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The Unruh effect predicts a thermal response for an accelerated detector moving through the vacuum.
Here we propose an interferometric scheme to observe an analogue of the circular Unruh effect using a
localized laser coupled to a Bose-Einstein condensate (BEC). Quantum fluctuations in the condensate are
governed by an effective relativistic field theory, and as demonstrated, the coupled laser field acts as an
effective Unruh-DeWitt detector thereof. The effective speed of light is lowered by 12 orders of magnitude
to the sound velocity in the BEC. For detectors traveling close to the sound speed, observation of the Unruh
effect in the analogue system becomes experimentally feasible.
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Introduction.—The formulation of quantum field theory
(QFT) in curved spacetime highlights the ambiguity of the
definition of particle and “vacuum” state which persists
even in flat spacetime. A prominent example thereof is the
Unruh effect [1] (for a pedagogical introduction see, e.g.,
Ref. [2]). Originally stated, it predicts that a uniformly
linearly accelerated observer sees fluctuations of the
Minkowski vacuum as a thermal bath with a characteristic
temperature

kBTU ¼ ℏa
2πc

; ð1Þ

proportional to its acceleration a. Direct experimental
verification thereof is however to date still missing. The
main problem is that the Unruh temperature (1) is inversely
related to the propagation speed c of the field. Hence, very
large accelerations are required to produce a measurable
temperature for fundamental quantum fields.
Analogue (quantum) simulators enable the study of

relativistic QFT effects in well-controlled laboratory setups
[3–5]. In these analogue systems, the speed of sound
replaces the speed of light for the propagation speed of
the effective massless field describing the evolution of
perturbations in the system. For an experimental observa-
tion see, e.g., Ref. [6]. This enabled a number of first
experimental observations of fundamental effects of QFT in
curved spacetime, like, e.g., superradiant scattering and
amplification from a rotating analogue black hole (dumb
hole) [7], the analogue of the Hawking effect [8] in classical

[9–11] and quantum systems [12–14], cosmological par-
ticle production [15], inflationary scenarios [16], and the
dynamical Casimir effect [17].
In this Letter we address the question if the same can be

done for the Unruh effect. Can one “accelerate” a detector
in the vacuum state of some field and see a thermal
response according to Eq. (1)? Several theoretical proposals
can be found in the literature [18–22], though experimental
efforts to observe the analogue Unruh effect have relied on
either functional equivalence [23] or virtual observers [24].
In contrast, we propose a physically accelerated particle
detector, constructed using a localized laser beam interact-
ing with an oblate quasi-2D Bose-Einstein condensate
(BEC). Long-wavelength density perturbations in a homo-
geneous BEC are described by an effective relativistic field
theory which transduces fluctuations in the refractive index
of the medium into phase fluctuations in the laser. Using an
interferometric setup, we show that the laser, or any
continuous probing field, realizes a suitable particle detec-
tor, and demonstrate that for an accelerated circular path of
the laser-BEC interaction point, in the (Minkowski) vac-
uum of the density perturbation field, the effect of the
Unruh temperature can indeed be measured.
Circular Unruh effect with a transverse detector field.—

Bell and Leinaas [25,26] (see also Unruh [27]) showed that
circular motion with its constant radial acceleration could
also produce a spectrum which was approximately thermal.
The advantages of uniform circular motion for analogue
relativistic field theories have been previously acknowl-
edged [19]. A notable simplification that occurs for uniform
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circular motion is that the proper and coordinate time are
related by a time-independent gamma factor. We first
consider an idealized field theory, and present a new
demonstration that a relativistic field can serve as a detector
for the circular Unruh effect.
The field theory involves a two-dimensional scalar field

ϕðt; xÞ, with x ¼ ðx; yÞ, and a one-dimensional scalar
probing field ψðt; zÞ. The Lagrangian is written as

L ¼ 1

2

Z
dz

�
_ψ2ðt; zÞ − (∂zψðt; zÞ)2

�

þ 1

2

Z
dx

�
1

c2s
_ϕ2ðt; xÞ − (∇ϕðt; xÞ)2

�

− ε

Z
dxdz∂tψðt; zÞϕðt; xÞδ(x − XðtÞ)δðzÞ; ð2Þ

where cs is the propagation speed of the ϕ field, XðtÞ
parametrizes the path of interaction between the two fields,
and ε is a small coupling constant. The propagation speed
of the ψ field has been set to unity. The delta functions
δ(x − XðtÞ)δðzÞ restrict the interaction to a trajectory of the
ψ beam in the z ¼ 0 plane described by XðtÞ, such that the
effective interaction Lagrangian is

Lint ¼ −εϕ(t;XðtÞ)∂tψðt; 0Þ: ð3Þ

The equation of motion for ψ reads

∂2
tψðt; zÞ − ∂2

zψðt; zÞ ¼ εδðzÞ∂tϕ(t;XðtÞ): ð4Þ

This equation has the approximate solution

ψðt; zÞ ¼ ψ0ðt; zÞ þ
ε

2
ϕ(t − jzj;Xðt − jzjÞ); ð5Þ

which shows that the field ϕ leaks into the probing field ψ .
In other words, the interaction acts as a transducer from the
ϕ field to the ψ field. At the same time, fluctuations of ψ0

will leak into the ϕ field as a backaction.
We take the interaction trajectory to be circular with

radius R ≥ 0 and angular frequency Ω ≥ 0, such that
XðtÞ ¼ (R cosðΩtÞ; R sinðΩtÞ; 0). In the rest of this section
we consider a toy scenario in which ψ is initially prepared
in its vacuum state.
Suppose hence that prior to the interaction ϕ is in the

vacuum state j0i and the detector field ψ is in its ground
state k0⟫. First-order transitions connect the initial state
j0ik0⟫ to states of the form j1kik1K⟫, where j1ki ¼ a†kj0i
and k1K⟫ ¼ ā†Kk0⟫, with a†k and ā†K being the creation
operators in the mode expansions of ϕ and ψ , respectively.
The transition amplitude is

iε
Z

dt⟪1Kkh1kj∂tψðt; 0Þϕ(t;XðtÞ)j0ik0⟫

¼ ε
ffiffiffiffiffiffiffiffiffi
ω̃=ω

p
2ð2πÞ3=2

Z
dteiω̃te−ik·XðtÞþiωt; ð6Þ

where ω̃ ¼ K > 0 is the detector mode frequency and
ω ¼ csjkj is the ϕ mode frequency. Note from Eq. (6) that
the transition amplitude vanishes in the special case of a
static trajectory, just as for a pointlike relativistic Unruh-
DeWitt detector on an inertial trajectory [28].
Taking the squared modulus of Eq. (6), summing over all

possible final ϕ states, and using the stationarity of the
circular trajectory to factor out the (formally infinite) total
observation time, we find that the transition probability per
unit time is

ε2ω̃

2π

Z
dse−iω̃sWðsÞ; ð7Þ

where WðsÞ is the ϕ field Wightman function evaluated on
the interaction trajectory,

WðsÞ ¼ h0jϕ(s;XðsÞ)ϕ(0;Xð0Þ)j0i: ð8Þ

The transition probability per unit time has thus the same
dependence on the interaction trajectory as that of a
pointlike two-state system coupled to ϕ along the trajectory
[28]: the ψ field acts as a detector for fluctuations of the ϕ
field along the interaction trajectory. Note, however, that ω̃
here is the energy with respect to the laboratory time t,
while the normal Unruh effect context is for trajectories
satisfying the timelike condition ΩR < cs, and for energies
defined with respect to the proper time τ ¼ t=γs, where
γs ¼ ½1 − ðΩRÞ2=c2s �−1=2. This gamma factor will be crucial
when estimating the experimental feasibility for detecting
the analogue circular Unruh effect.
Lasers as local detectors of a BEC field.—In the

following, we establish the connection between the ideal-
ized field theory model, Eq. (2), and a localized laser beam
propagating in the z direction interacting with an effectively
two-dimensional BEC in the ðx; yÞ plane.
The free electromagnetic field Lagrangian in (3þ 1)

dimensions is Lem ¼ − 1
4
FμνFμν, with field tensor Fμν ¼

∂μAν − ∂νAμ and vector potential Aμ. In the Coulomb
gauge (At ¼ 0 and ∇ ·A ¼ 0), for a linearly polarized
laser propagating in the z direction, perpendicular to the
BEC plane, the Lagrangian reduces to

Lem ¼ 1

2
½∂tAðt; zÞ�2 −

1

2
½∂zAðt; zÞ�2; ð9Þ

with the speed of light set to unity. As the laser is moved,
the interaction point traces out a path XðtÞ in the ðx; yÞ
plane. We express the evolution in terms of the laboratory
time t. As before, we specialize to uniform circular
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trajectories, in which case the gamma factor γs ¼ t=τ is
constant.
The homogeneous quasi-2D BEC is described by the

Lagrangian (see, e.g., Ref. [29])

LBEC ¼ iℏΦ∂tΦ� þ ℏ2

2m
j∇Φj2 þ g2d

2
jΦj4; ð10Þ

where Φ ¼ Φðt; xÞ is the complex-valued BEC field and m
is the boson atom mass. The two-dimensional interaction
coupling constant is given by

g2D ¼
ffiffiffiffiffiffi
8π

p ℏ2as
ma⊥

; ð11Þ

where as is the s-wave scattering length, and a⊥ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω⊥

p
is the oscillator length of the transverse confine-

ment VðzÞ ¼ mω2⊥z2=2. The chemical potential μ ¼ ρ0g2D
is given in terms of the coupling constant and the average
density ρ0 ¼ N=V of N bosons in a volume V and defines
the speed of sound in the BEC cs ¼

ffiffiffiffiffiffiffiffiffi
μ=m

p
and the healing

length ξ ¼ ℏ=
ffiffiffiffiffiffiffiffiffiffiffi
2 μm

p
. The effective two-dimensional BEC

description applies to the regime μ; kBT ≪ ℏω⊥, for which
dynamics along the transverse direction is frozen. Note that
here we neglect swelling of the condensate in the z
direction, which, for the linearized equations of motion,
only causes a slight shift in the speed of sound [30].
When the laser beam passes through the BEC, the atoms

will react by forming dipoles according to their polar-
izabilities α. Assuming the laser is sufficiently detuned
from atomic resonance, α can be taken to be real and the
BEC-light interaction can be calculated within a semi-
classical model in the framework of macroscopic electro-
dynamics. In the dilute gas regime, αρ3D ≪ 1, the
Lagrangian describing the interaction is [31,32]

Lint ¼ αð∂tAÞ2jΦj2: ð12Þ

The BEC thickness Δz is assumed to be small, as is the
width of the laser beam, such that the interaction between
the laser and the BEC is pointlike. Although not explicitly
written everywhere, the fields A and Φ in this interaction
term are understood to be evaluated at z ¼ 0. The coupling
Eq. (12) can be interpreted in terms of a fluctuating index
of refraction nBEC ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ αρ3D
p

, which, within the dilute
gas approximation, can be expanded to first order in αρ3D.
The imaginary (absorptive) component of α follows from
the Kramers-Kronig relation, and will be used in the
following section to ensure the laser-BEC interaction is
nondestructive.
In order to map the system to the idealized model

Eq. (2), we write the fields Aðt; zÞ and Φðt; xÞ in terms
of perturbations about a classical background field
ansatz, such that Aðt; zÞ ¼ A0 cos ½ωLt−Kzþ ψðt; zÞ� and
Φðt; xÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ0 þ δρðt; xÞp
eiθðt;xÞ. We take the background

laser field to be a plane wave, A0 cos ðωLt − KzÞ, and
the perturbation ψðt; zÞ to be a real field that describes the
phase fluctuations of the laser. Neglecting absorption, the
amplitude of this plane wave can be taken to be constant.
The BEC field Φ is expanded in terms of the (inhomo-
geneous) phase and density perturbations [θðt; xÞ and
δρðt; xÞ, respectively] about the homogeneous mean field
density ρ0 ¼ hjΦj2i. For the remainder of the Letter, we
consider the BEC perturbations within the long wavelength
limit ℏω ≪ μ.
As shown in the Supplemental Material [33] (which

includes Refs. [34–38]), in the regime of interest, both ψ
and θ are described by the Klein-Gordon Lagrangian.
Equivalent to Eq. (2) ψ propagates at the speed of light,
while θ propagates at the speed of sound in the BEC. Upon
quantization, θ and δρ become noncommuting variables,
though only the canonical momentum δρ ¼ ðℏ=g2DÞ∂tθ
couples to the laser fluctuations [cf. Eq. (12)]. As the laser
is operated at a frequency ωL, which is much higher than
the frequencies at which the BEC is probed (i.e., μ ≪ ℏωL),
we can time average over the cycle period 2π=ωL, which
leads to the simplified interaction Lagrangian

Lint ¼ αA2
0ωLδρ(t;XðtÞ)∂tψðt; 0Þ: ð13Þ

Here we neglected the constant time-independent phase
shift caused by the BEC bulk density, ∼ρ0∂tψ , for
simplicity and the zeroth order Stark potential can be
canceled by using two laser beams with opposite detuning
from the atomic resonance (see the following section and
Supplemental Material [33] for details).
Since both fields, θ and δρ, have the same spacetime

dependence and the interaction Eq. (13) is of the desired
form Eq. (3) our system is equivalent to the idealized field
theory model, however, with theWightman function Eq. (8)
evaluated for the canonical momentum, i.e., ϕ≡ δρ. Before
interaction with the BEC, the quantized field ψ is simply
electromagnetic noise (shot noise and phase noise). The
interaction (13) generates correlations, as the laser phase
samples quantum fluctuations in the BEC density along the
interaction trajectory. To qualify as an observation of the
analogue circular Unruh effect, one must be able to identify
the characteristic trajectory dependence (7) from measure-
ments made on the transmitted laser field. In the following,
we estimate the feasibility of making such an observation.
Experimental setup.—We will now describe and analyze

a schematic interferometric setup (Fig. 1) that will allow us
to measure the fluctuations in a 2D quantum field, as
discussed above. It is thereby crucial to reduce measure-
ment-induced disturbances to the (quantum) minimum: a
laser beam traversing a BEC creates a dipole potential,
which will exert mechanical forces on the atoms. This can
be counteracted by shining a second laser with opposite
detuning along the identical path. The mechanical effects
of the detector can then be compensated up to the (shot
noise) intensity fluctuations of the two beams. Such an
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arrangement (Fig. 1) has in addition many other advan-
tages: (i) the two laser beams experience opposite phase
shifts (due to the opposite detuning from the atomic
resonance) which will allow better sensitivity; (ii) the
two beams form an interferometer when a photodetector
measures the beating between the two frequencies. The
desired phase shift imprinted by the BEC quantum vacuum
fluctuations can then be measured as a phase shift in the
beating between the two opposite detuned laser frequen-
cies; (iii) the light beams go through the same path, hence
any common disturbance will cancel when measuring their
relative phase shift.
A deflector will then allow the beams (our detector) to

interact with the BEC along a circular trajectory in the BEC
plane. Continuous measurement of the phase quadrature
then proceeds just as in heterodyne detection. The optimal
detection regime can be obtained by constraining the
photon absorption rate by BEC atoms, and optimizing
the resulting signal-to-noise ratio (SNR) [39,40].
In our system, the signal is characterized by the power

spectrum of the phase difference between the two side-
bands. It follows from the solution (5) that the power
spectrum for ψ contains a contribution from the response
function obtained by Fourier transforming the BEC field
Wightman function (8) along the interaction trajectory.
As long as the trajectory corresponds to a stationary
worldline, the response function will be stationary, and
can be compared with the response function for an Unruh-
DeWitt detector.
We use the Unruh temperature given by Eq. (14) to

estimate the fluctuations sampled by the laser field as it
interacts with the BEC. For later convenience, we define
the dimensionless inverse analogue Unruh temperature of
the circular trajectory as

β̃ ¼ μ

kBTU
¼ 2πc2s

γsv2
μ

ℏΩR
; ð14Þ

where ΩR ¼ cs=R. Formula (14) is obtained from Eq. (1)
by using for a the circular motion proper acceleration in the
effective BEC Minkowski geometry and adjusting the
energies to be defined with respect to the laboratory time,
as is appropriate for the BEC. The actual effective tempera-
ture for circular motion includes an energy-dependent
factor of order unity [25,27,41], which we shall suppress
here; a thorough analysis of this order unity factor in
(2þ 1) and (3þ 1) dimensions is given in our companion
paper [42].
The resolution required to distinguish Unruh thermal

from vacuum BEC fluctuations in the laser phase noise
spectrum defines the scale of our signal; as shown in the
Supplemental Material [33], the signal-to-noise ratio in the
phononic regime ℏω ≪ μ for our proposed experiment is
given by

ΔSN ≈
ffiffiffiffiffiffiffi
NB
2

r
χẼ2F ðβ̃ ẼÞe−ðr0=ξÞ2Ẽ2=2; ð15Þ

where Ẽ ¼ ℏω=μ is the BEC mode energy ℏω in units of
the chemical potential, F ðxÞ ¼ ðex − 1Þ−1 is the Bose-
Einstein distribution function, N is the number of experi-
mental realizations, B is the resolution bandwidth in units
of the resolution bandwidth of the measurement Bm, and

χ ¼ 3π2

2

�
Γsce−D̃ρ0πr20

2ωL

��
λ0
λL

�
3
�
mc2

ℏωL

�
; ð16Þ

where Γsc is the photon scattering rate, D̃ is the off-
resonance optical density, and r0 is the beam width of the
Gaussian laser beam. The exponential in Eq. (15) accounts
for the averaging of fluctuations across the laser beam
profile, leading to an additional suppression at high
frequencies.
Bounds on experimental parameters can readily be

inferred from Eqs. (14)–(16). First, continuous nondestruc-
tive measurement requires Γsc ≪ 1, limiting the power,
detuning, and beam width of the laser beams. Second,
μ=ℏ > Bm in order to have sufficient frequency resolution
within the phononic (linearly dispersive) band. The meas-
urement resolution bandwidth Bm is limited by the lifetime
of the BEC due to, e.g., technical heating or three-body
collisions, and/or backaction of the laser. In particular, due
to the finite size of the BEC, disturbances caused by the
laser can reflect back from the edges, obscuring the desired
behavior [43]. Third, sufficiently high Unruh temperatures
require ℏΩR ≈ μ, for which the observer radius R has to be
of the order of the healing length ξ of the BEC. Combined,
these requirements limit the laser parameters, the chemical
potential μ, and the dimensionless inverse Unruh temper-
ature β̃. Note that heavy atomic species are favored since
the SNR increases with the atomic mass m. Finally the
signal and SNR can be maximized by increasing the
density ρ0 for which the scattering length as must be

FIG. 1. Simplified schematic of our proposed experimental
arrangement. An initial beam sharply peaked at frequency ωL is
modulated to create sidebands peaked at a pair of frequencies
ωL � ωM that are oppositely detuned from an atomic resonance.
The central band is then filtered out. The two remaining sideband
beams traverse the same path, intersecting a 2D BEC along a
circular trajectory in the BEC plane. Because of the opposite
detuning, the side beams pick up opposite phase shifts when
interacting with the BEC.
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decreased accordingly as to keep μ ¼ const. The signal to
noise ratio is shown in Fig. 2 for B ¼ 1, and hence
independent of the measurement bandwidth resolution.
Note that for the results presented in Fig. 2 we, in particular,
include the multilevel structure of atomic resonances in
133Cs (see Supplemental Material [33] for details) which
leads to a slight shift of the SNR predictions of order 1 from
the theoretical prediction Eqs. (15) and (17).
A lower bound on the observability can be given by

considering the signal to noise ratio within the whole
phononic band, given by

ΔSN ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nμ

4πℏBm

s
χ

β̃3
Iðβ̃Þ: ð17Þ

The integral Iðβ̃Þ is of order unity and explicitly given in
the Supplemental Material [33]. For Bm ¼ 1 Hz and the
parameters presented in Fig. 2 we get ΔSN ≈ 5.8.
Conclusion.—We presented a new measurement scheme

for the circular Unruh effect using a continuous probing
field as a particle detector. The idealized model was then
found to apply to the description of interacting fluctuations
in a laser-coupled BEC system, for which preliminary
estimates indicate that the proposed experimental imple-
mentation of the analogue cricular Unruh effect is within

reach of current state-of-the-art cold-atom experiments.
The proposed detection scheme is more generally useful for
the field of quantum sensitive detectors for quantum fluids.
The continuous measurement of fluctuations opens the
door to new ways to probe quantum features not just of
BECs, but of other laser-coupled systems such as super-
fluid helium. The backaction inherent to continuous mea-
surements has not been addressed in this work; further
investigation is required to determine how the effects of
such backaction can be minimized. If necessary, the
sensitivity could be enhanced by using a squeezed input
state [44], as has been implemented by LIGO [45].
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Ẽ → 0, due to the suppression of density perturbations δρ at
long wavelength. The signal to noise ratio within the whole
phononic band (below the dashed black line) given by Eq. (17)
for Bm ¼ 1 Hz is ΔSN ≈ 5.8.

PHYSICAL REVIEW LETTERS 125, 213603 (2020)

213603-5

https://doi.org/10.1103/PhysRevD.14.870


R. Glauber, W. P. Schleich, and W. G. Unruh, Int. J. Mod.
Phys. A 34, 1941005 (2019).

[3] C. Barceló, S. Liberati, and M. Visser, Living Rev.
Relativity 14, 3 (2011).

[4] G. E. Volovik, The Universe in a Helium Droplet
(Oxford University Press on Demand, New York, 2003),
Vol. 117.

[5] P. O. Fedichev and U. R. Fischer, Phys. Rev. Lett. 91,
240407 (2003).

[6] T. Langen, R. Geiger, M. Kuhnert, B. Rauer, and J.
Schmiedmayer, Nat. Phys. 9, 640 (2013).

[7] T. Torres, S. Patrick, A. Coutant, M. Richartz, E. W.
Tedford, and S. Weinfurtner, Nat. Phys. 13, 833 (2017).

[8] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
[9] S. Weinfurtner, E. W. Tedford, M. C. J. Penrice, W. G.

Unruh, and G. A. Lawrence, Phys. Rev. Lett. 106,
021302 (2011).
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