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Information over the phonon band structure is crucial to predicting many thermodynamic properties of
materials, such as thermal transport coefficients. Highly accurate phonon dispersion curves can be, in
principle, calculated in the framework of density-functional perturbation theory. However, well-established
techniques can run into trouble (or even catastrophically fail) in the case of piezoelectric materials, where
the acoustic branches hardly reproduce the physically correct sound velocity. Here we identify the culprit in
the higher-order multipolar interactions between atoms and demonstrate an effective procedure that fixes
the aforementioned issue. Our strategy drastically improves the predictive power of perturbative lattice-
dynamical calculations in piezoelectric crystals and is directly implementable for high-throughput
generation of materials databases.
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The distribution of vibrational frequencies as a function
of crystal momentum, known as the phonon band structure,
is a key physical property of crystals. Its accurate
knowledge is central to predicting several technologically
important functionalities, such as thermal expansion [1]
and thermoelectric [2–6] coefficients, specific heat [7,8],
electron-phonon scattering [9], etc. In many cases, the low-
energy part of the phonon spectrum, consisting of acoustic
waves, dominates the aforementioned properties at low to
intermediate temperatures. Therefore, for making quanti-
tatively accurate predictions, it is important that the
dispersion of the corresponding phonon branches matches
the correct sound velocity in a given material.
Density-functional perturbation theory (DFPT) [10–13]

has become the state-of-the-art method to calculate the
phonon spectrum of crystalline solids from first principles.
It allows one to calculate the dynamical matrix, at a
computational cost that does not depend on the wave
vector q, via the second derivatives of the energy with
respect to atomic displacements; subsequent diagonaliza-
tion yields then the relevant phonon frequencies. Such a
procedure could, in principle, be repeated on an arbitrarily
dense mesh of q vectors to integrate the desired thermo-
dynamic function over the full Brillouin zone. This,
however, is often impractical; typically, the explicit calcu-
lation of the dynamical matrix is carried out on a relatively
coarse q mesh only and later Fourier interpolated to a finer
grid for thermodynamic integration.
To ensure an accurate interpolation in polar materials, it

is crucial to separate the interatomic force constants (IFCs)
into a long-ranged dipole-dipole (DD) interaction, which
decays as the inverse third power of the interatomic
distance d, and a “short-ranged” (SR) part, which is simply

defined as the remainder. The DD part can be exactly
written in terms of two basic ingredients, the Born effective
charge tensor Z� and the macroscopic dielectric tensor ϵ∞
[13–16]; both can be routinely calculated nowadays for an
arbitrary insulator by means of publicly available simu-
lation packages. The SR part, in turn, is assumed to decay
sufficiently fast (DD terms indeed constitute the leading
contribution at large distances) as a function of d that its
Fourier interpolation is efficient and accurate for most
purposes.
This procedure yields excellent results in the vast

majority of practical cases. The main physical consequence
of the DD interactions, namely the frequency splitting
between transverse and longitudinal optical phonons at Γ
[17], is exactly reproduced by construction. Other features
of the phonon spectrum typically show optimal conver-
gence even by using relatively coarse q-point meshes [13].
Nevertheless, a number of cases have been reported over
the years where unphysical features appear in the inter-
polated band structures, notably regarding the low-energy
bands near the zone center. For example, Refs. [18,19]
studied the lattice-dynamical properties of SiO2 across the
phase transition from stishovite to CaCl2 structure, finding
spurious imaginary acoustic modes in a broad range of
pressures around the critical value. Similar imaginary
modes can be appreciated in Ref. [20] for α-quartz
GeO2 and in numerous phonon band structures of
piezoelectrics accessible through material databases (see,
e.g., KNbO3, PNO, BeSO4, PdF4, BPO4, or GaPO4 in
Ref. [21]). While the aforementioned artifacts were initially
ascribed to numerical issues [18] (i.e., to a lack of
convergence with respect to the relevant computational
parameters), later studies leaned toward a systematic error
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of the Fourier interpolation scheme [19]. The nature of this
error, however, has not been clarified yet.
Here we present a rigorous derivation of the long-wave

limit in acoustic waves, by generalizing the classic Born
and Huang arguments [22] to the case of polar and
piezoelectric crystals. In particular, we establish a formal
link between the effect of piezoelectrically induced
longitudinal fields in elastic waves and nonanalytic
contributions to the dynamical matrix beyond the
dipole-dipole level. Based on this result, we argue that
generalizing the existing theory to the treatment of higher-
order multipolar terms (dipole-quadrupole, quadrupole-
quadrupole, dipole-octupole, and dielectric dispersion
effects) is essential to reproducing the correct sound
velocity in the phonon dispersion curves. To prove this
point, we develop an improved scheme for the Fourier
interpolation of phonon bands in insulators, where the
aforementioned long-range forces are explicitly treated
next to the usual dipole-dipole interactions. By using
ferroelectric BaTiO3 as a test case, we demonstrate an
extremely rapid convergence of the acoustic branches to the
physically correct sound velocity, while spurious imaginary
modes are present in the dispersion calculated by ordinary
means. Further tests on other problematic cases from the
Materials Project database [23,24] (KNbO3, PNO, BPO4,
and GaPO4) yield similar results (see Supplemental
Material [25]). These unstable modes, which are an artefact
of the established Fourier interpolation scheme, persist
even in the limit of dense meshes and would thwart any
attempt at computing thermodynamic integrals based
on such data. Remarkably, our new scheme yields
well-behaved (i.e., real) frequencies even in the coarsest
2 × 2 × 2 meshes that we have tested.
The treatment of the acoustic phonons starting from

microscopic lattice dynamics occupies an extensive portion
of Born and Huang’s book [22] and has been revised and
extended very recently in the context of flexoelectricity
[38,39]. We shall start with reviewing the results that are
most relevant for the present context. The basic ingredient
is the dynamical matrix (Φ) at some wave vector q, defined
as the second derivative of the total energy (E) with respect
to two monochromatic perturbations,

Φq
κα;κ0β ¼

∂2E
∂uq�κα∂uqκ0β

; ulκα ¼ uqκαeiq·Rlκ : ð1Þ

Here κ and κ0 are sublattice indices, l is a cell index, the
real-space vectors Rlκ ¼ Rl þ τκ span the crystal lattice,
and αβ are Cartesian directions. Then, the acoustic eigen-
modes and velocities can be derived [22,38,39] by perform-
ing a perturbative expansion in q of the lattice-dynamical
problem

X

κ0β

Φq
κακ0βu

q
κ0β ¼ ω2mκu

q
κα; ð2Þ

wheremκ are atomic masses,ω is the frequency, and uqκα are
the mode eigenvectors. Following Ref. [39], we shall write
q ¼ qq̂ and take the perturbation expansion in the modulus
of the wave vector q, while keeping the direction q̂ fixed.
The dynamical matrix at small q then reads as

Φq ¼ Φð0;q̂Þ − iqΦð1;q̂Þ −
q2

2
Φð2;q̂Þ þ � � � : ð3Þ

Equation (2) in turn becomes, at second order in q,

X

β

ðKq̂
αβ −Mv2δαβÞuβ ¼ 0; ð4Þ

where v is the sound velocity, M is the total mass of the
cell, u is the polarization of the phonon branch, and K is
defined as

Kq̂ ¼ −
1

2
Φð2;q̂Þ þΦð1;q̂Þ · Φ̃ð0;q̂Þ ·Φð1;q̂Þ; ð5Þ

Kq̂
αβ ¼

X

κκ0
hκαjKq̂jκ0βi: ð6Þ

Φ̃ð0;q̂Þ denotes the pseudoinverse of the zone-center
dynamical matrix; open-circuit electrical boundary con-
ditions are assumed along q̂ for all quantities in Eq. (5).
After careful considerations of the nonanalytic behavior

of Φq near the zone center, we find [25]

Kq̂
αβ ¼ Ω

X

γδ

q̂γC
q̂
αγβδq̂δ: ð7Þ

whereCq̂ is the elastic tensor in “mixed electrical boundary
conditions” [40,41] (open circuit is imposed along q̂),

Cq̂
αγβδ ¼ Cαγβδ þ 4π

ðq̂ · eÞαγðq̂ · eÞβδ
q̂ · ϵ · q̂

: ð8Þ

Here C is the elastic tensor calculated in short circuit, and
the second term on the rhs embodies the direction-
dependent macroscopic electric field contribution via the
piezoelectric (e) and dielectric (ϵ) tensors. (All three
tensors are defined in the static limit, i.e., inclusive of
lattice-mediated contributions.) Thus, Eq. (4) exactly
reduces to the macroscopic Christoffel equation [42,43]
for sound waves in a crystalline insulator of arbitrary
symmetry.
The above derivations establish the formal connection

between macroscopic elasticity and microscopic lattice
dynamics by generalizing the classic arguments of Born
and Huang [22] to an arbitrary crystal, including polar and
piezoelectric insulators. The link between long-wavelength
phonons and Eq. (8) is provided by Martin’s formula [44]
for the macroscopic piezoelectric tensor, where the latter is
written in terms of dynamical dipoles and quadrupoles
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associated with atomic displacements. Thus, from these
derivations we have learned a crucially important fact: to
reproduce the correct sound velocity in a phonon spectrum
calculation of a piezoelectric material, higher-order multi-
polar contributions (e.g., involving dynamical quadrupoles
[45]) to the IFCs play a key role.
To see the implications of this statement in the context of

first-principles lattice dynamics, we shall recap the state-of-
the-art method for the Fourier interpolation of the phonon
bands in insulating crystals. Φq is typically calculated
within density-functional perturbation theory on a “coarse”
mesh of qi points spanning the Brillouin zone and later
interpolated on a much finer mesh for computing various
thermodynamic quantities. To this end, one first defines a
“long-range” (LR) dipole-dipole contribution in terms of
the Born effective charge and dielectric tensors and sub-
tracts it from the calculated ΦðqiÞ,

ΦSRðqiÞ ¼ ΦðqiÞ −ΦLRðqiÞ: ð9Þ

Next, the remainder SR part is backward Fourier trans-
formed to obtain the real-space IFCs on a supercell S that is
dual to the coarse qmesh. (S is assumed to be a polyhedron
centered at the origin; the IFCs are conveniently truncated
at the boundaries according to the interatomic distance.)
Finally, the dynamical matrix at an arbitrary point q is
reconstructed by adding back the dipole-dipole term to the
Fourier-interpolated (IN) short-range part,

ΦtotðqÞ ¼ ΦINðqÞ þΦLRðqÞ; ð10Þ
where the latter are defined as

ΦIN;q
κα;κ0β ¼

X

l∶dl
κκ0∈S

ΦSR;l
κα;κ0βe

−iq·dl
κκ0 : ð11Þ

(dl
κκ0 ¼ Rl þ τκ0 − τκ is the real-space vector connecting

atoms 0κ and lκ0.)
We can now connect to Eq. (4) by expanding the

interpolated dynamical matrix in powers of q, similar to
Eq. (3). We shall specifically focus on ΦIN;q, since ΦLR is
defined by analytical formulas and therefore trivial to deal
with in this context. We find that the nth expansion term
is trivially given by the real-space moments of the short-
range IFC,

ΦIN−ðn;q̂Þ
κα;κ0β ¼

X

l∶dl
κκ0∈S

ΦSR;l
κα;κ0βðdl

κκ0 · q̂Þn: ð12Þ

The validity of the interpolation procedure for the long-
wavelength acoustic waves therefore rests on the accuracy of
Eq. (12) and, in particular, on whether the lattice sums up to
n ¼ 2 arewell defined. [Equation (4) contains q derivatives of
the dynamical matrix up to second order.]
A sufficient condition for the nth moment to converge is

that the SR interatomic force constants decay faster than

1=d3þn, since the sum must be performed over the three-
dimensional volume of S. Thus, in our case we must
require that ΦSR;l

κα;κ0β decay faster than 1=d5. Within the
standard interpolation method, the decay rate, however, is
only guaranteed to be faster than 1=d3, since the dipole-
dipole interactions are subtracted out from the IFC calcu-
lated from first principles, but higher-order multipolar
interactions (e.g., dipole-quadrupole, decaying as ∼1=d4)
are generally present. As a consequence, the lattice sums
for n ¼ 1, 2 in Eq. (12) are, in principle, only conditionally
convergent. This means that the sound velocity that one
extracts from the interpolated phonon dispersion curves
may depend on the details of how the IFCs are truncated at
the boundary, i.e., on the shape of the supercell S that one
uses in practice. Note that this statement holds even in the
limit of a very large supercell size, so in severe cases this
issue may be difficult or impossible to solve by simply
increasing the density of the coarse q mesh.
To solve this issue, we shall rewrite the long-range

contribution of Eqs. (9) and (10) by incorporating enough
terms to reproduce the nonanalyticities of ΦðqÞ up to
Oðq2Þ,

ΦLRðqÞ ¼ ΦDDðqÞ þΦDQðqÞ
þΦDOðqÞ þΦQQðqÞ þΦDϵDðqÞ; ð13Þ

Here D, Q, and O stand for dipole, quadrupole, and
octupole, respectively. The last term on the rhs (DϵD) is
a dipole-dipole term mediated by the dielectric dispersion
(see Supplemental Material [25]). The modification of the
LR part redefines the short-range IFCs as well, which are
now guaranteed to decay as 1=d6 or faster (all interactions
up to 1=d5 have been removed), as required by Eq. (5).
Interestingly, in addition to the DQ and QQ interactions
(whose importance for piezoelectric crystals was formally
demonstrated in the earlier paragraphs), we have two
additional Oðq2Þ terms here, DO and DϵD, whose sig-
nificance may be at first sight unclear. If S were infinitely
large, neither interaction should have an impact on the
sound velocity—the corresponding electrostatic contribu-
tions to the acoustic branches would vanish because of the
acoustic sum rule (ASR) [25]. Yet, at finite S size, the
abrupt truncation of the IFCs at the boundary might spoil
the ASR at the level of theDO andDϵD terms, resulting in
a slow convergence of the interpolated sound velocity with
q mesh resolution. We shall see shortly, by using rhombo-
hedral BaTiO3 as a test case, an excellent practical
demonstration of these arguments: while inclusion of
dipole-quadrupole terms produces the most dramatic
effects, DO and DϵD terms further improve the conver-
gence rate of the interpolated sound velocities and rather
substantially so.
We have implemented the above procedure [25] to

calculate the higher-order long-range interactions into
the ANADDB postprocessing program, which is part of
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the ABINIT suite. (The v9 version of ABINIT with this new
functionality has just been released for public use [46].)
The phonon band dispersion evaluated along the path
Γ-X-M-Γ-R and calculated with a 4 × 4 × 4 q-points mesh
is represented in Fig. 1. Red dashed lines show the results
obtained following the standard procedure [16,47], in
which ΦLRðqÞ exclusively includes dipole-dipole inter-
actions. The optical bands resulting from this calculation
show no visible anomalies. However, a sizeable portion of
one of the transverse acoustic bands dips into imaginary
frequencies at the long-wave limit of the Γ −M (corre-
sponding to [110]) segment. Such anomaly does not
disappear by increasing the density of the coarse q mesh—
spurious imaginary modes persist along [110] up to
the highest-density mesh we could realistically afford
(12 × 12 × 12), as illustrated in Fig. 1(b). To confirm that
this artifact is indeed related to the Fourier interpolation
scheme, we have performed explicit DFPT calculations of
the phonon frequencies at selected (small) q values along
[110], always obtaining real frequencies. Also, this is
certainly not the signature of a physical ferroelastic
instability of the crystal, since the BaTiO3 cell has been
carefully relaxed to its well-known low-temperature rhom-
bohedral structure.
The black solid lines of Fig. 1(a) were calculated based

on our higher-order multipolar interpolation scheme of

Eq. (13). Remarkably, imaginary frequencies disappear
even for the coarsest 2 × 2 × 2 q grid [see Fig. 1(c)], and
the dispersion of all acoustic branches shows optimal
convergence already for a 4 × 4 × 4 mesh. Our revised
scheme seems to improve the description of some optical
branches as well, most notably of the lowest-energy
(ferroelectric) mode along the Γ-M and the Γ-R directions,
although the corrections appear to be comparatively less
important.
To make the above statements more quantitative, we

extract the propagation velocities of the three acoustic
waves from the dispersion curves of Fig. 1 and compare
them with the macroscopic results, based on Eqs. (4), (7),
and (8) (values are reported in Table SV of the
Supplemental Material [25]). The velocities along the
[110] direction are shown in Fig. 2 (data along [100]
and [111] can be found in Fig. S1 of the Supplemental
Material [25]) as a function of the q-point mesh resolution.
In order to illustrate the effect of each individual multipolar
term, we have recalculated the sound velocity several times
by progressively incorporating an increasing number of the
terms on the rhs of Eq. (13). Incorporation of the DQ
interactions drastically improves the accuracy of the esti-
mated velocity of sound, completely removing the spurious
imaginary modes along all directions, as we said. However,
only treating electrostatic terms up to Oðq1Þ clearly does
not guarantee accurate results in this case. Indeed, such an
approximation leads to an error of the order of 10%–20% in
the velocities that decays only slowly as a function of the
q-grid resolution.
Including the Oðq2Þ electrostatic interactions produces a

further remarkable improvement in the accuracy: the
dispersion of the acoustic branches is essentially converged
to the correct sound velocity already at a q mesh resolution

(a)

(b) (c)

FIG. 1. (a) Phonon dispersion of BaTiO3 calculated using the
standard DD-based procedure (red dashed lines) and our higher-
order interpolation scheme, based on Eq. (13) (black solid lines);
a 4 × 4 × 4 q-points mesh was used in both cases. The bottom
panels show an enlargement of the acoustic bands over the region
marked by a dashed rectangle in (a). The additional (thinner)
curves were obtained using different q-point meshes [see the
legend of (c)], either with the standard procedure (b) or
Eq. (13) (c).

(a)

(b)

(c)

FIG. 2. Velocity of sound of the three acoustic branches along
the [110] direction as a function of the q-point mesh resolution.
Dotted horizontal lines indicate the reference value of the sound
velocity, obtained from macroscopic elasticity via Eqs. (4), (7),
and (8). Different symbols (lines are a guide to the eye) show the
velocities as obtained by considering an increasing number of
multipolar interactions in Eq. (13).
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of 4 × 4 × 4. This result clearly supports our formal argu-
ments of the previous paragraphs. Interestingly, among the
threeOðq2Þ interactionsQQ have a negligible effect, which
is a bit surprising considering thatQQ terms should play an
important role in piezoelectrics. This is likely due to the fact
that the piezoelectric coefficients in ferroelectric materials
such as BaTiO3 are dominated by lattice-mediated con-
tributions, while clamped-ion effects are comparatively
negligible. [QQ interactions microscopically embody the
contribution of ē to the dynamics of acoustic waves, see
Eq. (S22) [25].] Indeed for BaTiO3 we obtain a difference
of one order of magnitude between both contributions (see
Table SVI of the Supplemental Material [25]). To verify the
validity of this hypothesis, we tested our method on a
different material, GaP. In zinc blende semiconductors, the
lattice-mediated and clamped-ion contributions to the
piezoelectric tensor are generally similar in magnitude
and opposite in sign (see, e.g., Table SVI [25]), which
makes GaP an excellent counterexample. And indeed, as
we show in Fig. S2 [25],DQ andQQ corrections are nearly
equal and opposite, confirming our arguments above.
To assess the impact of our method on the calculation of

thermal properties, we have computed the low-temperature
specific heat [7] of rhombohedral BaTiO3. In Fig. 3(a) we
show the calculated values of CV (T ¼ 5 K) as a function
of the q mesh resolution. Our method, as expected, yields a
dramatically improved convergence rate compared to the
standard DD-based treatment. Note that inclusion of the
DQ interactions already reduces the error by approximately
one order of magnitude. In Fig. 3(b), we show a log-log plot
of CVðTÞ, (T ¼ 0.25–10 K) calculated at fixed mesh
resolution of 12 × 12 × 12. By using our higher-order
method, the results accurately reproduce the low-
temperature limit (∼T3) of Debye’s law [48]; the fitted
Debye temperature, TD ¼ 530 K, is in good agreement
with existing experimental and theoretical values [49].

Conversely, the standardDD-based approach shows impor-
tant deviations, pointing to a qualitative, rather than
quantitative, misrepresentation of the low-energy part of
the phonon spectrum. Interestingly, DQ terms alone are
clearly unable to correct this flaw, indicating that the
absence of spurious imaginary branches is not per se
sufficient to guarantee that the relevant physical properties
are well represented.
To summarize, by including higher-order multipolar

interactions in the determination of interatomic force
constants, we were able to eliminate spurious artifacts in
the phonon dispersion spectrum of BaTiO3 and obtain a
remarkably accurate description of the acoustic branches
even at small q mesh resolutions. Unphysical acoustic
imaginary modes are not exclusive of the BaTiO3 system
studied here. Indeed, materials databases, such as
Refs. [21,50], are riddled with piezoelectrics developing
these kinds of artifacts. The implementation shown here
can be readily applied for improving the high-throughput
generation of phonon band structures to be included in
these and other databases.
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