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We explore order in low angle grain boundaries (LAGBs) embedded in a two-dimensional crystal at
thermal equilibrium. Symmetric LAGBs subject to a Peierls potential undergo, with increasing tempera-
tures, a thermal depinning transition; above which, the LAGB exhibits transverse fluctuations that grow
logarithmically with interdislocation distance. Longitudinal fluctuations lead to a series of melting
transitions marked by the sequential disappearance of diverging algebraic Bragg peaks with universal
critical exponents. Aspects of our theory are checked by a mapping onto random matrix theory.

DOI: 10.1103/PhysRevLett.125.215503

Grain boundaries, which are interfaces dividing
crystal grains with distinct orientations, significantly
impact the properties of all polycrystalline materials
[1–3]. Their dynamics directly affect grain growth stag-
nation [4], grain boundary mobility [5], superplasticity
[6], and shear strength [7,8], altering the microstructure
evolution of a wide class of materials [3], including
high-Tc superconductors [9] and two-dimensional (2D)
materials [10–12]. A complete understanding of grain
boundary dynamics is crucial for informing materials
synthesis methods and industrial processes [3,13–15].
While previous works have focused on the roughening

[16–20], defaceting [5,21], premelting [22,23], and
structural phase transitions [24,25] in three-dimensional
crystals, recent advances in colloid science [26] and
2D electronic devices [27–29] have triggered studies of
grain boundaries in 2D crystals, with electronic and
thermal properties especially sensitive to lattice imper-
fections [30–38].
In two dimensions, grain boundaries have been pro-

posed as a mechanism for two-dimensional melting
[39,40]. The free energy of low angle grain boundaries
(LAGBs) changes sign at the Kosterlitz-Thouless melting
temperature [41]. However, much less is known about
their statistical mechanics at lower temperatures, particu-
larly in the presence of a periodic Peierls pinning
potential. In this work, we study the statistical mechanics
of LAGBs embedded in a host 2D crystal. Although
LAGBs may not be an equilibrium feature of crystals with
rectangular boundary conditions, they appear in the
ground state of flat crystals with, e.g., trapezoidal boun-
dary conditions. See Fig. 1(a), where a crystal with length
L and width W is trapped between slanted walls, as could
be studied in both experiments and simulations. When
W ∼ L ≫ a, it is straightforward to show that a grain
boundary is preferred over a strained defect-free crystal
(see Supplemental Material [42]). We model the LAGB as
a one-dimensional array of dislocations, with identical

Burgers vectors directed perpendicular to the boundary,
embedded in a 2D continuous elastic medium. “Low
angle” means dislocation spacings large enough so that
these defects are well defined, with glide planes approx-
imately perpendicular to the interface itself. We also
assume a periodic Peierls potential transverse to the
boundary itself [47] (Fig. 1). Mapping onto a model of
quantum Brownian motion in imaginary time [48] allows
a renormalization group treatment of the depinning
transition. By analytically calculating dislocation corre-
lations in various regimes, and numerically testing our
theory using a mapping onto random matrix theory, we
uncover the phase diagram in Fig. 2(a). The sharp one-
dimensional phase transitions displayed in Fig. 2(a) are
only possible because of the long range interactions
between dislocations in the LAGB. Note that the tran-
sitions in Eqs. (5) and (17) below can also be expressed in
terms of a dimensionless temperature Γ≡ kBT=Yb2, and
so the transitions can also be realized by tuning the
interaction strength instead of kBT.
At low temperatures, the LAGB is in a pinned phase,

with dislocations localized along their glide directions by
Peierls potential. Upon increasing the temperature, we
find a depinning transition at T ¼ TP; above which, the
Peierls potential is overcome by thermal fluctuations and
the transverse LAGB fluctuations grow logarithmically
with distance along the boundary. As the temperature

FIG. 1. Schematic of a single LAGB consisting of point
dislocations (orange) with Burgers vectors aligned along their
glide planes (turquoise) and embedded (a) in a flat 2D crystal
with wedge angle θ and (b) in a curved 2D crystal.
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continues to increase, the quasi-long range ordered
depinned LAGB melts via a series of phase transitions
at fTðmÞ

c g, marked by the sequential disappearance of
power law divergences at ever-smaller Bragg peaks fGmg.
These transitions proceed until only the final peak at G1

remains; after which, the LAGB melts with the host
crystal, if the host crystal has not already melted by some
other mechanism (see, e.g., Ref. [49] and references
therein).
Equilibrium configurations of symmetric grain bounda-

ries in d ¼ 2, without shear load, can be modeled by
pointlike edge dislocations with glide planes perpendicular
to the boundary [Fig. 1(a)]. Note that LAGBs can also arise
on curved 2D crystals [50–52], where grain boundary scars
form to relieve the excess strain introduced by Gaussian
curvature and associated topological defects such as dis-
clinations [34,52] [Fig. 1(b)].
The energy of a LAGB, consisting of N point edge

dislocations, embedded in a 2D crystal is [47]

H½fxn; yng� ¼ −
Yb2

8π

X
n≠m

�
1

2
ln jðxn − xmÞ2 þ ðyn − ymÞ2j −

ðyn − ymÞ2
ðxn − xmÞ2 þ ðyn − ymÞ2

�
− VPeierls

X
n

cos

�
2πyn
a

�
; ð1Þ

where the LAGB is oriented along x̂, b is the magnitude of
the Burgers vector along ŷ (assumed equal to the lattice
constant a for simplicity), and Y ¼ 4μðμþ λÞ=ð2μþ λÞ is
the 2D Young’s modulus, where μ and λ are the Lamé
coefficients. The position of the nth dislocation is given by
ðxn; ynÞ ¼ ðnDþ uðxÞn ; uðyÞn Þ, where uðxÞn and uðyÞn are the
longitudinal and transverse displacements of these defects
due to thermal fluctuations. Their equilibrium positions are
aligned at y ¼ 0 to balance the Peach-Kohler force due to
interactions with other dislocations, and they are evenly
spaced along x̂ with an average spacing D [31,32,47]. We
assume that both glide and climb displacements are in
thermal equilibrium, as could be achieved by having a 2D
host crystal coexisting with a three-dimensional (3D) vapor
phase, which effectively supplies a reservoir of vacancies
and interstitial defects.
Provided that T is not too close to the melting temper-

ature Tm of the host crystal, we expect that typical
displacement differences are much smaller than the dis-
location separations: jun − umj ≪ jn −mjD. Upon expand-
ing to quadratic order in the transverse glide displacements
fuðyÞn g, we obtain [31,32,40]

H ¼ Yb2

8D2

Z
dqx
2π

jqxjjuðyÞðqxÞj2 − VPeierls

X
n

cos

�
2πuðyÞn

a

�

−
Yb2

8π

X
n≠m

ln jDðn −mÞ þ ðuðxÞn − uðxÞm Þj: ð2Þ

The first term, representing long range interactions, has
been written in Fourier space.
Thermal depinning.—We first examine the behavior of

glide fluctuations transverse to the boundary. Upon inte-
grating out the longitudinal fuðxÞn g degrees of freedom, the
fluctuation energy for the remaining transverse modes
becomes

Ht ¼
Yb2

8D2

Z
dqx
2π

jqxjjuðyÞðqxÞj2−VPeierls

X
n

cos

�
2πuðyÞn

a

�
:

ð3Þ

A similar Hamiltonian was proposed to model dislocations
in a zipperlike interface [53]. In that case, however, the
Peierls potential acts along the boundary rather than
perpendicular to it. The reduced Hamiltonian of Eq. (3)
maps exactly onto the action of a quantumBrownian particle
in a periodic potential in imaginary time [48,54,55]. The
repulsive logarithmic interaction between dislocationsmaps
onto a friction force that resists the quantum particle
tunneling between minima in the periodic potential. The
renormalization group recursion relation for the scale-
dependent Peierls potential VPeierlsðlÞ reads [48,54]

dVPeierlsðlÞ
dl

¼
�
1 −

1

γ

�
VPeierlsðlÞ; ð4Þ

and it predicts a delocalization transition for the LAGB.
Here,

FIG. 2. (a) Phase diagram of a LAGB embedded in a 2D crystal.
(b) Schematic of a LAGB below and above the depinning
transition, with transverse grain boundary correlations given
by Eqs. (6) and (7). Gray lines illustrate transverse Peierls
potential. (c) Schematic of the structure factor (q≡ qx) at the
depinning transition with power law divergences in Bragg peaks
according to Eq. (14) at fGmg, provided the Bragg peak index
m < mc [Eq. (16)].
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γ ¼ 1

kBT
Yb2a2

8πD2
;

wherea ¼ b is the lattice constant of the host crystal, andwe
obtain the depinning temperature TP as

kBTP ¼ θ2
Yb2

8π
; ð5Þ

where θ ¼ a=D is the usual misorientation angle of a
symmetric LAGB [47].
As illustrated in Fig. 2(b), below the depinning transition

T < TP, the LAGB dislocations are locked close to a
particular minimum of the Peierls potential, even in the
presence of thermal fluctuations, and the spatial correlation
function of the displacements is constant for large separa-
tion distances,

lim
x→∞

hjuðyÞðxÞ − uðyÞð0Þj2i ¼
�
a
2π

�
2 kBT
VPeierls

: ð6Þ

For T > TP, the Peierls potential can be neglected at large
distances, and the spatial correlation function of the
depinned dislocation displacements grows logarithmically
with the separation distances x along the LAGB:

lim
x→∞

hjuðyÞðxÞ − uðyÞð0Þj2i ≈ 8

π

kBTD2

Yb2
lnðxÞ: ð7Þ

Although this behavior is reminiscent of roughened 2D
interfaces [56–58], typical roughened one-dimensional
(1D) interfaces with short range interactions, in fact, have
fluctuations that grow as

ffiffiffi
x

p
.

When T → Tþ
P , we obtain the following universal

scaling relation using Eqs. (5) and (7):

limx→∞hjuðyÞðxÞ − uðyÞð0Þj2i
lnðxÞ ¼ a2

π2
: ð8Þ

Melting.—To study the melting of longitudinal LAGB
order, we now focus on the climb degrees of freedom and
examine the 1D structure factor as a function of momenta
qx near the reciprocal lattice vectors fGm ¼ 2πm=Dg. Both
above and below the depinning transition T ¼ TP, we can

integrate out the transverse degrees of freedom fuðyÞn g from
the dislocation partition function associated with Eq. (1),
and we obtain an effective nonlinear energy for the
longitudinal coordinates fxng along the boundary,

HlðfxngÞ ¼ −
Yb2

8π

X
n≠m

ln jxn − xmj: ð9Þ

{Neglected terms of O½ðuðxÞn Þ2ðuðyÞn Þ2� do not affect the
coefficient of the logarithm within perturbation theory.} On

denoting q≡ qx, setting xn ¼ Dnþ uðxÞn , and expanding to
quadratic order in longitudinal displacements, Eq. (9) in
momentum space becomes (qx ≡ q) [40]:

H ¼ Yb2

8D2

Z
dq
2π

jqjjuðxÞðqÞj2: ð10Þ

We can now compute the asymptotic forms of the structure
factor SðqÞ ¼ hjρðqÞj2i=N, where

ρðqÞ ¼
X
n

eiqxn ;

in both the q → 0 and q → Gm limits. When q → 0, we can
construct a hydrodynamic density fluctuation field δρðxÞ
[59]. Upon writing the energy in Eq. (10) in terms of
density fluctuations with δρðxÞ ¼ ρ0∂xuðxÞðxÞ, where ρ0 ¼
hρðxÞi≡D−1 is the average dislocation density, we obtain
from Eq. (10)

lim
q→0

SðqÞ ≈ 8πkBT
Yb2

jq̄j; ð11Þ

where q̄≡ q=2π=D is the dimensionless wave vector. The
linear vanishing of SðqÞ as q → 0 indicates incompress-
ibility associated with dislocations with identical Burgers
vectors, similar to a Coulomb gas of like-signed charges.
On now setting q ¼ Gm þ k, with k ≪ Gm, we obtain

for the structure factor SðqÞ near the reciprocal lattice
vectors Gm ≠ 0:

Sðq ≈GmÞ ≈
X∞
s¼−∞

eiksD−ðG2
m=2ÞhjuðxÞs −uðxÞ

0
j2i: ð12Þ

where we have used the properties of Gaussian
thermal averages to evaluate hexp½iGmðuðxÞs − uðxÞ0 Þ�i. On
extracting huðxÞðqÞuðxÞðq0Þi from Eq. (10) and utilizing the
properties of cosine integrals [60], we obtain the dis-
placement correlation CðsÞ≡ hjuðxÞs − uðxÞ0 j2i in the limit
of large s → ∞ as

CðsÞ ¼ 8D2kBT
πYb2

�
γ þ lnðπsÞ þO

�
cosðπsÞ

s

��
; ð13Þ

where γ ≈ 0.577 is the Euler-Mascheroni constant. Upon
substituting Eq. (13) into Eq. (12), we obtain the singular
behavior of SðqÞ near themth reciprocal lattice vectorGm as

lim
q→Gm

SðqÞ ∼ 1

jq −Gmj1−αmðTÞ
: ð14Þ

where 1 − αmðTÞ is a temperature-dependent susceptibility
critical exponent,
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αmðTÞ ¼ m2
16πkBT
Yb2

: ð15Þ

Equation (14) predicts that at temperatures low enough such
that αmðTÞ ≤ 1, the structure factor diverges as q approaches
the mth reciprocal lattice vector q → Gm, and the higher
order Bragg peaks are less divergent than the more promi-
nent ones closer to the origin. These power law Bragg peaks
for LAGBs are reminiscent of the Bragg peaks below the
melting temperature of 2D point particles [61,62]. They
replace the usual Lorentzian peaks expected for conventional
one-dimensional crystals without long range order [63], and
they are due to long range interactions between the dis-
locations in the grain boundary.
As illustrated in Fig. 2(c), the Bragg peaks at fGmg

(1) remain finite if m is larger than a critical value m > mc,
or (2) diverge as a power law with exponent 1 − αmðTÞ if
m < mc. The critical value mc is given by

mc ¼
Dffiffiffi
2

p
a
: ð16Þ

As temperature increases, divergences in higher order
Bragg peaks vanish sequentially at a series of transition
temperatures fTðmÞ

c g, where

kBT
ðmÞ
c ¼ 1

m2

Yb2

16π
: ð17Þ

The last Bragg peak to disappear is the first-order Bragg
peak at G1 ¼ 2π=D, closest to the origin in momentum
space. Interestingly, the temperature at which this last
Bragg peak vanishes Tð1Þ

c seems to coincide with the
dislocation pair unbinding temperature of the 2D host
crystal, if we neglect screening by bulk dislocation pairs.
Note that the dislocation spacing D drops out in Eqs. (15)
and (17) because the D dependence of the interaction
strength in Fourier space of ∼1=D2 in Eq. (10) cancels
against the D dependence of the reciprocal lattice vectors
fGmg ¼ f2πm=Dg in Eq. (12).
We also calculate the pair correlations embodied in the

radial distribution function gðrÞ, which determines the
probability of finding a second dislocation a distance r
away from some first existing dislocation. The quantity
gðrÞ is given by a Fourier transform of the structure factor
SðqÞ [64]. Since the most prominent Bragg peak at G1

dominates, we obtain the long distance behavior of gðrÞ as

lim
r→∞

½gðrÞ − 1� ∼ r−α1ðTÞ cosðG1rÞ: ð18Þ

The power law decay of correlations in real space,
oscillating on scales of the dislocation spacing D, are
similar to 2D “quasi-long range order” [61,62] but arise
here in a 1D system with long range interactions.

Random matrix simulations.—We now utilize random
matrix theory—the general β-Gaussian (Hermite) ensemble
[65]—which can efficiently simulate the long range inter-
actions embodied in Eq. (9) at finite temperatures. We can
test quantitatively the predictions of Eqs. (14) and (18) that
result from a harmonic approximation to this quantity
because the matrix eigenvalues correspond to dislocation
positions. The timescale for direct numerical simulations
with, say, molecular dynamics for N particles with long
range interactions can be quite large, scaling as OðN5=2Þ
[66]. However, we can obtain an equilibrium configuration
of a LAGB at any temperature T by diagonalizing the
following symmetric, tridiagonal random matrix [65] {an
operation that scales only as OðN logNÞ [67]}:

Hβ ¼
1ffiffiffi
2

p

2
666666664

Nð0;2Þ χðN−1Þβ 0

χðN−1Þβ Nð0;2Þ χðN−2Þβ

. .
. . .

. . .
.

χ2β Nð0;2Þ χβ

0 χβ Nð0;2Þ

3
777777775
:

ð19Þ

In Eq. (19), Nð0; 2Þ indicates a random number drawn from
the normal distribution with mean 0 and variance 2, χk
represents a random number drawn from the chi distribu-
tion [68], and β > 0 can assume any positive value. We can
easily tune the temperature of our simulations by changing
the randommatrix inverse temperature parameter β, i.e., the
Dyson index, which is related to the inverse temperature of
the LAGB by

β≡ Yb2

4π

1

kBT
: ð20Þ

The eigenvalue density of Eq. (19) follows the Wigner
semicircular distribution [65], while the eigenvalue statis-
tics near the center of the spectrum (with an approximately
flat density of states) map exactly onto the statistical
mechanics of LAGBs (see Supplemental Material for
details [42]). Specifically, the joint probability distribution
function of the random matrix eigenvalues at the center of
the spectrum at a particular value of β is proportional to the
dislocation Boltzmann factor e−ðH=kBTÞ associated with
Eq. (9) for a LAGB at temperature T corresponding to
Eq. (20) [69].
The structure factors SðqÞ extracted from random matrix

simulations in Fig. 3(a) indeed reveal the sequential
disappearance of the power law divergence of the mth
Bragg peaks at the transition temperatures fTðmÞ

c g predicted
by Eq. (17). We also checked that the Bragg peak
divergence in SðqÞ and the decay of the radial distribution
function gðrÞ behave according to Eqs. (11), (14), and (18),
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with temperature-dependent exponents given by 1 − αmðTÞ
and αmðTÞ, respectively.
We can also utilize results from randommatrix theory for

standard Gaussian ensembles [70] to conjecture exact
asymptotic expressions for SðqÞ near the first Bragg peak
in the temperature range Tð2Þ

c < T ≤ Tð1Þ
c . Upon combining

the scalings embodied in Eqs. (11) and (14), we expect that
(see Supplemental Material [42])

SðqÞ≈α1ðTÞ
2

jq̄jþ
����
q̄
2

����
α1ðTÞ α1ðTÞ

2ð1−α1ðTÞÞ
�

1

ð1− q̄Þ1−α1ðTÞ−1

�
;

ð21Þ

where q̄ ¼ q=G1, with analogous results for the radial
distribution function. As shown in Fig. 3(b), Eq. (21) shows
excellent agreement with results from random matrix
simulations.
We note in conclusion that in the absence of a coexisting

3D vapor, dislocation climb out of the glide plane can be
frozen out at temperatures far below the melting transition
of the host crystal, T ≪ Tm [31]. The thermal depinning
transition associated with the transverse dislocation glide
modes nevertheless occurs as described above. Above the
depinning transition, as temperature increases, dislocation
climb will be increasingly facilitated by dislocations
created and annihilated via glide motion to and from the

boundaries of the host crystal and by the proliferation of
dislocation pairs near the melting of the host lattice [40,41].
Although the LAGB structure factor might approximate
delta function Bragg peaks when T ≪ Tm as climb is
forbidden, we expect a gradual crossover to algebraic
Bragg peaks at higher temperatures such that T ≳ TP.
Phase field methods [30,71] might be a particularly
efficient way of testing our results via simulations.
In the future, we hope to obtain a similar understanding

of the statistical mechanics of both grain boundaries and
dislocation pileups subject to a Peierls potential in three
dimensions [20,31] and two-dimensional materials that
allow out-of-plane deformations [72].
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