a dimensionless friction
number F ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðK=ζÞðf=ηÞp

, which is the ratio of the active
length scale to the hydrodynamic screening length.
Figure 1(i) shows that −1=2 defects prefer not to lie too

close to each other and that there is no preferred length
scale in contrast to the þ1=2 defects. Interestingly, the
−1=2 defects do impose an orientational structure on
surrounding −1=2 defects even in this fully active turbulent
regime. We already find six peaks where the neighboring
defects have a strong preference for antiparallel alignment.
This is due to the elastic torque [52]. However, the
symmetry of the peak positions is caused by the flow
fields, which form six vortices around negative defects.
Finally, Figs. 1(g) and 1(h) show that positive and negative
defects are preferentially found close together and aligned
in the relative orientation associated with creation and
annihilation events.
Defect lattices at high friction.—As the friction is

increased to F ∼ 0.08 the defect interactions result in
large-scale ordering of the defects. As an example,
Fig. 2(a) presents a snapshot of the defect structure and
corresponding vorticity field for F ¼ 0.083, where the

mean speed of the flow has been reduced by an order of
magnitude with respect to the no friction regime. This
figure and Video S1 [45] show that þ1=2 defects have a
strong tendency to form antiparallel pairs, which induce
and orbit on vortices, as already apparent in the no friction
limit. But much larger-scale defect arrangements also
become apparent at high friction, as not only the inter-
actions between the þ1=2 defects but also those between
the −1=2 defects result in significant ordering. To inves-
tigate this, we first consider the structure formed by the
þ1=2 defects [Fig. 2(b)] and then the ordering preferred by
the −1=2 defects [Fig. 2(c)].
Figures 3(a) and 3(b) show distribution functions of

�1=2 defects around a þ1=2 defect at strong friction
(F ¼ 0.103). The first obvious feature of these correlations
is that the antiparallel ordering of the þ1=2 defects along x
is more pronounced and longer ranged than in the friction-
less limit. This is confirmed by Fig. 3(c) where we plot the
pairwise positional distribution function gþþðr; 0Þ showing
how the strength and range of the correlations increase with
increasing friction.
Figure 3(d) shows that þ1=2 defects are also ordered

along the y axis. This ordering can be interpreted by
comparing the distribution functions in Figs. 3(a) and 3(b),
which show thatþ1=2 and −1=2 defects alternate along the
y axis and that they align parallel. The ordering increases
with friction, but is less pronounced than that along x.

(a) (b)

(c)

FIG. 2. (a) Snapshot of the defect structures at intermediate
friction F ¼ 0.023. þ1=2 (−1=2) defects are shown in white
(magenta). There is transient local defect ordering into a
rectangular (green outline) or a hexagonal (magenta outline)
pattern. The background color represents the vorticity field.
(b) Schematic of the rectangular ordering. (c) Schematic of the
hexagonal ordering. This is chiral: −1=2 defects (in gray) have
either a left or right neighboring −1=2 defect (in green). The other
position is filled by rotating þ1=2 defects resulting in local zero
charge.

(a)
(c)

(d)

(e)

(b)

FIG. 3. Ordering of theþ1=2 defects at high friction (a),(b) Pair
distribution function gþþðr; θÞ and gþ−ðr; θÞ (color map) and the
orientation distribution vector (white arrows) for high friction
F ¼ 0.103. Axes are in lattice units. (c),(d) gþþðr; 0Þ and
gþþðr; π=2Þ showing the buildup of order along the x and y
axes (in the direction of the red dotted line) with increasing
friction. (e) Nematic defect ordering Sd, as a function of
dimensionless friction F ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðK=ζÞðf=ηÞp

, for varying elastic
constant K.
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We show in the Supplemental Material that the energy of
two þ=− defect pairs, each arranged as in Fig. 2(b) and
held at a fixed distance apart, is minimized if the pairs line
up along the y axis [45]. Moreover, this configuration is
favored because it leads to nonconflicted flows. We note
that this result relies on the presence of intervening −1=2
defects and is different from the active torque between two
þ1=2 defects studied in [53]. Together, the preferred
ordering of þ1=2 defects along x and y, i.e., perpendicular
and parallel to the polar axis of the defects, is satisfied by
the rectangular packing of defects shown in Fig. 2(b).
In Fig. 3(e) we plot the nematic order parameter,

Sd ¼ −1þ 2
P

t

P
þþpairsðm̂i·m̂jÞ2=Nþþ, where m̂j is the

polar axis of the jth þ1=2 defect, as the friction and elastic
constants are varied. The data collapse confirms F as a
suitable control parameter for the simulations. We find that
Sd takes a nonzero value, even when the defects are still
motile, and increases with increasing friction. It is remi-
niscent of the experimental system of microtubules driven
by motor proteins, where the nematic order of defects
increases with decreasing film thickness [26]. However, the
patterning also exhibits higher-order symmetry than just
nematic as the ordering of defects is polar or antipolar
depending on their relative positions. Upon increasing the
friction further [F ¼ 0.106 in Fig. 3(e)], the defects stop
moving and a vortex lattice with orientational defect order
is established [34] on scales comparable to the system size,
which is ∼15 times the active length scale. To check
whether this is a true transition, we ran simulations on
larger lattices, which showed that the ordering decreases
with increasing system size (reported in the Supplemental
Material [45]). Thus, at these values of F, we observe
coexisting domains with long- but not infinite-range order.
At yet higher frictions, the dynamics becomes too slow to
allow feasible simulations of the defect lattices and, for
F ≳ 0.14, the activity is too weak to create defects.
Figure 4 presents results for the ordering around negative

defects showing a distinct difference between intermediate
(F ¼ 0.082) [Fig. 4(a)] and high friction (F ¼ 0.103)
[Fig. 4(b)]. In the intermediate friction regime there are
six first neighbor and six second neighbor peaks in
the positional distribution function around the central
defect, corresponding to a hexagonal packing of −1=2
defects. Both right- and left-handed lattices are possible
[see Fig. 2(c) and Video S1 [45]]. With increasing friction,
however, the nearest neighbor peaks become less pro-
nounced, showing that it is increasingly difficult to form a
hexagonal lattice.
Instead, the secondary peaks become more pronounced.

The reason for this is apparent from Figs. 4(c) and 4(f),
which show that the þ1=2 defects increasingly line up
along the polar arms of the −1=2 defects and lie between
two −1=2 defects [28,53]. We show in the Supplemental
Material that this is the elastically preferred configuration
of two defect pairs [45]. It corresponds to the polar ordering

of alternate þ1=2 and −1=2 defects seen in the rectangular
lattice [Fig. 2(b) and Video S1 [45]].
Conclusion.—We have numerically investigated defect

ordering in an active nematic with hydrodynamic inter-
actions and increasing friction. We show that friction can
introduce nematic ordering of defects on length scales
many times larger then the active length scale, as observed
in experimental systems [26]. A local measurement would,
however, give polar order of þ1=2 defects in the direction
of their polar axis (mediated by intervening −1=2 defects)
and antipolar order of the þ1=2 defects perpendicular to
this axis.
Weak signatures of this ordering are observed even in

fully developed active turbulence with no friction. Upon
increasing the friction, they result in structures with
longer-ranged order. The −1=2 defects tend to reorganize
themselves into hexagons [Fig. 2(c)], where each hexagon
encompasses two þ1=2 defects that rotate on a vortex.
However, this is not an ideal configuration for pairs of�1=2
defects and, as a consequence, the hexagonal packing
of defects coexists with the rectangular structure shown in
Fig. 2(b). As the friction is increased, and the hydrodynamic
screening length becomes comparable to the active length
scale, the rectangular packing becomes dominant, and the
system eventually freezes into the rectangular lattice [33,34].

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. Ordering around a −1=2 defect at high friction. (a) Pair
distribution function g−−ðr; θÞ (color map) and the orientation
distribution vector (white arrows) for intermediate friction
F ¼ 0.083. Axes are in lattice units. (b),(c) Pair distribution
functions g−−ðr; θÞ and g−þðr; θÞ for high friction F ¼ 0.103.
(d)–(f) g−−ðr;−π=2Þ, g−−ðr;−π=6Þ, and g−þðr;−π=6Þ (along the
red dotted line) with increasing friction.
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Chaté, and H. Zhang, Proc. Natl. Acad. Sci. U.S.A. 116, 777
(2019).

[5] G. Duclos, C. Erlenkämper, J.-F. Joanny, and P. Silberzan,
Nat. Phys. 13, 58 (2017).

[6] T. B. Saw, A. Doostmohammadi, V. Nier, L. Kocgozlu, S.
Thampi, Y. Toyama, P. Marcq, C. T. Lim, J. M. Yeomans,
and B. Ladoux, Nature (London) 544, 212 (2017).

[7] K. Kawaguchi, R. Kageyama, and M. Sano, Nature (London)
545, 327 (2017).

[8] J. Galanis, R. Nossal, W. Losert, and D. Harries, Phys. Rev.
Lett. 105, 168001 (2010).

[9] C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein,
and J. O. Kessler, Phys. Rev. Lett. 93, 098103 (2004).

[10] T. Sanchez, D. T. N. Chen, S. J. DeCamp, M. Heymann, and
Z. Dogic, Nature (London) 491, 431 (2012).

[11] Y. Sumino,K. H.Nagai, Y. Shitaka,D. Tanaka,K.Yoshikawa,
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