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Additional Transition Line in Jammed Asymmetric Bidisperse Granular Packings
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We present numerical evidence for an additional discontinuous transition, upon compression, inside the
jammed regime for an asymmetric bidisperse granular packing. This additional transition line separates
jammed states with networks of predominantly large particles from jammed networks formed by both large
and small particles, and the transition is indicated by a discontinuity in the number of particles contributing
to the jammed network. The additional transition line emerges from the curves of jamming transitions and
terminates in an end point where the discontinuity vanishes. The additional line is starting at a size ratio
around § = 0.22 and grows longer for smaller 6. For 6 — 0, the additional transition line approaches a limit
that can be derived analytically. The observed jamming scenarios are reminiscent of glass-glass transitions

found in colloidal glasses.
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The jamming transition at packing fraction ¢; in granular
matter is indicated by a discontinuous jump in the number of
contacts per particle [1-6]. For frictionless monodisperse
packings, that value is close to ¢; = 0.64 in 3D [5,7]. To
suppress crystallization, bidisperse packings are introduced
where ¢p; can be tuned to higher values by varying the size
ratio 0 and volume concentration of small particles X
[8-12]. Such mixtures are also relevant for industrial
processes since mechanical properties of bidisperse packings
such as bulk modulus and wave speed can be controlled [13].

While the dependence of the jamming density on § and
X has been studied previously [8—12], a better under-
standing of jammed states in highly asymmetric bidisperse
mixtures for extremely low X is intended here. For
example, previous works have assumed that the jammed
structure of a bidisperse packing is formed by the equal
contribution of both large and small particles since both
species jam simultaneously at ¢p; [9—11]. This is true above
certain values of § and Xy, since then the particle sizes are
similar enough that both species follow the same behavior.
However, for lower values of 6 and Xg, each component
behaves differently when approaching jamming, which
suggests a potential decoupling in the jamming in the
binary system. Indeed, it has been recently demonstrated in
Ref. [8] that the jammed structure of an asymmetric
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bidisperse system evolves from a small-sphere rich to a
small-sphere poor structure. Such behavior is marked by an
abrupt drop in the number of small particles contributing to
the jammed structure at a specific Xg, while the rest of the
small particles remain without contacts.

The recent works cited above indicate that, in principle,
two different pathways to jamming need to be distinguished
for small §: one driven by predominantly large particles and
one driven by both species together. It is the aim of this
Letter to demonstrate explicitly that such distinction can be
made rigorous by an analysis of the partial contact numbers
between particles of different species. This leads to the
identification of an additional transition between different
jammed states for Xg < X§(8) for 6 < 6*. The transition
diagram for that scenario is shown in Fig. 1 and shall be
elaborated on below. In the following, the simulation
method shall be explained, followed by the analysis and
discussion of the results; the results are rationalized
theoretically and put into context with scenarios found
in glasses in the Conclusion.

Simulations using the 3D discrete element method are
performed with the software MercuryDPM [13,14]. Bidisperse
packings are formed by N = 6000 particles, where a number
of large N; and small Ng particles with radius r; and rg are
considered, respectively. Each packing is characterized by
the size ratio, § = rg/r;, and the concentration of small
particles, Xg=Ns5°/(N,+N5°), as well as the overall
packing fraction ¢ (see Supplemental Material, Sec. 1 for
further details [15]). We restrict ourselves to the isotropic
deformation and to the linear contact model without any
friction between particles [16,17]. Thus, we exclude all the
nonlinearities present in the system due to contact models
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FIG. 1. Jamming density ¢; as a function of the volume

concentration of small particles X for different values of the
size ratio 6. The extreme X values (zero and one) correspond to
monodisperse systems where ¢; = 0.645 indicated by the dashed
horizontal line. Solid lines represent the result of Eq. (1).

and analyze the effect of the size ratio and concentration of
small particles at jamming. Each bidisperse packing char-
acterized by the parameters (5, Xg) is created and further
compressed using an unique, well-defined protocol [16,18].
¢; for each configuration is determined at the point where
the partial mean contact number exhibits a sharp decay. The
values of ¢; as a function of X for different § are shown
in Fig. 1.

For a particular 6 = 0.15, the jamming density increases
with X up to a maximum value occurring at X§(0.15) ~
0.21, then decreases for larger values. Along the increasing
transition line, jamming is driven by the force network
created by the large particles, since most of the small ones
remain without or with only few contacts in the cages formed
by the large ones. This is confirmed when looking at
Figs. 2(a) and 2(c), where mainly large particles are carrying
the load in the jammed state. On the other hand, on the
decreasing branch of ¢; for high X, small and large particles
arrest simultaneously at the same density, see Figs. 2(b) and
2(d). However, for lower values of 6 and X, a decoupling in
the mean contact number Z between large and small particles
is observed, see Fig. 2(a). Large particles arrest first at lower
¢, while small ones remain without contacts. Making the
packing denser, small particles exhibit an apparent jump in
Zgs and Z ;. [see Fig. 2(a)], indicating that a fraction of them
start contributing in a discontinuous fashion to the already
jammed structure of large ones. While the related conditions
are certainly fulfilled by the setup of the simulation, simple
Maxwell counting arguments or variations thereof [19] are
not sufficient to explain the complex variation of contact
numbers in that regime.

To corroborate the behavior observed in the Zgg, in
addition we have quantified the fraction of large n; and
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FIG. 2. (a)—(d) Mean contact number Z for each type of contact
as a function of ¢ for four combinations of § and Xg. Z,,
corresponds to the sum of contacts between particles of species n
and m divided by total number of N particles, with n,m € [L, S].
The analyzed data are taken along the decompression branch.
Zmix 18 defined as Z,;, = (Z;5 + Zg;)/N. (e)—(h) Fractions of
large n; and small ng particles contributing to the force network
as a function of the packing fraction ¢ for two sets of (5, Xg).

small particles ng contributing to the force network as a
function of ¢ shown in Figs. 2(e)-2(h). This quantity
exhibits the additional jump more drastically compared to
Z. A clear decoupling between n; and ng at lower § and X
can be seen in Fig. 2(e), while for higher values of o, both
sizes of particles contribute simultaneously to the jammed
structure. Such decoupling indicates that a large amount
of small particles are jammed discontinuously at higher
densities, which resembles a similar behavior as by
the large particles at low densities. To extract the precise
value of the jamming density where n ¢ jumps for low X, we
used the derivative of Ong/0¢ (see Supplemental Material
[15], Sec. II). Figure 1 displays such values for
X5 < X5(6)~0.21, indicated by the increasing line of
densities for smaller X. Such a line extends the transitions
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FIG. 3. Fraction of small ng and large particles n; contributing

to the jammed structure as a function of the concentration Xy of
small particles for (a) 6 = 0.15 and (b) 6 = 0.28. nj represents
the fraction of small particles along the additional line.

where both particle species are jammed into a regime of
smaller Xg. For the larger 6 = 0.20, the additional line
emerges from X§(0.20) ~ 0.18. For 6 = 0.15 and 0.20, the
packing fractions where the additional transition lines
emerge are ¢* = 0.81 and 0.79, respectively.

Except for the additional transition line, the results
shown in Fig. 1 are quite similar to those previously found
in experiments using glass beads [11] and in 3D simu-
lations [9,10]. In those latter works, however, no additional
line was identified. Recent work [8], which has studied the
statistics of the small particles in the jammed structure of
bidisperse systems in more detail, showed that indeed the
fraction of small particles contributing to the jammed
structure decays to small values for Xg < X, which
becomes discontinuous as 6 decreases. This allows one
to make a distinction between two regimes: one where
small particles contribute to the jammed network jointly
with large ones (Xg > X§) and the second one where only
large particles contribute (Xg < X§). We have found that,
besides these two regimes, there is an additional line
emerging at Xg = X§5. The additional line represents a
jammed state ¢;, extending into higher densities and
terminating in an end point (X%(8), ¢°(6)). The additional
line starts emerging for 6 < §* = 0.22 where the line’s end
point extends further to lower X as d decreases.

The evolution of the fractions of small and large particles
that contribute to the jammed structure, ng and n;, along
the jamming lines elucidates the different nature of the
transitions, i.e., by discussing the jump heights in these
quantities as the jamming transition is crossed. These ratios
are shown in Fig. 3 for two representative values of 6. Here,
we extracted ng and n; from the points where the large-
particle contribution jumps and ng from those where the
small-particle contribution jumps. The existence of the

additional transition line is now manifested in the cases
where n} splits from ng, see Fig. 3(a) at low X. Close to the
crossing point where the additional transition line emerges,
the difference between ng and nj is largest. For lower X,
the second jump nj has to be compared with the value ng
that is increasing regularly with packing fraction after the
first transition: once ng and n§ become of equal value, no
more second jump can be identified, the end point of the
additional transition line has been reached.

Technically, such a cessation of a second jump is
more difficult to identify precisely than a clearly
developed second jump close to the crossing point,
which explains the fluctuations in Fig. 3. The sharp rise
in ng around X% =0.21 has been noted before [8].
Within the results obtained here, it can be seen as a
natural consequence from the crossing of a line with a
finite jump in n; and a line with a finite jump in n§. For
0 = 0.28 [Fig. 3(b)], n§ and ng merged into one line at
lower X, suggesting that no additional transition line is
found (see Fig. 1).

A comprehensive view of the evolution of the configu-
rations of force-carrying particles including the history
of the established contacts is shown in Fig. 4 for 6 =
0.15 and Xg = 0.1, as well as in the Supplemental Material
videos [15] for § = 0.15 and Xy = 0.1, 0.15, 0.19, and 0.21,
respectively. In the left column of Fig. 4, the contact-bearing
large particles are shown from ¢ = 0.72 at the first transition
to ¢ = 0.871 and ¢ = 0.875, which is slightly before and
after the second transition. Little apparent changes are visible
here. In contrast for the small particles, at the first transition
shown in the top row of Fig. 4, only very few of the small
particles are arrested by permanent contacts. Between
¢ =0.72 and ¢ = 0.871, gradually more of the small
particles also establish contacts and contribute to the force
network. At ¢p = 0.875 another discontinuous jump is seen,
with many of the small particles becoming arrested all at
once rather than gradually.

Figure 4 shows the second discontinuity well separated
from the first one, as the point 6 = 0.15 and Xg = 0.1 is
already far inside the jammed regime and hence compa-
rably far away from the first line. At the same time, the
point is close to the end point where the second disconti-
nuity vanishes, and hence the discontinuity shown in Fig. 4
is rather more moderate. More drastic jumps can be seen
when getting closer to the crossing at X = 0.21, where, in
turn, the location is closer to the first line. The videos in the
Supplemental Material [15], showing the evolution of the
packing with increasing density along the additional line,
clearly indicate different discontinuities.

The additional transition lines are a result of the
decoupling of the jamming transition between large and
small particles for low X and low é. Such a scenario was
introduced by Furnas almost a century ago [20] to predict
the highest density of aggregates entering in the manufac-
ture of mortar and concrete. This model can be evaluated
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FIG. 4. Evolution of the configuration of force-carrying large
(left column) and small (right column) particles for § = 0.15 and
Xg = 0.1. The top row shows results at the transition of a loose
assembly to a first force-carrying packing at ¢ = 0.72. The
middle row is shown for ¢ = 0.871 just before the additional
transition line, and the bottom row exhibits the results and
configuration for the additional transition line at ¢ = 0.875.

analytically if the size ratio of the particles is in the extreme
limit § — 0. Then, ¢; can be written as two lines sharing a
common point at X%, with ¢rep designating the packing
fraction at random close packing (RCP)

. _ ¢rep/ (1 = Xs),
}SLmO 1) = {¢RCP/[¢RCP + (1 = drep) X, .

where the upper line is usually considered for 0 < X < X%,
while the lower line is deemed applicable for X s<Xg<1l
The other branches are usually discarded. Looking at
the trend in Fig. 1 for 6 — 0, one may extrapolate the
simulation results to the lines given in Eq. (1). In particular,

the lower expression in Eq. (1) may in fact may be
applicable for the whole range 0 < X < 1.

Equation (1) predicts a line crossing with a packing
fraction of ¢J<)A(§> =0.87 at Xv* = (1 _¢RCP)/(2_¢RCP) =
0.26, which is in reasonable agreement with the values
obtained here for X7 at finite o, especially when observing
the upward trend in X from the simulations (cf. Fig. 1).
The Furnas model then predicts an additional transition line
ending at a density of unity. In Fig. 1, the additional line
given by the simulation data follows qualitatively that
line and ends at progressively lower values X§(5) for
smaller 0. One may hence assume—without further proof at
this point—that the extension of the Furnas formula
provides a reasonable estimate for the limit of a space-
filling packing within the peculiar limit where the volume
of each individual small sphere vanishes with 6 — 0, but
where at the same time the volume contribution of the small
particles remains finite for each Xg > 0. In the simulation
for finite 6, the transition line ends at X§ > 0 and no
discontinuity is found in ng and Zgg for Xg < X (see
Supplemental Material [15], Sec. III).

In conclusion, we have shown that the jamming diagram
in bidisperse packings is enriched by an additional transition.
This transition appears for Xg < X§(6) when small particles
get in contact with the jammed structure already formed by
large particles. The trend in the evolution of the additional
line lends support to the equations of the Furnas model,
which predicts a similar additional line for the intricate limit
of a space-filling binary packing. The results have been
obtained using a specific simulation method described above
and in more detail in the Supplemental Material [15], which
includes, in addition, Refs. [3,21-35], and it remains open to
what extent other protocols can exhibit the same scenarios. A
physical interpretation is given in order to support the
reliability of the results beyond a specific protocol or
implementation. Also, most notably in the simulation work
in Ref. [8], parts of the findings presented here are found as
well, with the exception of an additional transition line.
Within a different simulation protocol and data analysis,
indications of an additional transition line have been found
for a mixture with 6 = 0.17 [35]. In addition to other
computer simulations, however, the findings above should
be well within the scope of experiments, e.g., along the lines
of the original identification of the square-root bifurcation at
jamming in two dimensions [6].

The results presented in Fig. 1 demonstrate an interesting
connection to the glass-glass transition phenomenology in
colloidal glasses in general [36] and binary colloidal
suspensions in particular [37], thereby pointing toward a
more close relationship between glass- and jamming-
transition phenomena [38]: While glass and jamming
transitions for hard spheres occur at different packing
fractions 0.58 and 0.64 in experiments in three dimensions,
they may well be considered more closely related in higher
dimensions, thus allowing for a more unified description in
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the future. The consideration of multiple glass as well as
multiple jammed states offers the opportunity to confront
theoretical concepts with richer scenarios than the corre-
spondingly more simple transitions. Also, the relevance of
different length scales in the structure of packings [39] may
well reveal additional features when more than one jammed
state is considered.

The extension of the jamming line found here gives a
richer interpretation of the subjamming transition, a term
introduced in Ref. [8]. There, the crossing point (6*, X§)
has been interpreted as showing the hallmarks of a critical
point akin to those of phase transitions. From our results
here we interpret this point as rather a crossing point of
two bifurcation lines, forming part of a more general
bifurcation diagram. Two jamming lines cross here, and
while one terminates at the crossing, the other one can
continue until its end point. This additional transition line
delineates a region where small particles are inside the
interstices of an already jammed structure of large
particles. Increasing &, the additional transition line
shrinks, so that at some 6, end point and crossing point
coincide, X§(6*) = X§(6*). The scenario of Fig. 1 hence
allows for the interpretation within the framework of
bifurcation theory, cf. [40], where the additional line with
end point can be seen as a cusp bifurcation and the whole
scenario with a vanishing cusp at some point a swallow-
tail singularity. Also, while the existence of these bifur-
cations can be considered a topologically robust phe-
nomenon, the additional line may not necessarily emerge
at the maximum in packing fraction for the respective
jamming-transition curves. The outline of such scenarios
based on the results above should stimulate developments
in theory where the analogy with phase transitions as in
Refs. [8,35] on one hand and bifurcations on the other
present alternative pictures that should have consequences
for theoretical predictions in the field.
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