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It is well known that superconductivity in quasi-one-dimensional (Q1D) materials is hindered by large
fluctuations of the order parameter. They reduce the critical temperature and can even destroy the
superconductivity altogether. Here it is demonstrated that the situation changes dramatically when a Q1D
pair condensate is coupled to a higher-dimensional stable one, as in recently discovered multiband Q1D
superconductors. The fluctuations are suppressed even by vanishingly small pair-exchange coupling
between different band condensates and the superconductor is well described by the mean field theory. In
this case the low dimensionality effects enhance the coherence of the system instead of suppressing it. As a
result, the critical temperature of the multiband Q1D superconductor can increase by orders of magnitude
when the system is tuned to the Lifshitz transition with the Fermi level close to the edge of the Q1D band.
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It is a common knowledge that superconductivity in 1D
systems is suppressed due to large fluctuations of the order
parameter. A superconducting state can still be achieved
when several 1D structures (parallel chains of molecules or
atoms) are coupled one to another, creating a weakly
coupled matrix. Earlier theoretical studies demonstrated
that such Q1D materials can superconduct [1–4] but the
fluctuations are still large, reducing the critical temperature
Tc significantly [1]. These predictions were confirmed by
the discovery of superconductivity at low temperatures in
Bechgaard salts—organic Q1D superconductors [5,6].
Subsequent theoretical efforts have been focused on

finding the conditions under which the critical temperature
of the Q1D superconductors could be increased rather than
reduced. In particular, it was suggested that such an
increase can be achieved in the vicinity of the Lifshitz
transition at which the chemical potential approaches the
edge of the Q1D single-particle energy band [7–11].
However, the fluctuations, that were already very large
in the presence of the Q1D effects, are additionally
enhanced due to the Bose-like character of the pairing
which tends to further deplete the condensate.
Enhancement of Tc was found for weakly interacting
stripes, formed due to a particular transformation of the
antiferromagnetic insulator [12,13]. The effect requires,
however, a subtle balance of different interplaying physical
mechanisms relevant for superconducting cuprates.
Recently, interest in Q1D superconductors has been

boosted by the discovery of Cr3As3-chain based materials;

see, e.g., Refs. [14–19]. Results of the first principle
calculations of the electronic band structure of those
compounds led to a conclusion that they are multiband
systems, with some of the contributing bands being Q1D
[18–20]—multiband Q1D superconductors. For example,
K2Cr3As3 [19,20] and KCr3As3Hx [18] have two Q1D
sheets coexisting with one 3D sheet in the Fermi surface.
Furthermore, it was demonstrated that in KCr3As3Hx the
Fermi level can be shifted by changing the H intercalation
[18], which gives rise to alterations in topology of the Fermi
surface manifested in the Lifshitz transitions.
In this work we show that the advent of multiband Q1D

superconductors opens up a fundamental opportunity to
achieve superconductivity at high temperatures. It has
already been demonstrated that the presence of the pair-
exchange coupling between different bands can reduce the
fluctuations due to the multiband screening mechanism
[21–23]. Motivated by this result as well as by the recent
experimental advances, here we investigate a two-band
material with coupled Q1D and 3D Bardeen-Cooper-
Schrieffer (BCS) condensates, and we demonstrate that
under fairly general conditions, it is a robust mean-field
superconductor with a critical temperature that can be
significantly increased by tuning the Lifshitz transition at
the edge of the Q1D band.
We assume s-wave pairing in both the Q1D and 3D

bands with Josephson-like interband transfer of Cooper
pairs. Superconductivity in this system is described by
the standard two-band model introduced in Refs. [24,25].
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The intraband and interband pair-exchange couplings are
determined by the real matrix ǧ, with the elements gνν0 ¼
gν0ν (ν ¼ 1, 2). For simplicity, we consider the parabolic
dispersion of the single-particle energy in both bands. For
the same reason, the Fermi surface of the 3D band (ν ¼ 1)
is taken spherically symmetric. The principal axis of the
Q1D band (ν ¼ 2) is chosen parallel to the z axis. In the x
and y directions, the Q1D energy dispersion is degenerate
and we assume the effective finite integral of the density of
states (DOS) for both these directions. The band-dependent
single-particle energies, shifted by the chemical potential μ,
are thus given by

ξð1Þk ¼ ε0 þ
ℏ2k2

2m1

− μ; ξð2Þk ¼ ℏ2k2z
2m2

− μ; ð1Þ

where m1;2 are the effective band masses and k ¼
ðkx; ky; kzÞ. The energy and μ are measured relative to
the bottom of the Q1D band. The lowest energy of the 3D
band is negative ε0 < 0 and, to have a BCS-like condensate
in the 3D band, we assume jε0j ≫ μ. Our study is focused
on the superconducting state near the Lifshitz transition at
μ ¼ 0. The system is considered in the clean limit, where
the role of impurities is neglected. In what follows, we take
for the Boltzmann constant kB ¼ 1.
Following Refs. [24,25], the mean-field Hamiltonian of

the two-band superconductors is written as

H ¼
Z

d3r

�X
ν¼1;2

�X
σ

ψ̂†
νσðrÞTνðrÞψ̂νσðrÞ

þ ðψ̂†
ν↑ðrÞψ̂†

ν↓ðrÞΔνðrÞ þ H:c:Þ
�
þ hΔ⃗; ǧ−1Δ⃗i

�
; ð2Þ

where ψ̂†
νσðrÞ and ψ̂νσðrÞ are the field operators for the

carriers in band ν, TνðrÞ is the single-particle Hamiltonian
with the single-particle energies given by Eq. (1), andΔνðrÞ
is the superconducting gap function for band ν. We also use
a vector notation Δ⃗ ¼ ðΔ1;Δ2Þwith h:; :i the scalar product
in the band vector space, and ǧ−1 is the inverse of the
coupling matrix. The band-dependent superconducting gap
functions satisfy the self-consistency condition given by the
matrix gap equation

Δ⃗ ¼ ǧ R⃗; ð3Þ

where components of R⃗ are the anomalous Green func-
tions Rν ¼ hψ̂ν↑ðrÞψ̂ ν↓ðrÞi.
The model based on Eqs. (2) and (3) is used to calculate

the mean-field critical temperature Tc0 and then the
fluctuation-shifted Tc. Tc0 is obtained by solving the
linearized variant of the gap equation (3). The fluctuations
are investigated using the expansion for the free energy
functional for the two-band system with respect to the band

superconducting gap functions, essentially giving the two-
band Ginzburg-Landau (GL) free energy functional.
Assuming that Tc0 is known, one expands the right-hand

side of Eq. (3) with respect to Δν. The lowest order terms of
this expansion are given by [26–32]

Rν½Δν�¼ ðAν−aνÞΔν−bνΔνjΔνj2þ
X

i¼x;y;z

KðiÞ
ν ∇2

iΔν; ð4Þ

where the coefficients Aν, aν, bν, and KðiÞ
ν are to be

calculated using the microscopic model for each band,
and external fields are assumed to be zero.
For the 3D BCS-like band with the spherically sym-

metric Fermi surface one obtains the standard expressions

A1 ¼ N1 ln

�
2eγℏωc

πTc0

�
; a1 ¼ −τN1; b1 ¼

7ζð3Þ
8π2

N1

T2
c0
;

KðxÞ
1 ¼ KðyÞ

1 ¼ KðzÞ
1 ¼ ℏ2v21

6
b1; ð5Þ

where τ ¼ 1 − T=Tc0, ℏωc is the energy cutoff (assumed to
be the same for both bands), γ is the Euler constant, ζðxÞ is
the Riemann zeta function, the DOS of the 3D band at the
Fermi energy is N1 ¼ m1kF=2π2ℏ2, and the 3D band Fermi
velocity v1 ¼ ℏkF=m1 is determined by the corresponding
Fermi wave number kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m1ðμ − ε0Þ
p

=ℏ.
For the Q1D band the expressions for the coefficients are

given by the integrals to be evaluated numerically. At jμj <
ℏωc (near the Lifshitz transition) the coefficients can be
written as (the derivation is outlined in the Supplemental
Material [33]),

A2 ¼ N2

Z
1

−μ̃
dy

tanhðy=2T̃c0Þ
y

ffiffiffiffiffiffiffiffiffiffiffi
yþ μ̃

p ;

a2 ¼ −τ
N2

2T̃c0

Z
1

−μ̃
dy

sech2ðy=2T̃c0Þffiffiffiffiffiffiffiffiffiffiffi
yþ μ̃

p ;

b2 ¼
N2

4ℏ2ω2
c

Z
1

−μ̃
dy

sech2ðy=2T̃c0Þ
y3

ffiffiffiffiffiffiffiffiffiffiffi
yþ μ̃

p
�
sinh

�
y

T̃c0

�
−

y

T̃c0

�
;

KðzÞ
2 ¼ ℏ2v22

N2

8ℏ2ω2
c

Z
1

−μ̃
dy

ffiffiffiffiffiffiffiffiffiffiffi
yþ μ̃

p
y3

sech2ðy=2T̃c0Þ

×

�
sinh

�
y

T̃c0

�
−

y

T̃c0

�
; Kðx;yÞ

2 ¼ 0; ð6Þ

where we use the scaled quantities T̃c0 ¼ Tc0=ℏωc and
μ̃ ¼ μ=ℏωc, and the effective band velocity v2 is deter-
mined by the cutoff energy as v2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏωc=m2

p
(indepen-

dent of μ). The effective DOS of the Q1D band is given by
N2 ¼ σxy=4πℏv2, where the factor σxy accounts for the
contribution to the DOS in the x, y dimensions.
The mean-field critical temperature Tc0 is obtained by

solving the linearized gap equation. This reads [see Eqs. (3)
and (4)]
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Ľ Δ⃗ ¼ 0; Ľ ¼ ǧ−1 −
�
A1 0

0 A2

�
: ð7Þ

This is a matrix equation with solution of the form

Δ⃗ ¼ ψðrÞη⃗; ð8Þ

where η⃗ is an eigenvector of Ľ corresponding to its zero
eigenvalue, while ψðrÞ is a coordinate dependent GL order
parameter of the system [31,32]. A nontrivial solution to
Eq. (7) exists only when the determinant of Ľ is zero, which
gives the equation

ðg22 −GA1Þðg11 −GA2Þ − g212 ¼ 0; ð9Þ

with G ¼ g11g22 − g212. Of the two solutions to Eq. (9), one
chooses the maximal Tc0. The corresponding eigenvector η⃗
can be adopted in the form

η⃗ ¼
�
S

1

�
; S ¼ g11 −GA2

g12
; ð10Þ

where S determines the relative weights of the bands,
changing from 0 (only band 2) to∞ (only band 1). We note
that the observables are not sensitive to the particular choice
of the eigenvector η⃗.
The actual critical temperature Tc is lower than its mean

field value Tc0 due to fluctuations [34]. The fluctuation-
induced correction to Tc0 is obtained by using the standard
Gibbs distribution expð−F=TÞ, where the free energy
functional can be written as (see, e.g., Refs. [27,28])

F ¼
Z

d3r

�X
ν¼1;2

fν þ hΔ⃗; Ľ Δ⃗i
�
; ð11Þ

with

fν ¼ aνjΔνj2 þ
bν
2
jΔνj4 þ

X
i¼x;y;z

KðiÞ
ν j∇iΔνj2: ð12Þ

The stationary condition for the functional given by
Eqs. (11) and (12) yields the gap equation (3).
The calculations of the fluctuation corrections are

simplified by representing Δ⃗ as a linear combination of
the vectors η⃗ and ξ⃗ ¼ ð1;−SÞT [one can see that hη⃗; ξ⃗i ¼ 0]

Δ⃗ðrÞ ¼ ψðrÞη⃗þ φðrÞξ⃗; ð13Þ

where φðrÞ is the second fluctuation mode. The free energy
functional is then expressed in terms of ψ and φ as

F ¼
Z

d3rðfψ þ fφ þ fψφÞ; ð14Þ

where fψ and fφ have the same structure given by Eq. (12),
Δν has been replaced by ψðrÞ in fψ and by φðrÞ in fφ, and
the set of the coefficients faν; bν;Kνg has been changed to
faψ ; bψ ;Kψg and fαφ; bφ;Kφg. In addition, fψφ in Eq. (14)
represents the coupling between the two modes ψðrÞ and
φðrÞ. The coefficients in fψ one obtained as

aψ ¼ S2a1 þ a2; bψ ¼ S4b1 þ b2;

KðiÞ
ψ ¼ S2KðiÞ

1 þKðiÞ
2 ; ð15Þ

whereas the coefficients in fφ are given by

aφ ¼ að0Þφ þ a1 þ S2a2; bφ ¼ b1 þ S4b2;

KðiÞ
φ ¼ KðiÞ

1 þ S2KðiÞ
2 ; ð16Þ

with

að0Þφ ¼ ð1þ S2Þ2
SGg12

: ð17Þ

Here að0Þφ ≠ 0 since S is real. This means that only fψ
represents the critical fluctuations in the vicinity of the
superconducting transition because aψ → 0 in the limit
T → Tc0. The contribution fφ describes noncritical fluc-
tuations and can be safely omitted [23]. Thus, the fluctua-
tions are determined by the GL functional fψ , with the
single component order parameter ψðrÞ. Because of the
presence of the Q1D band, this functional is anisotropic

with Kðx;yÞ
ψ ≠ KðzÞ

ψ .
With this simplification, we can apply the known results

for the fluctuation-driven shift of the critical temperature in
the single-component GL theory. Using the renormaliza-
tion group approach, one obtains [34] that the actual 3D
critical temperature is related to the mean-field temperature
by

Tc0 − Tc

Tc
¼ 8

π

ffiffiffiffiffi
Gi

p
; ð18Þ

where Gi is the Ginzburg number (Ginzburg-Levanyuk
parameter). For the 3D anisotropic system this reads [34]

Gi ¼ 1

32π2
Tc0b2ψ

a0ψK
ðxÞ
ψ KðyÞ

ψ KðzÞ
ψ

; ð19Þ

with a0ψ ¼ daψ=dT. Using Eq. (15), the above expression
can be rearranged as

Gi ¼ Gi3D
ðb2=b1 þ S4Þ2

ða2=a1 þ S2ÞðKðiÞ
2 =KðiÞ

1 þ S2ÞS4
; ð20Þ

where Gi3D is the Ginzburg number of the uncoupled
(standalone) 3D band, given by Eq. (19) with the
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substitution faψ ; bψ ;KðiÞ
ψ g → fa1; b1;KðiÞ

1 g. Equation (20)
yields Gi3D in the limit S → ∞ when only the 3D band
contributes to the condensate state, and diverges in the
opposite limit S → 0 when only the Q1D band contributes,
and fluctuations proliferate.
Using Eqs. (9), (18), and (20), we calculate both the

mean-field Tc0 and the fluctuation-shifted Tc. Notice that
the multiple microscopic parameters entering these equa-
tions reduce to the coupling constants gνν0 , band DOS Nν,
and band velocities vν. Particle masses mν and Q1D DOS
factor σxy are absorbed in those parameters. In addition,
ℏωc sets the energy scale. Below we find it convenient
to employ the dimensionless coupling constants λνν0 ¼
gνν0

ffiffiffiffiffiffiffiffiffiffiffiffi
NνNν0

p
.

The number of essential parameters is, actually, even
less. S, that determines Gi and Tc0, depends only on N2=N1

and λij. The ratio KðzÞ
2 =KðzÞ

1 in Eq. (20) is proportional to
v22=v

2
1 and is vanishingly small because v2 is orders of

magnitude less than v1. N1 and v1 are needed to calculate
Gi3D ≃ ðTc1;0=EFÞ4 (with Tc1;0 the mean-field critical
temperature and EF ¼ m1v21=2 the Fermi level of the
standalone 3D band). However, we follow a different path
and assume Gi3D ¼ 10−10, utilising the fact that Gi lies in
the range 10−6–10−16 for 3D BCS superconductors [35].
Further, the band-structure calculations for many two-band
materials yield N2=N1 ∼ 1, see, e.g., Ref. [36]. Then, as the
results depend only weakly on the ratio of the DOSs, we
can safely set N2=N1 ¼ 1. We are left to choose the three
remaining parameters λ11, λ22, and λ12.
A typical Tc0ðμÞ dependence in the vicinity of the

Lifshitz transition is shown in Fig. 1(a). In the calculations
we utilize λ11 ¼ 0.18 and λ22 ¼ 0.2. However, one can
choose any other values in the range typical for conven-
tional superconductors [37]. The pair-exchange coupling is
chosen in the interval 0 < λ12 < 0.05, keeping in mind that
in most multiband superconducting materials λ12 is notably
smaller than the intraband couplings (see Ref. [36] and
references therein).

Figure 1(a) shows that if μ is sufficiently below zero, the
Q1D band does not contribute to Tc0, and Tc0 is determined
by the 3D band. However, close to μ ¼ 0, Tc0 increases
sharply, approximately by a factor of 40, due to the van
Hove singularity at the band edge [see inset in Fig. 1(a)].
The increase starts below the singularity, at μ ≃ −0.2, for
which two interconnected factors are responsible: (i) the
binding energy of Cooper pairs, estimated as
max½Tc0� ≈ 0.2, and (ii) thermal smoothing of the Fermi
surface with nonzero occupation of the Q1D band at
μ≳ −max½Tc0�. For large μ > ℏωc the contribution of
the van Hove singularity vanishes and Tc0 decreases,
following the 1=

ffiffiffi
μ

p
dependence of the Q1D DOS, and

approaches the critical temperature of the 3D band.
Figure 1(a) shows that Tc0 is practically insensitive to
the pair-exchange coupling. Consequently, the mean-field
characteristics of this two-band superconductor close to the
Lifshitz transition are fully determined by the Q1D band.
In contrast, the fluctuation-induced shift of the critical

temperature strongly depends on the pair-exchange cou-
pling [Fig. 1(b)]. In the limit λ12 → 0 the fluctuations
suppress the superconductivity. However, this suppression
ceases rapidly when λ12 increases. Figure 1(b) demon-
strates that even a vanishingly small coupling is sufficient
to quench the fluctuations and to eliminate the shift. In
particular, Tc approaches Tc0 already by λ12 ≃ 0.01. A
generic character of the temperature enhancement and the
fluctuations suppression is illustrated in Fig. 1(c), which
shows Tc calculated for different values of the ratio λ11=λ22
(at λ22 ¼ 0.2 and λ12 ¼ 0.05). One can see that for μ ≳
−0.2 the critical temperature remains nearly the same.
In summary, our analysis demonstrates that the pair-

exchange coupling to a stable 3D condensate is capable
of quenching severe fluctuations of the Q1D condensate.
The suppression mechanism is related to the fact that
this coupling creates an anisotropic 3D superconductor
with a single critical fluctuation mode, so that Q1D
“light” excitations are accompanied by 3D “heavy” exci-
tations, thus reducing the amplitude of the fluctuations.

(a) (b) (c)

FIG. 1. (a) Mean-field critical temperature Tc0 versus the chemical potential μ, calculated at λ11 ¼ 0.18, λ22 ¼ 0.2, for λ12 ¼ 0.05 and
also for its nearly zerovaluemarked as λ12 → 0; the inset illustrates the energydependentDOS for theQ1DandQ1Dþ 3Dsystemsnear the
Lifshitz pointE ¼ 0 (the 3DDOS ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E − ε0

p
is almost constant nearE ¼ 0). (b) Fluctuation-shifted critical temperatureTc as a functionof

μ, calculated for λ12 ¼ 0.0025, 0.005, 0.01, 0.05 at the Ginzburg number of the uncoupled 3D bandGi3D ¼ 10−10; the intraband couplings
λ11 and λ22 are the same as in panel (a). (c) Tc versus μ, calculated for λ22 ¼ 0.2, λ11=λ22 ¼ 0.4, 1.2, 1.5, and λ12 ¼ 0.05.
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The stiffness of the critical mode KðiÞ
ψ is a sum of the band

contributions, where the 3D-band contribution dominates
as v21 ≫ v22. We reach the remarkable conclusion that
suppression of Q1D fluctuations implies that the two-band
system is a robust mean-field superconductor even in the
vicinity of the Lifshitz transition.
Although in this work the screening of fluctuations is

discussed for s-wave pairing, it is also expected in materials
with d-wave symmetry, and even for triplet pairing with a
multicomponent order parameter. In this regard, we note
that earlier studies of A2Cr3As3 (with A ¼ K;Rb; Sc) point
to triplet pairing [19,38], although this conclusion is not yet
certain [39]. Another class of materials with low-dimen-
sional bands, where a similar multiband mechanism for the
fluctuation suppression applies, are organic superconduc-
tors such as alkali-metal doped aromatic hydrocarbons [40–
44]. The range of achievable Tc’s in Fig. 1 can be estimated
by considering specific values of the cutoff energy ℏωc. For
example, using ℏωc ≃ 400 K, as in Al [37], one gets
max½Tc� ≃ 70 K. In organic superconductors ℏωc can be
substantially larger: in K-doped p-terphenyl KxC18H14 the
cutoff temperature scale is estimated as ℏωc ≃ 1500 K
[11], which yields max½Tc� ≃ 250 K.
We note that the actual increase of Tc can be reduced by

various factors, e.g., by smoothing the van Hove singularity
due to bending the Q1D Fermi sheet in the direction
perpendicular to its principal axis. Another weakening
factor is observed in Cr3As3-based materials [39], where
a strong coupling between distortions of Cr atoms and the
3D Fermi sheet gives rise to a depletion of 3D states thereby
reducing screening of the fluctuations. Nevertheless, the
enhancement of superconductivity, facilitated by the cou-
pling between a Q1D condensate in the vicinity of the
Lifshitz transition and a stable 3D condensate, is a generic
phenomenon that leads to a significant amplification of the
critical temperature. We note that there are several ways to
artificially tune the Lifshitz transition, e.g., by chemical
engineering or by doping multiband compounds [18].
Finally, although this work studies the effect of thermal
fluctuations on Tc, a similar suppression of quantum
fluctuations can be expected at low temperatures near
the upper critical field.
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