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The rovibrational intervals of the 4Heþ2 molecular ion in its X 2Σþ
u ground electronic state are

computed by including the nonadiabatic, relativistic, and leading-order quantum-electrodynamics
corrections. Good agreement of theory and experiment is observed for the rotational excitation series
of the vibrational ground state and the fundamental vibration. The lowest-energy rotational interval is
computed to be 70.937 69ð10Þ cm−1 in agreement with the most recently reported experimental value,
70.937 589ð23Þð60Þsys cm−1 [L. Semeria et al., Phys. Rev. Lett. 124, 213001 (2020)].
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Few-electron molecules serve as benchmark systems for
experimental and theoretical molecular physics and spec-
troscopy. Recent experimental and theoretical progress of
Hþ

2 , H2, and their isotopologues [1–3] is connected to
proposals to test fundamental interactions [4,5] and to
refine fundamental physical constants [6,7] using mole-
cular spectroscopy.
This Letter joins this direction and focuses on the five-

particle 4Heþ2 molecular ion in its ground electronic state
(X 2Σþ

u ). In addition to testing fundamental aspects, pre-
cision spectroscopy of 4Heþ2 in combination with accurate
ab initio computations has been proposed as an alternative
way to determine the polarizability of the helium atom
[8,9]. Precise knowledge of this quantity is necessary for a
possible new definition of the pressure standard based on
counting the number density of a sample of helium gas.
There has been experimental progress in the precision
spectroscopy of 4Heþ2 , including the measurement of the
spin-rotational fine structure [10] and the rotational and
rovibrational intervals [9,11–13].
This Letter is concerned with the rotational and rovibra-

tional intervals for which disagreement was observed
between the experimental results [9,11–13] and (lower-
level) theoretical work [14,15]. The experimental “data-
set” includes the rotational intervals for the vibrational
ground state ð0; NþÞ–ð0; 1ÞðNþ ¼ 3;…; 19Þ [12] and the
rovibrational intervals connecting the ground and the first
excited vibrational state ð1; NþÞ–ð0; 1ÞðNþ ¼ 1;…; 13Þ
[13] with experimental uncertainties of 0.0008 and
0.0012 cm−1, respectively. The lowest-energy rotational
interval is known more precisely to be 70.937 589ð23Þ �
0.000 060sys cm−1 [9].
The most precise theoretical results for molecules can be

obtained by including all electrons and nuclei in the
nonrelativistic quantum mechanical treatment [2,16–20].

All bound rovibrational and several resonance states of Hþ
2

treated as a three-particle system have been converged with
an uncertainty in their nonrelativistic energy better than
10−7 cm−1 [17], and a similar precision has been achieved
for selected states of H2 treated as a four-particle system
[21]. The fundamental vibration energy has been computed
for 3He4Heþ treated as a five-particle system [22], but the
convergence error of this energy appears to be at least 2
orders of magnitude larger than the uncertainty of the
currently available experimental value of the parent
isotopologue.
To ensure a direct comparison with the experimental

dataset, which includes high rotational angular momentum
quantum numbers up to Nþ ¼ 19 and a tight control of the
numerical (convergence) error, we start out from the Born–
Oppenheimer approximation and account for nonadiabatic
corrections by perturbation theory [23–27]. The experi-
mental dataset belongs to the ground (X 2Σþ

u ) electronic
state that is well-separated from the electronically excited
states over the relevant nuclear configuration range, hence
we may expect nonadiabatic perturbation theory to per-
form well.
There is some evidence of the increasing importance of

the nonadiabatic effects with a rotational excitation of 4Heþ2
[12,15], but the nonadiabatic nonrelativistic computation of
Ref. [15] was only partially able to account for the
discrepancy between theory and experiment for the rota-
tional series. Furthermore, the nonadiabatic corrections
(without relativistic and QED effects) increased the
deviation of theory and experiment for the fundamental
vibration energy [13,15] in comparison to the adiabatic
result [14].
This Letter reports a more complete theoretical treatment

for the rotational-vibrational intervals of 4Heþ2 (X 2Σþ
u Þ,

and we account for the nonadiabatic, relativistic and
leading-order QED corrections. The error balance of the
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computational procedure is analyzed and further contribu-
tions, neglected in this Letter, are discussed.
First, we solved the electronic Schrödinger equation for

n ¼ 3 electrons and N ¼ 2 fixed nuclei for the ϕ0 ground
electronic state (in Hartree atomic units)

Helϕ0ðr;RÞ ¼ Eel;0ðRÞϕ0ðr;RÞ with

Hel ¼ −
Xn

i¼1

1

2me
Δri þ

Xn

i¼1

Xn

j>i

1

jri − rjj

−Xn

i¼1

XN

j¼1

Zj

jri − Rjj
ð1Þ

using floating explicitly correlated Gaussian basis func-
tions and the QUANTEN computer program [19,27].
The rovibrational Hamiltonian corresponding to the

ground electronic (“0”th) state and accounting for non-
adiabatic coupling up to the second-order terms in ε ¼
ðme=mnucÞð1=2Þ is [23–27]

Hð2Þ
0 ¼

X3N

i;j¼1

1

2
ð−iε∂Ri

Þðδij−ε2MijÞð−iε∂Ri
ÞþEel;0þε2U0;

ð2Þ

where

U ¼ 1

2

X3N

i¼1

h∂Ri
ϕ0j∂Ri

ϕ0i ð3Þ

and

Mij ¼ 2h∂Rj
ϕ0jP⊥

0 ðĤe − Eel;0Þ−1P⊥
0 j∂Ri

ϕ0i;
P⊥
0 ¼ 1 − jϕ0ihϕ0j ð4Þ

are the diagonal Born–Oppenheimer correction (DBOC)
and the mass-correction tensor, respectively.
Rotational-vibrational states of Heþ2 are computed using

this Hamiltonian written in spherical polar coordinates,
ðρ; θ;ϕÞ, which leads to the solution of the radial equation
[15,27]

�
−

∂
∂ρ

1
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�
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Mρ
ρ

mnuc

� ∂
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�
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¼ENþχNþðρÞ: ð5Þ

Mρ
ρ and MΩ

Ω are the vibrational and rotational mass-
correction functions corresponding to the curvilinear rep-
resentation [27]. The equation is solved for each Nþ

rotational angular momentum quantum number using a
discrete variable representation [28].
We have computed the EelðρÞ potential energy curve

over the ρ ∈ ½0.992; 3.5� bohr interval of the internuclear
separation that is necessary to converge the rovibrational
states considered in this Letter. As a result, the electronic
energy at the equilibrium structure (ρeq ¼ 2.042 bohr) is
within the 0.2 μEh error bar of the complete basis set limit
estimate by Cencek et al. [29]. The newly computed part of
the potential energy curve (PEC) improves the earlier PEC
[14] by 0.012 cm−1 (59 nEh) at the equilibrium structure
and by 0.034 cm−1 (155 nEh) at ρ ¼ 3.5 bohr.
Table I collects the calculated change in the energy

intervals using the newly computed and the earlier curves.
As a (conservative) estimate for the remaining error due to
uncertainties of the PEC, we used the half of the observed
change. We think that the uncertainty of the rovibrational
intervals due to the uncertainty of the PEC is within a
few nEh.
The relativistic effects on the electronic motion are

accounted for by incrementing the Eel þ U adiabatic
potential energy curve with the expectation value of the
spin-independent part of the Breit–Pauli Hamiltonian,
including the mass-velocity term, the Darwin terms, and
the spin-spin coupling, as well as the orbit-orbit term [34]:

Eð2Þ
rel ¼ α2hϕ0jHð2Þ

rel jϕ0i; ð6Þ

where

Hð2Þ
rel ¼ −

1

8

Xn
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2
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XN
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ZaδðriaÞ þ π
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Xn

j>i
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−
1

2

Xn

i¼1

Xn

j>i

�
1

rij
pi · pj þ

1

r3ij
rijðrij · piÞ · pj

�
: ð7Þ

In order to assess the uncertainty of the computations
(Table I), we evaluated the expectation values “directly” for
the p4i and πδðrixÞ ¼ 1

4
∇2

rixð1=rixÞðx ¼ j or aÞ operators
[31] and by using the integral-transformation technique
[30]. Since we have accurate electronic wave functions, we
expect that the two routes give very similar rovibrational
intervals. Still, the results obtained with the integral-trans-
formation techniques are expected to have a lower
uncertainty.
The spin-independent α3-order QED correction to the

adiabatic potential energy of a diatomic molecule is [34–36]

Eð3Þ
rad¼α3

4

3

Xn
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where

βel ¼
hϕ0jJðH0 − E0Þ ln (2ðH0 − E0Þ=Eh)Jϕ0i

hϕ0j½J; ½H0; J��=2ϕ0i
ð9Þ

is the (nonrelativistic) Bethe logarithm, J ¼ −
P

n
i¼1 pi is the

electric current density. A precise evaluation of βel is a major
numerical task, and values can be obtained if the wave
function satisfies the electron-nucleus cusp condition
[37,38]. The Qel term [39,40],

Qel ¼ lim
ϵ→0

hϕ0j
�
Θðrij − ϵÞ

4πr3ij
þ ðln ϵþ γEÞδðrijÞ

�
ϕ0i; ð10Þ

has been evaluated for Heþ2 using the integral transformation
technique [30] and the floating explicitly correlated
Gaussian basis representation.
Concerning the Bethe logarithm, we start with a few

numerical observations. Table II presents a compilation of
the Bethe logarithm values for the lightest atoms and ions
[41–45] to highlight the weak dependence of βel on the
number of electrons but its strong dependence on the
nuclear charge Z. A similar observation applies for
molecules described within the adiabatic approximation.
Table III shows the value of βelðρÞ in the ground electronic
state of the one-electron Hþ

2 molecular ion and the
two-electron H2 molecule for selected values of the ρ
internuclear distance. The βelðρÞ values of Hþ

2 and H2 differ
in the 4th and 5th significant digit.

These observations suggest that the Bethe logarithm of
Heþ2 (X 2Σþ

u ) can be well approximated with the Bethe
logarithm of the ground electronic state of He3þ2 . The Bethe
logarithm for this one-electron two-center problem was
computed using the procedure of Ref. [38]. We estimate the
error introduced by the βel;Heþ

2
ðρÞ ≈ βel;He3þ

2
ðρÞ approxima-

tion, which we use in this Letter, to be less than 1% over the
relevant internuclear range ρ ∈ ½0.9; 3.5� bohr (Table I).
The effect of higher-order QED corrections is estimated

as in Refs. [33,46]:

Eð4Þ
est ¼ α4π

�
427

96
− 2 ln 2

�X3

i¼1

X2

a¼1

ZaδðriaÞ: ð11Þ

Table I collects the numerical uncertainty attributed to
the rovibrational intervals within the described computa-
tional procedure. The present theoretical framework rests

TABLE II. Dependence of the βel Bethe logarithm on the Z
nuclear charge and on the n number of electrons in the
ground state of atoms (ions). These data are compiled from
Refs. [41–45].

H He Li

βel [Eh] Z ¼ 1 Z ¼ 2 Z ¼ 3

n ¼ 1 2.984 128 4.370 422 5.181 353
n ¼ 2 � � � 4.370 160 5.179 849
n ¼ 3 � � � � � � 5.178 28

TABLE I. Error balance of the rotational and (ro)vibrational intervals, in cm−1, computed in this Letter. The numerical uncertainty of
the computed intervals is estimated based on the difference in the intervals obtained with two different datasets.

Rotational intervals (Ro)vibrational intervals

(0,3)–(0,1) RMSDrot (1,0)–(0,0) RMSDrv

Numerical uncertainty estimate for the computed terms (�σ):
PECa −0.000 002 0.000 15 −0.003 28* 0.003 37*

DBOCa −0.000 010 0.000 18 −0.000 16 0.000 19
Nadmb −0.000 018 0.000 36 −0.000 13 0.000 24
Relativisticc −0.000 012 0.000 18 0.001 09 0.000 84
βel (�1%)d −0.000 032 0.000 22 0.000 12 0.000 63
�σe �0.000 073 �0.001 09 �0.003 14 �0.003 59
Estimate for neglected theoretical terms (Δest):
hQEDf −0.000 008 −0.000 15 −0.000 13 −0.000 25
Nad&Relg −0.000 001 −0.000 02 −0.000 01 −0.000 03
Fsnh −0.000 001 −0.000 02 −0.000 02 −0.000 04
Δest −0.000 010 −0.000 19 −0.000 16 −0.000 31
aPEC (DBOC) curve from Ref. [14] and from this Letter.
bNonadiabatic mass computed in Ref. [15] and in this Letter.
cRelativistic corrections obtained with the integral transformation technique [30] and the “direct” method [31].
dEffect of a hypothetical �1% change in βel.
eσ is obtained as the sum of the absolute value of the terms.
fThe effect of the neglected higher-order QED corrections is estimated with the dominant term of Eð4Þ, Eq. (11).
gEstimate for the coupling of the nonadiabatic and relativistic corrections (see also Ref. [32]).
hEstimate for the effect of the finite nuclear size [33].
*We use half of this value for the uncertainty estimate of the present results.
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on two small parameters, the square root of the electron-to-
nucleus mass ratio ε and the fine-structure constant α. The
electron-nucleus (nonadiabatic) coupling is accounted for
up to ε2 order and higher-order contributions are neglected.
Relativistic (α2) and leading-order QED (α3) corrections
have been included, and an estimate for the α4-order terms,
Eq. (11), was also computed. We estimate the uncertainty
of the rotational-vibrational intervals due to the missing
part of α4 and higher-order QED corrections by the (small)
effect of the α4 estimate (hQED in Table I). We have
neglected the nonadiabatic-relativistic (and QED) coupling
in this Letter that was found to be important in the H2

molecule [32]. An elaborate theoretical and computational
study of this coupling for the present system will require
further work, but we give an estimate for its magnitude
(“Nad&Rel” in Table I). The estimated effect of the finite

nuclear size is also shown in Table I. We used the CODATA18

recommendations for the physical constants and conversion
factors throughout the computations.
The computed rotational and (ro)vibrational intervals

and corrections are listed in Tables IV and V. Figure 1
visualizes the results and reveals a fine interplay of the
various corrections (The potential energy points and all
corrections computed and used in this Letter are deposited
in the Supplemental Material [47]).
The adiabatic description (“Ad”) with the “empirical

mass correction” using mrot ¼ mvib ¼ mα þ 1.5me [14]
reproduces the fundamental vibration energy almost per-
fectly, while its deviation from experiment increases with
increasing Nþ. By including the rigorous nonadiabatic
masses for the rotational and vibrational degrees of freedom
[15], the error is reduced for the rotational excitations, but

TABLE III. Comparison of the βelðρÞ Bethe logarithm for selected ρ internuclear distances of the one-electron Hþ
2 molecular ion [38]

and the two-electron H2 molecule [33] in the adiabatic approximation and in their ground electronic states.

ρ [bohr] 0.1 0.2 0.4 0.8 1.5 5.0

βelðρÞ (Hþ
2 ) [Eh] [38] 3.763 208 3.525 245 3.284 256 3.100 639 3.023 053 2.995 328

βelðρÞ (H2) [Eh] [33] 3.765 3.526 3.279 3.093 31 3.013 96 2.985 34

TABLE IV. Rotational excitation energies of 4Heþ2 (X 2Σþ
u ) in the vibrational ground state. ν̃0: Born–Oppenheimer description with

nuclear masses. δν̃DBOC: The diagonal Born–Oppenheimer correction. δν̃mveff : Empirical mass mrot ¼ mvib ¼ mα þ 1.5me. δν̃Nad:
Rigorous nonadiabatic mass. δν̃Rel: Relativistic correction. δν̃QED: Leading-order QED correction. δν̃hQED: Estimate for higher-order
QED corrections. For the derivation of the error estimates to the computed energies, see Table I.

ν̃ð0; NþÞ − ν̃ð0; 1Þ [cm−1]

Nþ: 3 5 7 9

ν̃0 70.960 61 198.427 8 381.954 3 620.898 1
þδν̃DBOC −0.010 28 −0.028 7 −0.055 0 −0.089 1
þδν̃mveff −0.014 46 −0.040 4 −0.077 6 −0.125 8
þδν̃mvNad 0.000 45 0.001 3 0.002 6 0.004 4
þδν̃Rel 0.002 16 0.006 0 0.011 5 0.018 7
þδν̃QED −0.00078 −0.002 2 −0.004 2 −0.006 8
þδν̃hQED 0.000 01 0.000 0 0.000 0 −0.0001
ν̃calc 70.937 68(10) 198.363 8(13) 381.831 6(13) 620.699 4(13)
ν̃expt [9,12] 70.937 589ð23Þð60Þsys 198.364 7(8) 381.834 6(8) 620.702 1(9)
ν̃expt − ν̃calc −0.00010 0.000 9 0.003 0 0.002 7

ν̃ð0; NþÞ − ν̃ð0; 1Þ [cm−1]

Nþ: 11 13 15 17 19

ν̃0 914.426 5 1261.521 5 1660.986 0 2111.450 8 2611.382 6
þδν̃DBOC −0.130 4 −0.178 8 −0.233 6 −0.294 4 −0.360 5
þδν̃mveff −0.184 7 −0.253 8 −0.332 8 −0.420 9 −0.517 7
þδν̃mvNad 0.006 9 0.010 1 0.014 1 0.019 1 0.025 2
þδν̃Rel 0.027 3 0.037 3 0.048 6 0.061 1 0.074 5
þδν̃QED −0.010 0 −0.013 8 −0.018 1 −0.023 0 −0.028 3
þδν̃hQED −0.0001 −0.0001 −0.0002 −0.0002 −0.0003
ν̃calc 914.135 4(13) 1261.122 3(13) 1660.464 0(13) 2110.792 5(13) 2610.575 5(15)
ν̃expt [12] 914.136 7(8) 1261.124 2(8) 1660.462 7(9) 2110.793 2(9) 2610.574 4(9)
ν̃expt − ν̃calc 0.001 3 0.001 9 −0.001 3 0.000 7 −0.001 1
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the fundamental vibration energy shows a large deviation
from experiment. Adding the relativistic corrections to this
nonadiabatic model reduces the deviation by a factor of two
for the fundamental vibration, but it “overcorrects” the
rotational excitation energies. By including also the lead-
ing-order QED corrections in the theoretical treatment both
the fundamental vibration energy, the rotational and the
rovibrational excitation energies come in agreement with
experiment with root-mean-squared deviations (RMSDs)
of 0.001 7 and 0.0019 cm−1, respectively. The experimen-
tal uncertainties of the rotational and rovibrational series is
slightly smaller than these values [12,13]; they are 0.000 8
and 0.00012 cm−1, respectively. The lowest-energy rota-
tional interval, (0,3)–(0,1), has been recently measured
more precisely, 70.937 589ð23Þ � 0.000 06sys [9], and our
theoretical value for this interval is 70.937 69ð10Þ cm−1.
For the fundamental vibration, our computational result is
1628.380 9ð33Þ cm−1, which is in agreement with its value
derived from experiments, 1628.383 2ð12Þ cm−1 [13].
All the rovibrational intervals (Table V) are in agreement

with the experimental results within the given uncertainties,
although the computational results have almost 3 times
larger uncertainties than the experimental ones. We observe
some discrepancies for the rotational intervals with inter-
mediate Nþ values (especially, Nþ ¼ 7, 9 and 13). We note
that the pure rotational intervals have a smaller uncertainty

than the rovibrational ones, since they were much less
affected by the PEC improvement (Table I).
We finish the discussion with observations regarding the

interplay of the computed corrections (Tables IV and V).
First, we point out that δν̃mveff and δν̃mvNad together
account for the nonadiabatic mass effect. δν̃mveff is a
simple, intuitive, constant mass model (mrot ¼ mvib ¼
mα þ 1.5me), and δν̃mvNad labels the value, which corrects
this empirical model to arrive at the rigorous second-order
nonadiabatic result. It is interesting to observe, at least for
the present example, that δν̃mvNad has the same order of
magnitude but opposite sign as the leading-order QED
correction δν̃QED. The interplay of the corrections changes
for the different types of motions, i.e., the relativistic
correction has a different sign for the rotational and for
the vibrational excitation, whereas the QED contribution is
positive in both cases. This interplay of the higher-order
correction terms—which we explicitly compute in this
Letter—had resulted in cancellation of errors in the lower-
order calculations [14] and a seemingly good agreement
with the experimental result [13] for this interval.
Rotational and (ro)vibrational intervals have been reported

for the three-electron 4Heþ2 (X 2Σþ
u ) molecular ion on a newly

computed potential energy curve with nonadiabatic, relativ-
istic, and QED corrections. The computed rotational-vibra-
tional intervals are in good agreement with recent precision

TABLE V. Rovibrational excitation energies of 4Heþ2 (X 2Σþ
u ) between the vibrational ground and first excited state. See also the

caption to Table IV.

ν̃ðv; NþÞ00 − ν̃ðv; NþÞ0 [cm−1]

ðv; NþÞ00–ðv;NþÞ0: (1,0)–(0,0) (1,1)–(0,1) (1,3)–(0,1)
ν̃0 1628.560 0 1628.108 1 1696.808 9
δν̃DBOC −0.022 3 −0.022 2 −0.032 0
δν̃mveff −0.160 2 −0.160 1 −0.173 9
δν̃mvNad 0.025 8 0.025 7 0.025 9
δν̃Rel −0.010 2 −0.010 3 −0.008 3
δν̃QED −0.012 0 −0.012 0 −0.012 8
δν̃hQED −0.0001 −0.0001 −0.0001
ν̃calc ¼ ν̃0 þ

P
δν̃ 1628.380 9(33) 1627.929 1(39) 1696.607 7(39)

ν̃expt [13] 1628.383 2(12) 1627.931 8(12) 1696.609 6(12)
ν̃expt − ν̃calc 0.002 3 0.002 7 0.001 9

ν̃ðv; NþÞ00 − ν̃ðv; NþÞ0 [cm−1]

ðv; NþÞ00–ðv;NþÞ0: (1,7)–(0,1) (1,11)–(0,1) (1,13)–(0,1)
ν̃0 1997.857 8 2513.146 5 2848.931 6
δν̃DBOC −0.074 4 −0.145 9 −0.191 6
δν̃mveff −0.233 9 −0.335 7 −0.401 3
δν̃mvNad 0.026 9 0.029 3 0.031 2
δν̃Rel 0.000 2 0.014 3 0.023 3
δν̃QED −0.016 1 −0.021 6 −0.025 2
δν̃hQED −0.0002 −0.0002 −0.0003
ν̃calc ¼ ν̃0 þ

P
δν̃ 1997.560 4(39) 2512.686 7(39) 2848.367 8(39)

ν̃expt [13] 1997.563 3(12) 2512.687 1(12) 2848.369 0(12)
ν̃expt − ν̃calc 0.002 9 0.000 4 0.001 2
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spectroscopy measurements. Further developments, most
importantly, a detailed study of the relativistic-nonadiabatic
coupling and the extension of the potential energy curve with
parts-per-billion uncertainty over large internuclear distan-
ces, will challenge precision spectroscopy experiments and
contribute to the establishment of primary pressure
standards.
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