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One of the intrinsic characteristics of far-from-equilibrium systems is the nonrelaxational nature of the
system dynamics, which leads to novel properties that cannot be understood and described by conventional
pathways based on thermodynamic potentials. Of particular interest are the formation and evolution of
ordered patterns composed of active particles that exhibit collective behavior. Here we examine such a type
of nonpotential active system, focusing on effects of coupling and competition between chiral particle self-
propulsion and self-spinning. It leads to the transition between three bulk dynamical regimes dominated by
collective translative motion, spinning-induced structural arrest, and dynamical frustration. In addition, a
persistently dynamical state of self-rotating crystallites is identified as a result of a localized-delocalized
transition induced by the crystal-melt interface. The mechanism for the breaking of localized bulk states
can also be utilized to achieve self-shearing or self-flow of active crystalline layers.
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Systems of self-propelled or self-spinning active
particles are intrinsically out of equilibrium. Operating
with self-sustaining energetic sources or propulsive forces,
the corresponding active dynamic processes should no
longer be governed by the traditional relaxational pathways
directed by the minimization principle of thermodynamic
potentials as in near-equilibrium samples of passive
particles. Instead, the system evolution is controlled by
nonpotential, nonrelaxational dynamics, a category that has
been known to exhibit a variety of complex states, such as
evolving ordered and defected patterns [1-3], spatio-
temporal chaos with persistent dynamics [4,5], or glassy
behavior [6] as found in physical and biochemical
pattern-forming systems like fluid convection, liquid
crystals, chemical reactions, and many biological processes
[1]. Complex dynamical behavior has also been observed in
active colloidal materials both experimentally and compu-
tationally, varying from phase separation [7—12], dynami-
cal clustering [7,13-16], and active glass [17,18] to
traveling [19-22] or rotating [23-25] crystals.

Among these dynamical phenomena of active matter, a
common feature is the collective motion of the constituent
particles or building blocks in homogeneous [24-29] or
phase-separated [7—12] liquid and/or gas states and ordered
phases with different crystalline symmetry [19-25,30-34].
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In many cases, the self-propulsion of active particles,
coupled with interparticle interactions, is the driving
factor underlying various forms of collective behavior
[7,11-13,16-22]. Recent experimental and theoretical
studies also showed that the self-spinning or self-circling
alone (of active spinners or rotors [35-40]) can generate
spatiotemporal collective states among the interacting
chiral particles [8-10,23-33,41-48]. A typical example
is the edge current flow of rotors generated at rigid
boundary walls; this edge mode induces the collective,
unidirectional flow of neighboring rotors, which either
decays into the confined sample interior of a liquid or gas
phase [24-29] or causes the rotation of the circular sample
in a crystalline or jammed phase [24,25].

Although much effort has been devoted to investigating
either of these two mechanisms of self-propulsion and self-
spinning, effects of their mutual coupling are much less
explored. Also less understood is the corresponding
crystallization process, for which a statistical continuum
description that can access large length and timescales
much beyond the restrictions encountered in discrete
particle-based approaches, has still been lacking. Here,
by introducing a continuum density-field description that is
nonpotential and nonvariational, we show that the coupling
and competition between self-propulsion and self-spinning
result in a surprisingly rich behavior of nonrelaxational
dynamical crystallized states. They feature both transla-
tional and rotational collective motion, governed by
persistent dynamics. Two types of transition for active
crystalline patterns are identified, i.e., bulk traveling-
localization and interfacial localized-delocalized transi-
tions, each mediated by a crossover regime showing
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dynamical frustration of active chiral particles. Of particu-
lar interest is the effect of the controlled crystal-melt
interfaces, leading to an emergent state of self-rotating
crystallites embedded in a homogeneous active melt, or
self-shearing or wriggling flow of crystalline layers.

The active system here is described by a local particle
density variation field yw and a local polar particle ori-
entation field P, the dynamics of which are governed by

O =V2ew+ (V> +q§) v —gw* +yw’] -1 V-P, (1)
0,P=(V?*—D,)(C\P+Cy|P]*P) -1,V + M xP, (2)

where €, together with the average density v, controls the
transition between homogeneous (liquid) and crystalline
phases, v is the self-propulsion strength, D, is the rota-
tional diffusion constant, and M = MZ represents the
strength of self-spinning caused by an active torque.
When M = 0 we recover the previous active phase field
crystal (PFC) description [19,20].

Here we focus on C; > 0, counteracting any spontaneous
polarization by, e.g., rotational diffusion, to preclude any
explicit alignment interactions and be consistent with related
experiments. Our description can be derived from a micro-
scopic particle-based formulation and dynamical density
functional theory (DDFT) (see Supplemental Material [49]).
All the model parameters are rescaled and dimensionless,
giving a diffusion timescale and a spatial scale set by the
periodicity of the ordered phase with g, = 1.

It is noteworthy that Egs. (1) and (2) could be reduced to
a gradient, relaxational form only when vy = M = 0 for
passive particles, giving 9,y = V26F/dy and O,P =
(V2=D,)sF /5P with F = [dr{yle+ (V?>+q})’]
w/2 =gy’ /3 +yt/4+ Ci[P*/2 4 C4|P[*/4}, a combi-
nation of the PFC free energy [84-87] and a Landau
expansion of the polarization field. Thus, for any active
system with nonzero v, the corresponding system dynam-
ics is nonrelaxational, i.e., does not follow the minimization
of F. We examine this nonpotential system through a series
of numerical simulations. Each starts either from a homo-
geneous state with random initial conditions or from
initially small crystalline nuclei, with system sizes ranging
from 128 x 128 to 2048 x 2048 grid points (around
230 to 60000 density peaks) subjected to periodic boundary
conditions. The system parameters are chosen as
(e,9,D,,C;,C4) = (—0.98,0,0.5,0.2,0), while values of
M, vy, and y, are varied to control the competition between
self-propulsion and self-spinning.

Our simulations indicate that, in the bulk state of active
crystals, three characteristic regimes of system dynamics can
be identified. As shown in Fig. 1(a), the propelling-spinning
competition leads to a sharp transition between a unidirec-
tionally traveling ordered state driven by particle self-
propulsion at large enough v, and small M [Fig. 1(b)]
and a localized or arrested crystalline state with vanishing
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FIG. 1. (a) Magnitude of average density-peak velocity |(v)| as a
function of M, for y, = —0.3 and v, = 0.35, 0.4, and 0.5. Dashed
curves represent analytic results of Eq. (5) assuming g ~ g = 1.
Inset: (|Q|) measuring particle self-spinning. (b)~(d) Snapshots of
parts of the y profiles in three characteristic regimes, with the
density peaks shown in red, their velocities v indicated by large
arrows, and the polarization field P by fine arrows. (e) Snapshot of
migrating crystallites in an active melt (see Supplemental Material,
Video S2 [49]). Inset: Enlarged portion of a two-grain impinged
corner, with a penta-hepta dislocation.

velocity v of each density peak at large enough M
[Fig. 1(d)]. The effect of active torque causes the self-
spinning or localized self-circling of individual chiral par-
ticles and hence the localization of each density peak, which
is consistent with previous DDFT results for noncrystallized
states [88]. It thus induces the arrest of the whole pattern as
observed here. This traveling-localization transition can be
accompanied by phase transformations between ordered
structures as induced by particle self-spinning when M
increases. Examples include transformations from a travel-
ing rhombic or distorted hexagonal structure to a localized
hexagonal phase [Figs. 1(b)-1(d)], or from traveling square
to traveling rhombic to localize hexagonal structures at large
active drive v, (Fig. 2).

In a narrow crossover regime near the transition thres-
hold (M ~ M .), the incompatibility between two dynamical
effects dominated by self-propelled translation and spin-
ning-induced localization becomes explicit. When these
two competing dynamics are of similar degree, none of the

FIG. 2. Self-spinning-induced phase transformation of crystal-
line patterns with increasing M (at vy = 1, yo = —0.4).
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corresponding optimal collective behaviors can be
achieved, leading to the local dynamic frustration of active
particles [see Fig. 1(c)] or a wavy, swinging translative
motion of the whole crystalline pattern characterized by
alternative regions of density peaks traveling at varying
directions (see Supplemental Material, Video S1 [49]). The
balancing of translation and localization also leads to a
phenomenon of migrating crystallites. As shown in
Fig. 1(e) and Video S2, during the evolution and coarsening
of faceted crystallites or grains, the density peaks are
localized within each grain, while the whole crystallites
travel within the coexisting medium of homogeneous melt,
impinging and coalescing with each other.

The above results can be further understood by rewriting
Eq. (2) in terms of a local divergence field S = V - P and
the self-spinning field Q = (V x P)_/2; for C, =0,

9,8 = C(V?>=D,)S —2MQ — v, V?y, (3)

8,Q=C,(V2-D,)Q+ %MS. )

Equation (4) indicates that S serves as an effective source
for nonzero Q in the steady state, generating particle self-
spinning locally, as confirmed numerically in the inset of
Fig. 1(a). Nonzero S also drives the propagation of density
patterns when entering Eq. (1), while its own source is, in
turn, provided by the variation of the density field [see
voV?y in Eq. (3)]. Simultaneously, the term MQ in Eq. (3)
causes the damping of S and plays the role of an inhibitor
that hinders the particle migration, leading to the effect of
localization observed in the simulations.

Given the linear form of Egs. (3) and (4), it is straight-
forward to express the Fourier components of S and Q in
terms of those of density y in the nonequilibrium steady
state with a constant pattern migration speed v,,. For the
hexagonal phase, in one-mode approximation

2 .
vl = 32 {g5v5 - 2[C1 (g5 + D,)* = M?]
0

/o — 16M2C3 (@3 + D, ). (5)

if v3, >0 and |M|<g3v3/[4C,(G3+ D,)]; otherwise
v,, = 0. This analytic result indicates that there exists a
critical threshold M, (or wv,.); when |[M|> M, (or
vy < vp.) the active crystal is localized with v,, = 0. g,
is the selected wave number of the ordered pattern, difficult
to be determined analytically for a nonpotential system
[1-3]. Our simulations indicate that g is in the vicinity of
qo, an approximation used in evaluating Eq. (5) as
presented in Fig. 1(a) without any parameter fitting. We
find a reasonably good agreement between analytic and
numerical results for v,,, with the deviations attributed to
the employed one-mode approximation.

Remarkably, the effect of chiral particle self-spinning,
which leads to the bulk structure localization identified above,
can be utilized to generate a further localized-delocalized
transition in the interfacial state and, consequently, a phe-
nomenon of crystallite self-rotation or self-shearing. The
crystal-melt interface is set up through a sufficiently steep
gradient of the “temperature”-type parameters ¢ and C,
(corresponding to the spatial variation of, e.g., chemicals or
heat sources controlling homogeneous vs crystalline phases in
experiments). Our obtained results are robust against specific
realizations of the setup, as verified in simulations. Below, we
present results for a kink-type two-phase profile

€= %{(61“ +e™) + (e — ") tanh [(r = ro)/Al}. - (6)
with the same form for C|. This represents a circular cavity of
radius r(, enclosing a crystallite embedded in an outside
coexisting homogeneous medium of active melt. Similar kink-
type profiles can be set up for other interfacial geometries.
Here we set (e, e, CI", C9") = (-0.98,0,0.2,1) and A
around 1-5 grid spacings.

Simulation results for a circular cavity are presented in
Fig. 3, showing three regimes of crystallite self-motion:
(i) self-translation dominated, (ii) self-rotation dominated,
and (iii) the transition between them, as a result of the
competition between self-propelled translative particle
motion, interface-induced tangential motion of density
peaks, and localization through particle self-spinning. In
regime (i) for small M, high-density blocks constantly
crystallize from the active melt at one side of the cavity,
propagate across it, and remelt into the homogeneous
medium at the other side, as seen in Fig. 3(b) and Video
S3 [49]. At the same time, the whole crystallite still rotates
slowly, with small but nonzero averaged angular velocity
(|w|) [estimated as the orientation change rate of (v), given
the dominance of translative motion, with the center of
rotation located outside the crystallite; see Fig. 3(a)]. The
maximum magnitude of the average translational velocity
|(v)| (among realizations of different y ) decreases with
increasing M, due to stronger localization through particle
self-spinning. At large enough M [regime (ii)], persistent
self-rotation of the faceted crystallite about the cavity
center is observed, as illustrated in Fig. 3(c) and Video
S4 [49]. The direction of crystallite rotation (clockwise) is
opposite to that of individual particle self-spinning
(counterclockwise). The maximum averaged rotation rate
(lw|) (here |w| = |v — (v)|/r) is reduced at larger M with
enhanced bulk localization.

This phenomenon of self-rotating crystallites can be
understood by examining the spatial variation of the polari-
zation field P. At the cavity boundary, the average polari-
zation of a boundary density peak at the melt side is weaker
than at the inner crystalline side, generating a local spatial
gradient of P (and Q) that is suppressed asymmetrically by
its vicinity to the interface. Thus, the active drive at the inner
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FIG. 3. (a) Averaged translational and rotational velocities
(|(v)] and (|w|) at vy = 0.5) as a function of M, containing
translation- and rotation-dominated regimes for crystallites in a
circular cavity and a transitional regime (shaded symbols)
enlarged in the inset. (b)—(e) Snapshots of crystallite patterns
simulated [as marked in (a)], with v vectors indicated.

side of each boundary peak dominates over that of its outer
side, causing the corresponding self-flow of the interfacial
crystalline layer. It subsequently overcomes the localization
of (i.e., delocalizes) interior particles via collective dynamics
and drives the overall self-rotation of the crystallite. The
direction of self-rotation follows the orientation of the net
polarization at the inner side of interfacial peaks and thus,
interestingly, is opposite to that determined by the chirality
of individual self-spinning. When the sign of M is reversed,
both directions of self-spinning and self-rotation are
reversed. The mechanism here is different from that under-
lying the rotation or edge flows of active spinners found in
previous studies of no-flux rigid boundary walls; there the
chirality of the boundary or edge flow is the same as that of
the individual spinners or rotors [24-29].

In the transitional regime, the crystallite shows double-
degenerate behaviors, one dominated by self-translation and
the other by self-rotation, as depicted in Figs. 3(d) and 3(e),
respectively. In the latter, although the overall crystallite
self-rotates as driven by the interfacial layer, some inner
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FIG. 4. Dynamical state diagrams in the M — v space for three
dynamical regimes in (a) bulk and (b) interfacial systems.

layers exhibit local frustration and even intermittent inverse
rotation [leading to regions of local self-shearing; see
Fig. 3(e) and Video S5 [49] ]. This reflects the competition
among self-propulsion, self-spinning-induced localization,
and interface-induced delocalization.

The dynamical regimes identified for both bulk and
circularly interfacial systems are summarized in Fig. 4, in
terms of M — v, state diagrams obtained from simulations
across different values of y that lead to hexagonal
crystallized states. Major parts of the M — v, space are
occupied by the self-translation-dominated state and the
states of self-spinning-induced bulk localization [Fig. 4(a)]
or interface-related crystallite self-rotation [Fig. 4(b)]. The
transitional regime, characterized by dynamical frustration
in both cases, is broader in Fig. 4(b) that involves crystal-
melt interfaces.

The interface-induced driving mechanism of crystalline
layers should apply to any geometry of nonrigid (soft)
crystal-liquid boundaries or edges. In the example of a slab
crystallite [Fig. 5(a)], the top and bottom interfacial layers
are expected to be driven towards opposite directions due to
their inverse crystal-to-liquid interface orientations, leading
to self-shearing of the crystallite as verified in our simu-
lations [see Fig. 5(a) and Video S6 [49] ]. Conversely, in the
transitional regime, local frustration of density peaks occurs

FIG. 5. Interface-induced self-motion of crystalline layers at
vy = 0.5, including (a) self-shearing (M = 0.5, w, = —0.2)
and (b) frustrated motion (M = 0.19, y, = —0.19) for a slab
crystallite, and (c) self-rotation of a ring crystallite
(M = 0.25, wy = —0.26).
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as a consequence of the comparable strengths of self-
propulsion and self-spinning, as seen in Fig. 5(b). This
leads to either fluctuating modes of traveling crystalline
layers (Video S7) or even a snaking or worming type of
layer flow (Video S8).

Finally, similar consequences of opposing interfacial
orientations can be manifested in a ringlike configuration,
as shown in Fig. 5(c) and Video S9 [49]. In many cases,
although the whole ring-shaped crystallite still rotates
collectively as driven by the outermost circular layer with
longest perimeter [Fig. 5(c)], its angular velocity is sig-
nificantly reduced due to the hindrance by the counter-
acting drive of the innermost annulus. The scenario of self-
shearing occurs when the two interfacial drives are of
comparable strength, for which the outer and inner crys-
talline layers rotate to opposite directions (Video S9).

In summary, we have analyzed and predicted the
collective behavior of spatially ordered structures featuring
both active propulsion and active rotation. The interplay
between individual particle self-propulsion and self-spin-
ning during crystallization results in various novel states of
collective and persistent dynamics that are enabled by the
nonrelaxational nature of the active system. The competi-
tion leads to a traveling-frustration-localization transition in
active crystals with increasing strength of self-spinning,
which also induces a transformation between ordered
phases as a result of pattern selection. A breaking of the
localization and structural arrest occurs for interfacial
states, revealing persistently dynamical states of self-
rotating crystallites and self-shearing or self-flowing crys-
talline layers. The direction of crystallite self-rotation or
layer propagation is opposite to that given by the chirality
of the individual self-spinning particles, an effect caused by
the crystal-melt interface-induced spatial variation of local
polarization and the subsequent edge-originated delocal-
ization and collective motion of active particles.

These predictions open new possibilities to explore the
emergence of novel dynamical phenomena and unveil
complex mechanisms underlying a wide variety of
nonequilibrium active systems governed by persistent,
nonrelaxational dynamics. Although here we focused on
a dry environment, the results and mechanisms identified
above will in many cases still apply to leading order in
additional fluid surroundings (see Supplemental Material
[49]). It should even be possible to disentangle the effects
of both environments in an experiment when surrounding
granular or colloidal spinners by a viscous fluid with
varying viscosity for the tuning of hydrodynamic
couplings. Our results can be realized and verified in
various experimental setups, such as a collective of granular
rotors [25,28,89], light-controlled anisotropic colloidal
Janus particles [90] and colloidal molecules [91], or self-
propelled particles equipped with magnetic dipole
moments [92,93] to perform active spinning under a
magnetic field.
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