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We present a computationally efficient method to obtain the spectral function of bulk systems in the
framework of steady-state density functional theory (i-DFT) using an idealized scanning tunneling
microscope (STM) setup. We calculate the current through the STM tip and then extract the spectral
function from the finite-bias differential conductance. The fictitious noninteracting system of i-DFT
features an exchange-correlation (XC) contribution to the bias which guarantees the same current as in the
true interacting system. Exact properties of the XC bias are established using Fermi-liquid theory and
subsequently implemented to construct approximations for the Hubbard model. We show for two different
lattice structures that the Mott metal-insulator transition is captured by i-DFT.
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Introduction.—Standard wisdom has it that density
functional theory (DFT) [1] is not capable of describing
strongly correlated materials. The origin of this miscon-
ception is twofold. By construction, the exact exchange-
correlation (XC) potential of the Kohn-Sham (KS) system
yields the exact electronic density and directly related
quantities. However, approximations to the XC potential
often miss the step features due to the derivative disconti-
nuity of the generating XC energy functional [2]. These
features are a crucial ingredient to capture strong correla-
tion effects in diverse physical situations such as, e.g.,
molecular dissociation [3,4], fermion gases in optical
lattices [5], or transport [6–12]. Approximations which
include the steps are under active development [13–17].
Furthermore, the interpretation of the KS excitation ener-
gies as true excitation energies is not rigorously justified,
even if the exact XC potential is used. While in the limit of
weak correlations this may be a reasonable approximation,
it completely fails in the opposite limit—it is easy to show
that the exact KS band structure of the Hubbard model in
the Mott insulating phase has no gap and the derivative
discontinuity plays a crucial role in describing the Mott
transition [18–21].
In general, extracting excitation energies in a DFT

framework is not straightforward. While charge neutral
excitations are accessible via time-dependent DFT
[22,23], excitations which do change the number of
electrons such as those probed in (inverse) photoemission
are encoded in the spectral function, an arduous quantity
to calculate also for time-dependent DFT [24]. Usually
spectral functions are calculated within a Green’s function

framework [25,26], e.g., GW [27,28], dynamical mean-
field theory (DMFT) [29–31], and GW þ DMFT [32,33],
but these methods come at considerable computational
cost. Instead, DMFT combined with DFT offers a prag-
matic approach to compute the spectra of strongly
correlated materials [34–36], although the double count-
ing problem remains unsolved.
Recently we proposed a method to compute the spectral

function [37] of a nanoscale tunneling junction using an
extension of DFT, called steady-state DFTor i-DFT [38]. In
i-DFT the fundamental variables are the nonequilibrium
steady-state density of and current through the junction.
Hence, the KS system requires a nonequilibrium extension
of the standard XC potential as well as the introduction of
an XC contribution to the applied bias in the electrodes
[39–42]. In an idealized scanning tunneling microscope
(STM) setup where one of the electrodes (i.e., the “STM
tip”) couples only weakly to the nanoscale junction, the
spectral function at frequency ω can be obtained from the
differential conductance at bias V ¼ ω [37,43].
In this Letter we generalize the i-DFT+STM approach to

calculate the spectral function of arbitrary bulk systems. We
further show that the Mott metal-insulator (MI) transition in
the Hubbard model, one of the main paradigms in the field
of strongly correlated electrons, can be described by i-DFT
provided that both the XC potential and the XC bias feature
steps as function of the steady density and current. General
properties of the XC bias are derived using Fermi-liquid
(FL) theory in combination with DMFT [29–31]. Taking
advantage of ideas developed previously in the context of
the Anderson impurity model [38,44] we construct an
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approximation satisfying all FLþ DMFT properties and
illustrate the MI transition in two different crystal struc-
tures, the Bethe and the cubic lattices.
Bulk spectral function from i-DFT.—We consider a bulk

system described by a Hamiltonian written in terms of
creation and annihilation operators for electrons with spin
projection σ in basis functions fφig. The basis functions are
taken orthonormal but otherwise completely general—they
can be, e.g., extended Bloch states or localized Wannier
functions. No assumptions on the explicit form of the
Hamiltonian are made at this stage. The system is probed
by an ideal nonmagnetic tip, a fictitious “gedanken” device
with the following properties. (i) The electrons in the tip are
noninteracting with energy dispersion ϵk and wave func-
tions ψk. This property ensures the applicability of the
Meir-Wingreen formula [45] for the steady current from the
tip to the bulk [37]. (ii) The coupling of the tip to the bulk is
weak but otherwise its form can be chosen freely. For
convenience, here we take it to be coupled exclusively to
the nth basis function φn of the bulk. Letting Tk be the one-
electron integral between the states ψk and φn, the ideal tip
is chosen to have a transition rate γ¼ 2π

P
k jTkj2δðω− ϵkÞ

independent of ω (wideband limit). Without any loss of
generality we set the chemical potential of the whole
system (tip plus bulk) to zero. A bias V is applied only
in the tip and as a consequence a steady current IðVÞ flows
toward the bulk through state φn. In the limit of vanishing
coupling, the bulk remains in equilibrium and its spectral
function projected onto the state φn can then be written
as [37]

AðωÞ ¼ lim
γ→0

π

γ

dIðVÞ
dV

����
V¼ω

: ð1Þ

Here we use i-DFT to compute IðVÞ. In i-DFT the bulk
density for a given potential v and the steady current for a
given bias V are reproduced in the same but noninteracting
bulk system coupled to the same tip. This fictitious KS
system is subject to the effective potential vs ¼ vþ vHXC,
where vHXC is Hartree plus exchange-correlation (HXC)
potential, and to the effective bias Vs ¼ V þ VXC with VXC
the XC bias. Both vHXC and VXC are functionals of the bulk
density and the steady current. However, in the γ → 0 limit,
see Eq. (1), vHXC becomes independent of I and approaches
the ground-state HXC potential of DFT [37]. In what
follows we assume that vHXC is known from a previous
DFT calculation. Denoting by AsðωÞ the ground-state KS
spectral function, we then have

lim
γ→0

I
γ
¼

Z
dω
π

½fðω − V − VXCÞ − fðωÞ�AsðωÞ: ð2Þ

For any given bias V this equation must be solved self-
consistently since VXC depends on I. The relation between
A and As follows directly from the derivative of Eq. (2) with
respect to V,

AðωÞ ¼ lim
γ→0

Asðωþ VXCÞ
1 − γ

π
dVXC
dI Asðωþ VXCÞ

¼ AsðΩÞ
dΩ
dω

; ð3Þ

where ΩðωÞ ¼ ωþ VXC½IðωÞ�. Equation (3) is one of the
main results of this Letter and shows that i-DFT can be used
to calculate bulk spectral functions.
Properties of the XC bias from Fermi-liquid theory.—

For i-DFT to become a practical and computationally
efficient scheme we need to develop accurate approxima-
tions to VXC. Any approximation should satisfy
VXC½0� ¼ 0, for otherwise there would be a finite current
at zero bias. Below we derive a few more properties for
uniform systems from FL theory and DMFT. We concen-
trate on the local description (hence φn is a site basis
function) and use DMFT which becomes exact in the limit
of infinite dimensions (or, more rigorously, coordination
number) [29–31]—and otherwise yields a very good
approximation for dimensions ≥ 3 [46].
Because of the Friedel sum rule [8,47,48], the spectral

function evaluated at the Fermi energy depends only on the
bulk density. As the latter is the same in the many-body and
the KS system, we have Að0Þ ¼ Asð0Þ. Since Ið0Þ ¼ 0,
then Ωð0Þ ¼ VXC½0� ¼ 0, and therefore Eq. (3) implies

dVXC

dI

����
I¼0

¼ 0: ð4Þ

Other properties can be obtained for particle-hole (p-h)
symmetric systems, e.g., the half filled Hubbard model on
bipartite lattices. In DMFT the local Green’s function can
be written as G−1ðωÞ ¼ ω − v − Σ̃ðωÞ − Δ0ðωÞ, where v is
the uniform potential, Δ0ðωÞ ¼ Λ0ðωÞ − iΓ0ðωÞ=2 the
noninteracting embedding self-energy (or hybridization
function), and Σ̃ðωÞ the many-body self-energy. We
emphasize that Σ̃ðωÞ is not the local DMFT self-energy
ΣðωÞ as it also contains correlation corrections to the
embedding:

Σ̃ ¼ Σþ Δ − Δ0: ð5Þ

At half filling the spectral function AðωÞ ¼ i½GðωÞ −
G�ðωÞ� is an even function of frequency. Additionally,
the p-h symmetry yields a condition for the HXC potential,
i.e., vHXC ¼ −v. Hence the KS Green’s function is simply
GsðωÞ ¼ ½ω − Δ0ðωÞ�−1 and therefore the KS spectral
function AsðωÞ ¼ i½GsðωÞ −G�

sðωÞ� is even too.
Differentiating Eq. (3), evaluating the result in ω ¼ 0,

and using A0ð0Þ ¼ A0
sð0Þ ¼ 0 (henceforth primes are

used to denote derivatives with respect to ω), we find
Asð0ÞΩ00ð0Þ¼0. Using Asð0Þ¼Að0Þ¼limγ→0ðπ=γÞI0ð0Þ≠0,
see Eq. (1), then yields

Ω00ð0Þ ¼ d2VXC

dI2

����
I¼0

I0ð0Þ2 þ dVXC

dI

����
I¼0

I00ð0Þ ¼ 0: ð6Þ
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Taking further into account Eq. (4), this implies that also the
second derivative of VXC with respect to the current should
vanish:

d2VXC

dI2

����
I¼0

¼ 0: ð7Þ

The third derivative of VXC with respect to the current is
nonvanishing and can be related to the pseudoquasiparticle
weight

Z̃−1 ≡ 1 − Re½Σ̃0ð0Þ�: ð8Þ

In the Supplemental Material [49] we prove that

d3VXC

dI3

����
I¼0

¼ −
π3Γ0ð0Þ
8γ3

�
½Z̃−1 − Λ0

0ð0Þ�2 − ½1 − Λ0
0ð0Þ�2

�
:

ð9Þ

We shall use the properties in Eqs. (4), (7), and (9) to
construct approximations to the XC bias.
We observe that the pseudoquasiparticle weight can

be expressed in terms of the actual quasiparticle weight
Z≡ f1 − Re½Σ0ð0Þ�g−1 through Eq. (5): Z̃−1¼Z−1−
Re½Δ0ð0Þ�þRe½Δ0

0ð0Þ�. In DMFT the interacting embed-
ding self-energy (or hybridization function) ΔðωÞ is
related to the local Green’s function GðωÞ ¼ N−1P

k½ω −
ϵk − ΣðωÞ�−1 via the Dyson equation ΔðωÞ ¼ ω − v − Σ−
½GðωÞ�−1. Differentiation and evaluation at ω ¼ 0 then
yields Δ0ð0Þ ¼ Z−1 þ G0ð0Þ=½Gð0Þ�2. WhileGð0Þ ¼ Gsð0Þ
by the Friedel sum rule, it is straightforward to show [49]
that G0ð0Þ ¼ Z−1G0

sð0Þ. Thus,

Z̃−1 ¼ 1þ Z − 1

Z
G0

sð0Þ
½Gsð0Þ�2

; ð10Þ

which can be easily evaluated since GsðωÞ depends only on
the lattice properties through Δ0ðωÞ.
The XC bias for the metal-insulator transition.—We

consider the half filled Hubbard model on the Bethe lattice
(BL) with infinite coordination number as well as on a
cubic lattice (CL), and describe the strategy common to the
construction of the XC bias for both lattices.
In the insulating Mott phase the Hubbard bands become

Coulomb blockade (CB) peaks as the hopping integral
between neighboring sites decreases. In the limit of
vanishing hopping the CB peaks are separated in energy
by the Hubbard interaction U. For finite hopping the CB
peaks are separated by the discontinuity UXC of the HXC
potential [with limU→∞ UXCðUÞ=U ¼ 1]. The XC bias
should feature a step of height UXC [37,50]:

V̄XC½I� ¼ −
UXC

2
sgnðĨÞ − ðU −UXCÞgðĨÞ: ð11Þ

Here we have defined the reduced current as Ĩ ¼ I=ð2γÞ
and its physically realizable domain is Ĩ ∈ ð− 1

2
; 1
2
Þ. The

function gðĨÞ depends on the lattice and fulfills the general
properties: (i) gð−ĨÞ ¼ −gðĨÞ and (ii) gð� 1

2
Þ ¼ � 1

2
such

that V̄XC½�γ� ¼∓ ðU=2Þ. In the Supplemental Material we
describe the strategy to obtain UXCðUÞ and gðĨÞ for both
the Bethe and the cubic lattice [49].
The approximation in Eq. (11) violates the property in

Eq. (4) which is crucial for describing the Kondo peak in
the metallic phase [44]. We then make the ansatz

VXC½I� ¼ aðIÞV̄XC½I�: ð12Þ

For I close to zero we can approximate V̄XC½I�≃
−ðUXC=2ÞsgnðĨÞ. If Ĩ is non-negative we can rewrite this
expression as the limiting function of the sequence

V̄ðnÞ
XC½I� ¼ −ðUXC=2ÞĨ1=n. Letting αĨp be the leading order

term of the function aðIÞ as Ĩ → 0þ, we have

VðnÞ
XC½I� ≃ −ðαUXC=2ÞĨpþ1=n. We then see that the proper-

ties in Eqs. (4), (7), and (9) are fulfilled provided that
p ¼ 3þ 1=n. Taking the limit n → ∞ and using that
aðIÞ¼ að−IÞ, we infer that for I ≃ 0 the function aðIÞ≃
αjĨj3. In the following we parametrize this function as

aðIÞ ¼ 2

π
atanðjλKĨj3Þ; ð13Þ

since for jĨj ¼ 1=2 we must have aðIÞ ≃ 1 for
VXC½�γ�≃ ∓ ðU=2Þ. Taking into account that

d3VXC

dI3

����
I¼0

¼ −
3UXC

4πγ3
λ3K; ð14Þ

the parameter λK ≫ 1 can be determined from Eq. (9).
We apply the i-DFT approach to the calculation of the

spectral function of the Hubbard model on a BL and CL. To
obtain V̄XC½I� in Eq. (11) we performed DMFT calculations
for both lattices using the noncrossing approximation
(NCA) [51] in the insulating phase. Reverse engineering
the DMFTþ NCA spectral function [49] we found that an
accurate parametrization is provided by

gðĨÞ ¼
�
ð1 − bÞ

ffiffiffiffiffiffiffiffiffiffi
jĨ=2j

q
þ bĨ

�
sgnðĨÞ; ð15Þ

with b ¼ 1=4 in the BL and b ¼ 0 in the CL, whereas
UXCðUÞ is a smooth increasing function of U; see Ref. [49]
for the explicit form. To determine λK and hence the
function aðIÞ, we first consider a BL. In this case
Δ0ðωÞ ¼ ðω=2Þ − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW=4Þ2 − ðω=2Þ2

p
, where W is the

bandwidth; hence Λ0ð0Þ ¼ 1=2 and Γ0ð0Þ ¼ W=2.
Inserting these values in Eq. (9) and using Eq. (14), we
obtain
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λ3K ¼ π4W
12UXC

1 − Z̃

Z̃2
: ð16Þ

Close to zero frequency the BL Green’s function
GðωÞ ¼ ð4=WÞ2ΔðωÞ ≃ Z=½ω − ZΔðωÞ�, which implies
ΔðωÞ ¼ Δ0ðω=ZÞ; hence, from Eq. (10),

Z̃ ¼ 2Z
1þ Z

: ð17Þ

The quasiparticle weight has been accurately calculated in
Ref. [52] using the numerical renormalization group
(NRG), and it is well approximated by a shifted
Lorentzian [49]. In the inset of Fig. 1 we show the NRG
Z, our fit, and the pseudoquasiparticle weight Z̃.
Proceeding along the same lines we constructed the XC
bias for a CL; see Ref. [49] for details. We anticipate that
Z̃ðZÞ is almost identical in the two lattices.
Results.—In Fig. 1 we show the BL XC bias for different

values of U in units of the noninteracting bandwidth W. In
the metallic phase, U=W < 1.3, VXC exhibits a plateau
around Ĩ ¼ 0 which turns into a sharp step in the insulating
phase. The development of a step is essential for the gap
opening; see below.
In Fig. 2 we compare the i-DFT spectral functions with

NRG results from Ref. [53] for different interaction
strengths. i-DFT captures the essential features of the
spectra such as the Kondo peak at ω ¼ 0 in the metallic
phase as well as its disappearance with increasing inter-
action strength. The curvature of the Kondo peak at ω ¼ 0
is, by construction, correctly described by our XC bias, but
also the Hubbard side bands are captured reasonably well,

especially for large U’s. The approximation to VXC
performs poorly in the frequency range of the minima of
AðωÞ and some of the finer features of the NRG spectra
are also missing. Interestingly, however, the i-DFT
spectra always have finite support. This can be understood
from Eq. (3) by noting that (i) AsðωÞ has finite support
and (ii) the XC bias is restricted to the intervall
VXC ∈ ½−ðU=2Þ; ðU=2Þ�.
The performance of the approximate XC bias for a CL is

illustrated in Fig. 3 where we again compare i-DFT and
NRG [54] spectral functions for different interaction
strengths. The general trend is similar to the previous case;
in particular, the MI transition is correctly captured.
One feature which draws attention is the presence of
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FIG. 1. Model XC bias of Eq. (12) for the Bethe lattice for
different values ofU. Inset: Quasiparticle weights Z from NRG of
Ref. [52], our fit to the NRG data, as well as Z̃ according to
Eq. (10). W is the width of the band for U ¼ 0.
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FIG. 2. Spectral functions of the Hubbard model on the Bethe
lattice for different interaction strengths obtained by i-DFT and
compared with the NRG results of Ref. [53].W is the width of the
band for U ¼ 0.
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“kinks” in the i-DFT spectra which are directly attributable
to the van Hove singularities in the KS density of states.
Conclusions.—In summary, we have shown how one can

extract bulk spectral functions from i-DFT. A particular
emphasis has been on the proper description of the Mott
metal-insulator transition in strongly correlated systems
which so far has been elusive within DFT. We have derived
properties of the crucial i-DFT quantity, the XC bias, by
establishing a connection to Fermi-liquid theory. These
properties, together with DMFT and NRG reference cal-
culations, have been employed to construct approximations
for the Hubbard model on the infinitely coordinated Bethe
lattice as well as on the cubic lattice. The approximated XC
bias differs from previous ones used in the Anderson
model, which is always metallic due to the Kondo peak
at the Fermi energy.
For any given lattice the i-DFT potentials vHXC and VXC

are “universal”; i.e., they are independent of the external
on-site potential and bias (these are the conjugate variables
to the density and current, respectively). Therefore, the
potentials derived here can also serve to calculate the
spectral function of Hubbard systems with, e.g., non-
magnetic impurities or disorder. This is similar to DFT
where an accurate parametrization of the vHXC for the
homogeneous electron gas is used to deal with inhomo-
geneous systems through the local density approximation.
Although the XC bias is lattice dependent, our work

highlights important general features, namely the step of
height UXC and the dependence of the Kondo prefactor on
the pesudoquasiparticle weight. As the underlying i-DFT
theorem makes no assumption on dimensionality, these
features provide important guidance for the design of
i-DFT functionals in lower dimensions.
Last but not least, the i-DFT spectra capture the essential

physics of the Mott metal-insulator transition at negligible
computational cost, paving the way to an ab initio descrip-
tion of strongly correlated solids within a density functional
framework.
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