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We investigate the role of disorder on the various topological magnonic phases present in deformed
honeycomb ferromagnets. To this end, we introduce a bosonic Bott index to characterize the topology of
magnon spectra in finite, disordered systems. The consistency between the Bott index and Chern number is
numerically established in the clean limit. We demonstrate that topologically protected magnon edge states
are robust to moderate disorder and, as anticipated, localized in the strong regime. We predict a disorder-
driven topological phase transition, a magnonic analog of the “topological Anderson insulator” in
electronic systems, where the disorder is responsible for the emergence of the nontrivial topology.
Combining the results for the Bott index and transport properties, we show that bulk-boundary
correspondence holds for disordered topological magnons. Our results open the door for research on
topological magnonics as well as other bosonic excitations in finite and disordered systems.
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Topological phases in nature have attracted intense
interest and research in recent decades. Initially, the research
was mainly on electronic systems such as topological
insulators [1,2]. Currently, the concept of topology has been
extended to many research areas that span condensed-matter
physics. Different kinds of bosonic low-energy excitations,
e.g., phonons [3], photons [4], magnons [5–21], and even
macroscopic motions [22–24], host topological states.
Topological phases are characterized by certain topological
indices that remain unchanged under smooth deformations.
Nontrivial topology is usually associated with the appear-
ance of robust edge states immune to disorder, known as
“bulk-boundary correspondence,” which is one of the most
exotic features of topological matters and invokes many
potential applications [25–29].
Among various kinds of excitations, research on topo-

logical states in magnonic systems has increased in recent
years. Many models have been proposed to support
topological magnons. Some of them can be mapped to
known electronic models [7,10,12,17,18], while some are
exclusive in bosonic systems [19,20,28,29]. Nevertheless,
most previous studies on topological magnons focused on
clean systems and did not consider disorder, which is
ubiquitous and unavoidable in nature. The role of disorder
in topological systems is a crucial issue since it is related
to one of the fundamental features of topological systems:
the robustness of the edge states. In electronic systems
research, there is plenty of discussion on this issue. Not
only have transport properties been studied [30–33], but
also the Chern number in real space [34,35], and the Bott
index [36–40] has been used to label the topology of finite
or disordered systems. However, how disorders affect
topological magnons is still underexplored.

In this Letter, we consider a honeycomb ferromagnet
with nearest-neighbor (NN) pseudodipolar interaction [41],
whose magnons can be topologically nontrivial, and we
study the effect of disordered on site anisotropy. To label
the magnon topology in finite or disordered magnets, we
generalize the real-space Bott index [36–40] to bosonic
systems. We first show that the Bott index agrees with the
Chern number in the clean limit. We then demonstrate the
bulk-boundary correspondence in disordered magnonic
systems by comparing their transport properties and topo-
logical indices. We find that, for the topologically nontrivial
phase, the topology as well as the protected edge states are
quite robust against disorder, unless the disorder is more
than 3 times larger than the gap. For the topologically trivial
phase, we identify a disorder-induced nontrivial phase,
which is the magnonic analogy of the topological Anderson
insulator [30,31]. Our findings reveal that the Bott index is
a useful tool in research on topological bosonic systems
without translational symmetry.
We consider a ferromagnetic material with localized

spins on a deformed two-dimensional honeycomb lattice
formed by heavy metal atoms having strong spin-orbit
coupling. The spin Hamiltonian we consider is given by

H ¼ −J
X
hi;ji

Si · Sj − F
X
hi;ji

ðSi · eijÞðSj · eijÞ −
1

2

X
i

KiS2zi

− μBB
X
i

Szi; ð1Þ

where J > 0 is the NN ferromagnetic exchange coupling
and F is the NN pseudodipolar interaction resulting from
the spin-orbit coupling, with eij being the unit vector
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connecting lattice sites i and j along one of the NN lattice
vectors a1;2;3 [41]. This Hamiltonian can be mapped to the
Kitaev model [34] in the linear regime. The easy-axis
anisotropy Ki at the AðBÞ sublattice consists of two parts: a
homogeneous part KAðBÞ and a random part Kri, where Kri

is statistically independent for different i and uniformly
distributed on the interval ½−W;W�. For convenience, we
define K ¼ ðKA þ KBÞ=2 and ΔK ¼ ðKA − KBÞ=2. B is
the applied magnetic field along the ẑ direction (μB is the
Bohr magneton). Since we are interested in the strong
disorder limit, a sufficiently large easy-axis anisotropy
and/or a magnetic field is assumed so that the spins align
out of plane in the ground state [29]. The angles between
a1;2;3 and the x direction are θ1 ¼ π=2, θ2 ¼ π=2 − θ, and
θ3 ¼ π=2þ θ. Figures 1(a) and 1(c) show a perfect
(θ ¼ 2π=3) and deformed (θ ¼ 5π=12) honeycomb lattice,
respectively.
We first consider the magnon spectra on honeycomb

ferromagnets in the absence of disorder. The linear-
excitation k-space magnon Hamiltonian is written in terms
of bosonic creation (annihilation) operators, a†ðaÞ and
b†ðbÞ on each sublattice A and B [42] as H ¼ 1

2
x†Hkx,

where x ¼ ðak; a†−k; bk; b†−kÞT (see the Supplemental
Material [43] for the explicit form of Hk). We diagonalize
Hk to obtain the magnon spectrum by employing the
Bogoljubov transformation [44]. The transformation matrix
T k that diagonalizes Hk satisfies the generalized eigen-
value problem (GEP) [45]

ηHkT k ¼ T kηEk; ð2Þ

where η is a metric matrix reflecting the commutation
relations ηij ¼ ½x†i ; xj� so that η ¼ 12×2 ⊗ σz (σx;y;z are the
Pauli matrices), and Ek is the diagonal matrix whose
diagonal elements εnðkÞ are the eigenvalues of H. The
GEP has a particle-hole symmetry in that the εn’s are
artificially doubled in positive-negative pairs εnðkÞ ¼
−εnð−kÞ. Therefore, it is sufficient to consider the positive
solutions of εn only. Note that Eq. (2) is equivalent to the
result from the linearized classical Landau-Lifshitz-Gilbert
equation [28]. This system is known to be gapped and
topologically nontrivial when θ ≠ ðπ=2Þ [23,28]. In Fig. 1,
we show the spin-wave spectra of three different samples for
the normal [Fig. 1(a)] and deformed [Fig. 1(c)] honeycomb
lattices. From left to right, in Figs. 1(b) and 1(d), the spec-
trum is plotted for the infinite system (along kx with ky ¼ 0),
the zigzag strip along the x direction and width Ny ¼ 100,
and the finite samples with dimensions Nx ¼ Ny ¼ 20,
assuming periodic boundary conditions (PBCs) and open
boundary conditions (OBCs). The parameters are F ¼ 7J,
K ¼ 20J, ΔK ¼ 0, and B ¼ 0, and Nx and Ny are the
number of units cells in the x and y directions, respectively
(K ¼ 20J and B ¼ 0 are used throughout this Letter). Both
Figs. 1(b) and 1(d) show gapped bulk spectra in infinite and
periodic systems and gapless (crossing) edge states for an
open strip, indicating a nontrivial topology.
In infinite translationally symmetric systems, the Chern

number of the nth band is [19,20]

Cn ¼
i
2π

Z
B:Z:

Pn

�∂Pn

∂kx
∂Pn

∂ky −
∂Pn

∂ky
∂Pn

∂kx
�
: ð3Þ

(a) (b)

(c) (d)

FIG. 1. (a) Schematic of a normal honeycomb magnet. The ground state is out of plane. (b) From left to right: the spin-wave spectra for
infinite samples (along kx for ky ¼ 0), zigzag strips of width Ny ¼ 100 along x, and finite samples of Nx ¼ 20 and Ny ¼ 20.
(c) Schematic of a squeezed honeycomb magnet of θ ¼ 5π=12. (d) Spin-wave spectra for (c).
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Here, PnðkÞ is the bosonic projector defined by Pn ¼
T kηΓnT

†
kη, where Γn is a diagonal matrix taking a value of

1 for the nth diagonal components and zero otherwise. The
Chern numbers of the upper (lower) magnon bands, Cu (Cl),
are labeled in Figs. 1(b) and 1(d). A topological transition
occurs at θ ¼ π=2, where Cu and Cl flip their signs. When
θ≷ðπ=2Þ, Cu ¼ −Cl ¼ �1 [23]. When the magnetic aniso-
tropy at each sublattice differs, i.e.,ΔK ≠ 0, one of the gaps
at K or K0 points closes and reopens, and the system
becomes topologically trivial (Cu ¼ Cl ¼ 0) [28,29].
In the presence of disorder or in finite samples, the

periodicity of the lattice is broken so that the k-space Chern
number is invalid. We need a real-space index to label the
topology. In electronic systems, the Bott index was intro-
duced to study nonperiodic systems, such as disordered
topological insulators [38] and quasicrystals [39,40]. The
Bott index quantifies the obstruction to construct an orthogo-
nal basis of localized Wannier functions that span the
occupied states [37], and it has been proven to be equivalent
to the Chern number in the large-system limit [46].
We now extend the definition of the Bott index to

bosonic systems. For a finite system of size Nx × Ny (in
total, there are N ¼ NxNy unit cells), dual to the k-space
representation, the GEP in real space is ηHT ¼ T ηE,
where H is the 4N × 4N real-space Hamiltonian, η ¼
12N×2N ⊗ σz is the metric due to the bosonic commuta-
tion relation in real space, and E is the diagonal matrix
of eigenenergies. T is the matrix diagonalizing the
Hamiltonian. For a set of eigenstates fεng, its bosonic
Bott index is given by

Bfεng ¼ 1

2π
Imftr½logðVUV†U†Þ�g; ð4Þ

where the two matrices U and V are defined from

Pe2πiXP ¼ T η

�
0 0

0 U

�
T †η; ð5Þ

Pe2πiYP ¼ T η

�
0 0

0 V

�
T †η; ð6Þ

where P ¼ T ηΓT †η is the projector on states fεng. X ¼
ix=Nx and Y ¼ iy=Ny are the rescaled coordinates, where
ix;y are spatial indices of the unit cells. Γ is a diagonal
matrix taking a value of 1 for the jth diagonal elements
when j ∈ fεng, and 0 otherwise. Note that for fermionic
systems, η ¼ 1, and the above definition returns to the
electronic Bott index [40,46]. B is always an integer as long
as VUV†U† is nonsingular [38,46], and specifically, B ¼ 0
when the matrices U and V commute. For a clean system
with well-defined gaps, the Bott index of each band
separated by gaps is well defined.
We then compared the Bott index and Chern number in

the absence of disorder (W ¼ 0). In Figs. 1(b) and 1(d)

(third panel), we label the Bott indices for the upper and
lower magnon bands (Bu and Bl, respectively) of clean
40 × 40 samples with PBCs. The results are consistent with
the Chern number for infinite systems. A systematic com-
parison is shown in Fig. 2 in terms of ΔK for the upper
band of the normal [Fig. 1(a)] and deformed [Fig. 1(c)]
honeycomb lattices. The vertical dashed line represents the
ΔK values for gap closing, resulting in a topological phase
transition from nontrivial to a trivial magnon spectrum.
Both the Bott index and Chern number consistently des-
cribe the topology of the system. Note that, near the
topological transition point, the Berry curvature is ill
defined, so the numerically calculated Chern numbers
are not integers. Although the Bott indices are still integers
in the case, a larger system size and thus higher computa-
tional cost are necessary to obtain accurate results.
Next, let us consider the presence of disorder in the con-

ventional honeycomb lattice system [Fig. 1(a)]. Because of
disorder, the gap is filled with states, even though PBCs are
used. We define the Bott indices as functions of energy
[47], BuðεÞ and BlðεÞ, where BuðεÞ [BlðεÞ] is the Bott index
of all the states with higher (lower) energy than ε. In the
following, we calculate the ensemble-averaged Bott indices
over 100 uncorrelated random configurations, denoted by
B̄, for system size of Nx ¼ Ny ¼ 40.
First, we consider systems that are topologically non-

trivial in clean limits. In Fig. 3(a), B̄uðε0Þ is plotted against
the disorder strength W for ΔK ¼ 0, F ¼ 3J, 5J, and 7J,
where ε0 is the energy at the midpoint of the gap in the
clean limit [43]. For moderate disorder, the Bott index is
still one, meaning that the system is topologically non-
trivial. When the disorder is strong enough, a topological
transition occurs and the system becomes topologically
trivial. This phenomenon is consistent with the common
wisdom that the topology is quite robust since very strong
disorder (approximately 3 times the gap) is needed to break
the topology. A more remarkable phenomenon occurs
when the disorder affects a topologically trivial system.
In Fig. 3(b), we consider an originally trivial system (at
W ¼ 0) with F ¼ 7J and ΔK ¼ 1.35J and plot B̄uðε0Þ

FIG. 2. Comparison between the Chern number (Cu) and Bott
index (Bu) for finite and clean systems. The equivalence is
established as a function of the staggered anisotropyΔK and for a
system size of 40 × 40.
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against W. The band structure of a strip near the gap in
the clean limit is shown in the inset. There are no gapless
edge states inside the bulk gap. Surprisingly, as the disorder
strength increases, the Bott index increases from zero and
reaches a plateau of Buðε0Þ ¼ 1 and then drops to zero at
W > 8J. This finding indicates that there exists a disorder-
induced topological phase, similar to the topological
Anderson insulator phase in electronic systems [30–32].
Now, we demonstrate the bulk-boundary correspondence

in our topological magnon model by studying the transport
properties. We consider a disordered strip sample with
two identical (clean) leads attached to its left- and right-
hand sides. We evaluate the total transmission probability
Tðε ¼ ε0Þ from left to right for Nx ¼ Ny ¼ 200 samples
[43]. The results are plotted in Figs. 3(a) and 3(b) (averaged
over 100 disorder realizations). In the clean limit, the total
transmission equals the total number of propagating chan-
nels according to the Landauer-Büttiker formula [48].
For the nontrivial phase, since there is one rightward edge
channel, at zero disorder, we have T ¼ 1, as shown in
Fig. 3(a). The topologically protected edge channel remains
robust as the disorder increases; however, at certain values,
the magnonic modes become localized, and thus, the
topology is destroyed. For the trivial phase [Fig. 3(b)],
since there is no channel inside the gap, we shift the band

of the leads upward by 2J to make full use of the
bulk channels [32]. As W increases, the transmission
increases from zero to a plateau (T ¼ 1) and then decays
to zero at very large disorder, following the topological
transition [49].
The existence of edge states in strongly disordered

magnets is further confirmed by the calculation of the
real-space wave functions. Eigenstates whose energies are
closest to ε0 for a certain disorder configuration were
considered. For clarity of representation, we use a smaller
system size Nx ¼ Ny ¼ 20. We plot the expectations of
the in plane spin components hSxi and hSyi in Figs. 3(c)
and 3(d) for the originally nontrivial phase (ΔK ¼ 0) and
disorder-induced nontrivial phase (ΔK ¼ 1.35J), respec-
tively. The parameters F ¼ 7J and W ¼ 6J were used for
both plots; see the circled data points in Figs. 3(a) and 3(b).
Clear features of the edge states can be observed. However,
for ΔK ¼ 1.35J, the penetration depth is larger, so inter-
edge backscattering is more likely; see the Supplemental
Material [43] for details.
To further understand the emergence of the disorder-

driven topological transition, we consider the self-energy Σ
induced by the disorder, defined by ðε0 −Hk − ΣÞ−1 ¼
hðε0 −Heff

k Þ−1i, where Heff
k is the disorder-renormalized

effective Hamiltonian. We numerically calculate Σ in the
self-consistent Born approximation [31] for the parameters
used in Fig. 3(b). The result is a 4 × 4 matrix that can be
decomposed into three Hermitian components Σ0∼2 and
one anti-Hermitian component. Σ0 is proportional to
identity matrix 14×4, which shifts the whole spectrum.
Σ1 is proportional to σx ⊗ 12×2, which shifts only the
position of the valley. Σ2 is proportional to σz ⊗ 12×2,
which has the same structure as the ΔK term in Hk and is
responsible for the topological transition. The randomness
on the anisotropy effectively reduces ΔK and drives the
system back to the nontrivial phase. The non-Hermitian
component reflects the inverse lifetime of the magnon
states. By letting Σ2 be the critical value of the topological
transition, we can solve for the critical disorder strength
W ¼ 3.7J, which is consistent with the numerical
result [43].
We have numerically demonstrated very good agreement

between the total transmission and the Bott index, which
indicates that the bulk-boundary correspondence holds in
the disordered topological magnon system. Our numerical
studies pave the way for a rigorous mathematical proof of
the equivalence between the bosonic Bott index and Chern
number [46], as well as the bulk-boundary correspondence
in topological magnonic systems, which are open issues for
future research.
All the discussions above also apply for other deformed

honeycomb lattices, provided that the clean system is
gapped [23]. Note that a further increase in W destroys
the ferromagnetic ground state, and the system enters a
spin-glass-like state [50], which is not the purpose of this

(a) (b)

(c) (d)

FIG. 3. Comparison between the Bott index and the total
transmission as a function of the disorder strength W=J, when
the clean-limit system is (a) topologically nontrivial (ΔK ¼ 0)
and (b) trivial (ΔK ¼ 1.35J). The inset in (b) is the band structure
near the gap of a 100-wide zigzag strip. The real-space wave
function is depicted for F ¼ 7J and W ¼ 6J in (c) ΔK ¼ 0 and
(d) ΔK ¼ 1.35J, corresponding to the circled data points in (a)
and (b), respectively. This is represented by the expectation of the
in plane spin components hSxi and hSyi, the spatial distribution of
the eigenstate whose energy is closest to ε0. The size of the circles
indicates the amplitude, and the color encodes the azimuthal
angle.
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Letter. We expect our definition of the bosonic Bott index to
be applied to any bosonic system [43], as long as the metric
matrix η is modified according to the commutation relations
of creation (annihilation) operators, which will benefit
many research areas, such as topological phononics,
photonics, and superconductors. AB3-type 2D honeycomb
magnetic materials such as CrI3 and OsCl3 are possible
experimental platforms for our model. There are already
first-principles and experimental indications of strong
pseudodipolar interaction [51,52].
In conclusion, we introduced a bosonic Bott index as an

integer-valued real-space topological invariant in bosonic
systems and used it to study the magnon topology in a
disordered honeycomb ferromagnet. In the clean limit, the
topological phase is controlled by the bond angle and
staggered anisotropy, and the Bott index is consistent with
the Chern number. In the presence of disorder, the edge
states in the nontrivial phase are robust to moderate
disorder. In the trivial phase, the disorder can induce a
phase transition to a nontrivial topology, which is the
magnonic counterpart of the topological Anderson insu-
lator phase in electronic systems. Our findings open the
door for the investigation of the topology of disordered
bosonic systems.
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