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The OðD;DÞ covariant generalized metric, postulated as a truly fundamental variable, can describe
novel geometries where the notion of Riemannian metric ceases to exist. Here we quantize a closed string
upon such backgrounds and identify flat, anomaly free, non-Riemannian string vacua in the familiar critical
dimension, D ¼ 26 (or D ¼ 10). Remarkably, the whole Becchi-Rouet-Stora-Tyutin closed string
spectrum is restricted to just one level with no tachyon, and matches the linearized equations of motion
of double field theory. Taken as an internal space, our non-Riemannian vacua may open up novel avenues
alternative to traditional string compactification.
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Motivation: Absence of tachyon kinetic term in double
field theory.—Ever since the adoption of Riemannian
geometry into the formulation of general relativity,
the metric gμν has been privileged to be the fundamental
variable that provides a concrete mathematical tool to
address the notion of spacetime. In particular, the “flat”
spacetime where the gravitational effect is negligible
is simply given by a constant metric of Minkowskian
signature. Needless to say, the standard model upon
this background is arguably the best tested theory.
The flat Minkowskian spacetime is famously known to

be unstable in bosonic string theory, as both the open and
closed string spectra contain a negative mass-squared
tachyon. Open string tachyon means the instability of a
D-brane. Its tachyon potential has a local minimum which
corresponds to a closed string vacuum without any D-brane
[1–5]. Yet, for the closed string tachyon, little is known
except the effective description,
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In this Letter, we construct a novel bosonic closed string
theory with a finite spectrum free of tachyon, by going
beyond the Riemannian paradigm. Our working hypoth-
esis, motivated by T duality, is to view an OðD;DÞ

invariant metric, JMN , and an OðD;DÞ covariant gener-
alized metric,HMN , as fundamental entities (instead of gμν).
The former is put in an off-block diagonal form,

JMN ¼ ð 01 1
0 Þ, and, with its inverse, lowers and raises

the OðD;DÞ indices, capital Roman M;N ¼ 1; 2;…; 2D.
The latter then satisfies twofold defining properties:

HMN ¼ HNM; HM
KHN

LJ KL ¼ JMN: ð2Þ
A famous parametrization reads [6]

HMN ¼
 

gμν −gμσBσλ

Bκρgρν gκλ − BκρgρσBσλ

!
; ð3Þ

which contains gμν and a skew-symmetric B field, corre-
sponding to a well-known coset, OðD;DÞ=½Oð1; D − 1Þ ×
OðD − 1; 1Þ� for Minkowskian signature. Over the last
three decades, this has been a cornerstone for the develop-
ments of OðD;DÞ symmetry manifest formulations of
worldsheet string theory [7–14] and also target spacetime
effective descriptions [15–20]. They go under the
name doubled string or double field theory (DFT),
as the spacetime coordinates are formally doubled,
xμ → xM ¼ ðx̃μ; xνÞ.
With Eq. (3), the closed string effective action (1) can be

reformulated as a DFT coupled to the tachyon,Z
e−2d

�
Sð0Þ −

2ðD − 26Þ
3α0

−HMN∂MT∂NT

þ 4

α0
T2 þOðT3Þ

�
: ð4Þ

Here d is the OðD;DÞ singlet DFT dilaton related to the
conventional dilaton through e−2d ¼ ffiffiffiffiffiffi−gp

e−2ϕ, and Sð0Þ
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denotes the scalar curvature in DFT which can be spelled
out explicitly in terms of d, HMN , and JMN [20]:

Sð0Þ ¼
1

8
HMN∂MHKL∂NHKL þ 1

2
HMN∂KHML∂LHNK

− ∂M∂NHMN þ 4∂MðHMN∂NdÞ − 4HMN∂Md∂Nd:

The so-called section condition should be imposed on the
doubled coordinates, ∂M ¼ ð∂̃μ; ∂νÞ,

∂M∂M ¼ ∂μ∂̃μ þ ∂̃μ∂μ ≡ 0; ð5Þ

such that all quantities haveD-dimensional halved depend-
ence. After solving the section condition by letting ∂̃μ ≡ 0
and assuming the Riemannian parametrization (3), the DFT
action (4) reduces to Eq. (1).
Crucially, Eq. (3) is not the most general solution to the

defining relations (2). It only becomes so if the upper left
D ×D block, i.e.,Hμν, is invertible. DFTworks perfectly fine
with any generalized metric that satisfies Eq. (2). In particular,
the D ×D block can be degenerate, hence non-Riemannian
by nature [21–27] (see also Refs. [28–33] for supersymmetric
or exceptional examples). The most general parametrizations
of a generalized metric have been classified by two non-
negative integers, ðn; n̄Þ, which set dimðkerHμνÞ ¼ nþ n̄,
and render string chiral and antichiral over the n and n̄
directions, respectively [23]; see also Eq. (13) later. The
Riemannian geometry of Eq. (3) is of (0,0) type, and
nonrelativistic or ultrarelativistic strings [34–40] belong to
(1,1) or other non-Riemannian types [22,23,25,32].
Postulating fJMN;HMN; dg as the only geometric

quantities, one can uniquely identify a covariant derivative,
∇M [41,42], and then construct the scalar curvature, Sð0Þ, as
well as “Einstein” tensor, GMN , which is off-shell con-
served, ∇MGMN ¼ 0 [43]. This is all analogous to general
relativity, though there seems no four-index Riemann
tensor [44]. Using them, one can concisely express all
the equations of motion of the DFT action (4):

HMN∇M∇NT þ 4

α0
T þOðT2Þ ¼ 0; GMN ¼ TMN: ð6Þ

The former is the tachyonic equation of motion and the
latter is the “Einstein equations” in DFT [45,46]. It unifies
the equations of motion of HMN and d into a single
formula, equating the Einstein tensor with a generalized
stress-energy tensor. For the tachyon field it reads

TMN ¼ ðJ þHÞ½MKðJ −HÞN�L∂KT∂LT −
1

2
JMNTð0Þ;

where Tð0Þ ¼ −ð1=DÞTM
M is the OðD;DÞ singlet trace

part,

Tð0Þ ¼ HMN∂MT∂NT −
4

α0
T2 −OðT3Þ þ 2ðD − 26Þ

3α0
:

In particular, the equation of motion of the DFT dilaton, or
the trace of the Einstein equations, implies Sð0Þ ¼ Tð0Þ.
Thus, in D ¼ 26, if the tachyon potential admits a global
minimum away from T ¼ 0, we have Tð0Þ < 0 and hence
the background cannot be flat, Sð0Þ < 0.
While we refer the interested readers to Sec. II of Ref. [45]

for a detailed review of the above formalism, for now what
suffices us is that the Einstein curvature, GMN , vanishes for
constant HMN and d. Any flat background with vanishing
tachyon, T ¼ 0, solves all the equations of motion (6) in the
critical dimension, D ¼ 26. Surely this statement is also
valid for the Riemannian action (1). The novelty here is that
the DFTaction (4) allows non-Riemannian geometries. With
the choice of the section by ∂̃μ ≡ 0, the tachyon kinetic term
readsHμν∂μT∂νT which obviously vanishes whenHμν ¼ 0.
The vanishing kinetic term then may eliminate the instability
of the static configurations: There is no dynamics for the
tachyon to roll down (at least classically at linear order). The
absence of the kinetic term was also discussed for tachyon
condensation in open string field theory [47,48], while it is a
generic feature of “pregeometrical” or “purely cubic” string
field theories [49,50].
The generalized metric with Hμν ¼ 0 is in a way

“maximally” non-Riemannian, invalidating any notion of
Riemannian metric, not to mention its signature. It corre-
sponds to the ðn; n̄Þ type with nþ n̄ ¼ D, and assumes the
most general form [23],

HMN ¼
 

0 Yμ
i X

i
λ− Ȳμ

{̄ X̄
{̄
λ

Xi
κYν

i − X̄{̄
κȲν

{̄ 2Xi
ðκBλÞρY

ρ
i −2X̄{̄

ðκBλÞρȲ
ρ
{̄

!
; ð7Þ

where i ¼ 1; 2;…; n and {̄ ¼ 1; 2;…; n̄. Viewing ðXi
μ; X̄{̄

μÞ
as a D ×D matrix, ðYν

i ; Ȳ
ν
{̄ Þ is its inverse satisfying

Xi
μYν

i þ X̄{̄
μȲν

{̄ ¼ δμ
ν. The underlying coset is

OðD;DÞ=½Oðn; nÞ ×Oðn̄; n̄Þ� [25] whose dimension 4nn̄
matches the number of infinitesimal fluctuation modes, i.e.,
moduli, around the generalized metric (7) [26]. The types
of ðD; 0Þ or ð0; DÞ are worthy of note. They are uniquely
given by HMN ¼ �JMN, and correspond to the most
symmetric vacua of DFT with no moduli [24].
Intriguingly then, Riemannian spacetime may arise in
DFT after the spontaneous symmetry breaking of
OðD;DÞ, which identifies gμν and Bμν as the massless
Nambu-Goldstone bosons [25] (cf. Refs. [51,52]).
In the remainder of this Letter, we investigate the

quantum consistency of the non-Riemannian geometries
(7) as for novel string vacua. Through Becchi-Rouet-Stora-
Tyutin (BRST) quantization of the string, we show that the
type of ðn; n̄Þ ¼ ð13; 13Þ with D ¼ 26 is anomaly free.
Remarkably, the string spectrum is finite with no tachyon
mode, matches the coset underlying (7), and agrees with the
linearized DFT equations of motion, i.e., the vacuum
Einstein equations, GMN ¼ 0. We shall conclude with
remarks on extension to type II superstring and application
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as an alternative to string compactification on Riemannian
manifolds.
BRST quantization of doubled-yet-gauged string.—The

doubled string action we consider is [14,21],

S ¼ 1

4πα0

Z
d2σL;

L ¼ −
1

2

ffiffiffiffiffiffi
−h

p
hαβDαxMDβxNHMN − ϵαβDαxMAβM: ð8Þ

Dα is a covariant derivative with an auxiliary potential that
satisfies a section-condition-like constraint,

DαxM ≔ ∂αxM − AM
α ; AM

α ∂M ¼ 0: ð9Þ

While the action is completely covariant under desired
symmetries likeOðD;DÞ rotations, Weyl symmetry, world-
sheet as well as doubled target spacetime diffeomorphisms,
it also concretely realizes the idea that the doubled
coordinates in DFT are actually gauged and each gauge
orbit corresponds to a single physical point [53]. The
relevant “coordinate gauge symmetry” reads

δxM ¼ ΔM; δAM
α ¼ ∂αΔM; ΔM∂M ¼ 0; ð10Þ

which leaves DαxL, HMN invariant (ΔL∂LHMN ¼ 0), and
enables us to identify the first term in the Lagrangian (8) as
a “proper area” in doubled geometry [54].
With the choice of the section, ð∂̃μ; ∂νÞ≡ ð0; ∂νÞ, which

we henceforth assume throughout, the constraints on the
gauge potential (9) and parameter (10) are solved by
AM
α ≡ ðAαμ; 0Þ and ΔM ≡ ðΔμ; 0Þ. Clearly then, it is the

tilde coordinates x̃μ that are to be gauged:
DαxM ¼ ð∂αx̃μ − Aαμ; ∂αxνÞ.
Upon the Riemannian background (3), the potential Aαμ

appears quadratically in the action, ð1=4πα0ÞL ¼
ð1=2πα0ÞL0,

L0 ¼−
1

2

ffiffiffiffiffiffi
−h

p
hαβ∂αxμ∂βxνgμνþ

1

2
ϵαβ∂αxμ∂βxνBμν

þ1

2
ϵαβ∂αx̃μ∂βxμ−

1

4

ffiffiffiffiffiffi
−h

p
hαβðAαμ−VαμÞðAβν−VβνÞgμν;

ð11Þ
where Vαμ ¼ ∂αx̃μ − Bμν∂αxν þ ð1= ffiffiffiffiffiffi

−h
p Þϵαβgμν∂βxν, and

the worldsheet indices are raised (lowered) with hαβ (hαβ).
Integrating out the auxiliary potential and further fixing the
coordinate gauge symmetry by x̃μ ≡ 0 (cf. Ref. [55]), one
recovers the familiar (Riemannian) string action.
We now focus on the maximally non-Riemannian con-

stant background (7). For simplicity, we ignore the B field
and diagonalize the square matrices, ðXi

μ; X̄{̄
μÞ, ðYν

i ; Ȳ
ν
{̄ Þ, to

be identity matrices. The D-dimensional index μ decom-
poses into two parts: μ ¼ ði; {̄Þ. We perform a field
redefinition of the potential Aαμ to a coordinate gauge
symmetry invariant quantity, pαμ,

pαi ≔ ∂αx̃i − Aαi; pα{̄ ≔ Aα{̄ − ∂αx̃{̄;

and prepare a pair of projection matrices from [56]

hαβ� ¼ hβα∓ ¼ 1

2

�
hαβ � ϵαβffiffiffiffiffiffi

−h
p

�
;

h�α
βh�β

γ ¼ h�α
γ;

h�α
βh∓β

γ ¼ 0:
ð12Þ

The string Lagrangian (8) now assumes the form

L0 ¼ −
ffiffiffiffiffiffi
−h

p
ðpαih

αβ
þ ∂βxi þ pα{̄hαβ− ∂βx{̄Þ þ ϵαβ∂αx̃μ∂βxμ:

ð13Þ

Evidently, pαμ’s are Lagrange multipliers imposing the
chirality and antichirality on the untilde coordinates:
hαβþ ∂βxi ≡ 0 and hαβ− ∂βx{̄ ≡ 0 [21,23] (cf. Refs. [57–59]
which are fully chiral and equipped with a Riemannian
metric).
Toward the BRST quantization, it is convenient to

parametrize
ffiffiffiffiffiffi
−h

p
hαβ, which has unit determinant, by

two variables, without loss of generality,

ffiffiffiffiffiffi
−h

p
hττ¼−

1

e
;

ffiffiffiffiffiffi
−h

p
hτσ ¼ω

e
;

ffiffiffiffiffiffi
−h

p
hσσ ¼e−

ω2

e
:

Under diffeomorphisms δcσα ¼ cα these two transform,

δce¼ cα∂αeþ ð∂τcτ − ∂σcσÞe− 2∂σcτωe;

δcω¼ cα∂αωþ ð∂τcτ − ∂σcσÞωþ ∂τcσ − ∂σcτðω2 þ e2Þ;
ð14Þ

which match the standard transformation of
ffiffiffiffiffiffi
−h

p
hαβ. We

shall also use (from time to time) the worldsheet light-cone
convention,

σ� ¼ τ � σ; ∂� ¼ 1

2
ð∂τ � ∂σÞ;

c� ¼ cτ � cσ; p�μ ¼
1

2
ðpτμ � pσμÞ:

In addition to the coordinate gauge symmetry (10) and the
worldsheet diffeomorphisms (14), from Eq. (12), the
Lagrangian (13) admits extra gauge symmetry:

(
δpαi ¼ hþα

βĈβi

δpα{̄ ¼ h−αβĈβ{̄

⇔

(
δp�i ¼ ðω − e� 1ÞCi

δp�{̄ ¼ ðωþ e� 1ÞC{̄;
ð15Þ

where Ĉβμ’s are arbitrary local parameters. Yet, despite
their seemingly free index, i.e., “β,” since h�α

β’s are 2 × 2
projection matrices with nontrivial kernel, the extra gauge
symmetry can be specified simply by the alternative
parameter Cμ carrying no worldsheet index.
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We proceed to fix all the gauges, (10), (14), (15):

e≡ 1; ω≡ 0; x̃μ≡ 0; p−i≡ 0; pþ{̄≡ 0; ð16Þ

which imply, −
ffiffiffiffiffiffi
−h

p
hαβ ≡ ð01 10Þ on the light cone and the

vanishing of the topological term in Eq. (13).
The full Lagrangian with Faddeev-Popov ghosts is

Lfull ¼ L0 − iδBðlnebe þωbω þ x̃μB̃μ þp−iBi þpþ{̄B{̄Þ;
ð17Þ

where fbe; bω; B̃μ; Bμg are the antighosts for the gauge
symmetries of Eqs. (14), (10), and (15). With the associated
ghosts, fcα; C̃μ; Cμg, and auxiliary Nakanishi-Lautrup
fields, fκe; κω; κ̃μ; κμg, the BRST transformations are

δBxμ ¼ cα∂αxμ; δBx̃μ ¼ cα∂αx̃μ þ C̃μ;

δBp�i ¼ ðω− e� 1ÞCi þ cα∂αp�i þ ∂�cþpþi þ ∂�c−p−i;

δBp�{̄ ¼ ðωþ e� 1ÞC{̄ þ cα∂αp�{̄ þ ∂�cþpþ{̄ þ ∂�c−p−{̄;

δBcα ¼ cβ∂βcα; δBC̃μ ¼ cα∂αC̃μ;

δBCi ¼ cα∂αCi þ ðω− eÞ∂σcτCi þ ∂σcσCi;

δBC{̄ ¼ cα∂αC{̄ þ ðωþ eÞ∂σcτC{̄ þ ∂σcσC{̄;

δBbe ¼ iκe; δBbω ¼ iκω; δBB̃μ ¼ iκ̃μ; δBBμ ¼ iκμ;

δBκe ¼ δBκω ¼ δBκ̃
μ ¼ δBκ

μ ¼ 0; ð18Þ

while δBe ¼ δce and δBω ¼ δcω are already given in
Eq. (14), promoting the diffeomorphism parameters cα

as ghosts. The transformations are off-shell nilpotent,
δ2B ¼ 0.
From the variational principle, setting be ≡ bþþ þ b−−,

bω ≡ bþþ − b−−, and similarly for κe, κω, we acquire

pþi∂þxi þ 2ibþþ∂þcþ þ ið∂þbþþÞcþ ¼ κþþ;

p−{̄∂−x{̄ þ 2ib−−∂−c− þ ið∂−b−−Þc− ¼ κ−−;

p−i ¼ pþ{̄ ¼ κ̃μ ¼ κμ ¼ B̃μ ¼ C̃μ ¼ Bμ ¼ Cμ ¼ 0;

and the left-moving (right-moving) chiral (antichiral)
properties,

∂−xi ¼ 0; ∂−pþi ¼ 0; ∂−cþ ¼ 0; ∂−bþþ ¼ 0;

∂þx{̄ ¼ 0; ∂þp−{̄ ¼ 0; ∂þc− ¼ 0; ∂þb−− ¼ 0;

which can be also derived from the reduced Lagrangian,

Lred¼2ðpþi∂−xiþp−{̄∂þx{̄þ ibþþ∂−cþþ ib−−∂þc−Þ:
ð19Þ

Naturally, fpþi; p−{̄g are identified as the conjugate
momenta of fxi; x{̄g, forming D pairs of the “βγ” system
[56,60] with the conformal weights 1 and 0, for

βi ≡ pþi; β̄{̄ ≡ p−{̄, and γj ≡ xj; γ̄|̄ ≡ x|̄, respectively.
Each pair contributes to a central charge by two.
The BRST charge decomposes QB ¼ QL þQR with

QL ¼
I

dσβi∂þγicþ þ iðbþþ∂þcþÞcþ

¼ ∶
X∞

m;n¼−∞
nð−iβmiγ

i
n þ bmcnÞc−m−n∶ − ac0; ð20Þ

and mirroring expression for QR. The quantization is given
by ½γim; βnj� ¼ iδijδmþn and fbm; cng ¼ δmþn, which gen-
erate the normal ordering constant a. The BRST charges,
QL, QR, are nilpotent, if and only if n ¼ n̄ ¼ 13, implying
the usual critical dimension, D ¼ 26, since the central
charges are cL ¼ 2n − 26 and cR ¼ 2n̄ − 26, both of
which should vanish.
Physical states are annihilated by QL and the antighost

zero mode b0 (mirrored by the right-moving sector). Their
anticommutator is

L0 ¼ fb0; QBg ¼ Nβ þ Nγ þ Nb þ Nc − a; ð21Þ

where

Nβ ¼
X∞
p¼1

−ipβ−piγip; Nγ ¼
X∞
p¼1

ipγi−pβpi;

Nb ¼
X∞
p¼1

pb−pcp; Nc ¼
X∞
p¼1

pc−pbp;

are the level-counting operators for each creation operator
with p ≥ 1. These are all positive semidefinite. Hence, the
vanishing of L0 (21) on physical states means a drastic
truncation of the entire string spectrum to just one level.
Computing h0j½L1; L−1�j0i ¼ −2 with Ln ¼ fQL; bng, we
identify the level to be unity, a ¼ 1. Then, from
β0ijki ¼ kijki, QLc−1jki ¼ QLγ

i
−1jki ¼ 0, and

QLβ−1ijki¼kic−1jki; QLb−1jki¼ðikiγi−1þ2c−1b0Þjki;

the physical states consist of four sectors, (with jk↓i
satisfying b0jk↓i ¼ 0 [56,60]),

δHi{̄γ
i
−1jkj↓i ⊗ γ̄ {̄−1jk|̄↓i; δHi

{̄γi−1jkj↓i ⊗ β̄−1{̄jk|̄↓i;
δHi

{̄β−1ijkj↓i ⊗ γ̄ {̄−1jk|̄↓i; δHi{̄β−1ijkj↓i ⊗ β̄−1{̄jk|̄↓i;

which should satisfy on-shell relations for QB closedness,

k{̄δHi
{̄¼0; kiδHi

{̄¼0; kiδHi{̄¼0; k{̄δHi{̄¼0; ð22Þ

and equivalence relations as for gauge symmetries,
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δHi{̄ ∼ δHi{̄ þ kiλ{̄ − k{̄λi;

δHi
{̄ ∼ δHi

{̄ þ kiξ{̄; δHi
{̄ ∼ δHi

{̄ − k{̄ξi; ð23Þ

where ξi, ξ{̄ need to be divergenceless, kiξi ¼ k{̄ξ{̄ ¼ 0.
We have a good reason to denote the physical states by

the same symbol as the generalized metric: the 4nn̄ of
fδHi{̄; δHi

{̄; δHi
{̄; δHi{̄g are literally the moduli of the

generalized metric (7) that we have been dealing with,
in the diagonal form where the only nontrivial components
are Hi

j ¼ Hj
i ¼ δi

j and H{̄
|̄ ¼ H|̄

{̄ ¼ −δ{̄ |̄ [26]. On-shell,
they meet the linearized DFT equations of motion [22] (see
also Ref. [61]):

∂i∂jδHj{̄ ¼ 0; ∂ {̄∂ |̄δHi|̄ ¼ 0; ∂i∂ {̄δHi{̄ ¼ 0;

∂i∂jδHj
{̄ − ∂ {̄∂ |̄δHi

|̄ þ 4∂i∂ {̄δd ¼ 0; ð24Þ

which enjoy local symmetries inherited from the general
covariance of DFT (generalized Lie derivative, L̂ξHMN),

δðδHi
{̄Þ ¼ ∂ {̄ξ

i; δðδHi
{̄Þ ¼ −∂iξ

{̄;

δðδHi{̄Þ ¼ ∂ {̄λi − ∂iλ{̄; δðδdÞ ¼ −
1

4
ð∂iξ

i þ ∂ {̄ξ
{̄Þ: ð25Þ

We may choose a gauge, δd ¼ 0. Remarkably then,
Eqs. (22), (23) imply Eqs. (24), (25). Further, restricted
to normalizable solutions, the converse appears also
true. The first and second in Eq. (24) give
∂jδHj{̄ ¼ 0; ∂ |̄δHi|̄ ¼ 0, which are generically solved by
δHi{̄ ¼ ϵijkl���ϵ{̄ |̄ k̄ l̄���∂j∂ |̄Φkl���k̄ l̄���, and hence the third holds.
The last implies ∂i∂jδHj

{̄ ¼ ∂ {̄∂ |̄δHi
|̄ ¼ ∂i∂ {̄φ for some φ.

Again for normalizable solutions, we get ∂jδHj
{̄ ¼ ∂ {̄φ and

∂ |̄δHi
|̄ ¼ ∂iφ, which can be gauged away using the

remaining Eq. (25).
As the spectrum is finite, DFT itself is to be identified as

string field theory around the non-Riemannian vacua.
Evident from the position of the indices, it is δHi{̄ that
may condensate and reduce the “non-Riemannianity,” to
build up Riemannian spacetime [26].
Comments.—Our BRST charge formula (20) can be

easily extended to a generic ðn; n̄Þ non-Riemannian back-
ground, to include n pairs of chiral βγ, n̄ pairs of antichiral
β̄ γ̄, and ordinary (left-right combined) D − n − n̄ number
of xμ. The central charges are cL=R ¼ D� ðn − n̄Þ − 26,
and thus necessarily n ¼ n̄ and D ¼ 26. Nonrelativistic
string theories [34–37] are examples of ðn; n̄Þ ¼
ð1; 1Þ [62].
The necessity of putting n ¼ n̄ was also noted in

Ref. [23] as a condition to embed non-Riemannian geom-
etries into type II doubled superstring [29,32] or super-
symmetric DFTs [63–65], the constructions of which rely
on genuine OðD;DÞ covariant vielbeins rather than the
Riemannian zehnbein, eμa [66]. The central charges should
be cL=R ¼ D� ðn − n̄Þ − 10, indicating that n ¼ n̄ non-
Riemannian geometries are consistent superstring vacua in

D ¼ 10, which enlarges the string theory landscape far
beyond the Riemannian paradigm.
Chiral string means xiðτ; σÞ ¼ xið0; τ þ σÞ: it is fixed in

space and thus hardly interacts with one another. This
classical intuition may suggest to us to explore non-
Riemannian backgrounds (either flat or curved) as candi-
dates for an internal space, alternative to string compacti-
fication traditionally on “small” Riemannian manifolds. At
a glance, in the presence of external four-dimensional
Minkowskian spacetime, the truncation of the string
spectrum to just one level may be no longer the case as
L0 will include external pμpνη

μν, which is not positive
definite. Nevertheless, since ½xiðτ1; σ1Þ; xjðτ2; σ2Þ� ¼ 0, the
correlation functions of bosonic string tachyon vertex
operators will have trivial dependency along all non-
Riemannian directions: with k · x ¼ kμxμ þ kjxj þ k|̄x|̄,

�YN
a¼1

∶eika·xðτa;σaÞ∶
�

¼ δD
�XN

b¼1

kb

�
Fðkaμ; τa; σaÞ;

where Fðkaμ; τa; σaÞ is independent of kaj; ka|̄ ’s. This
indicates delta-function interactions on the internal x space
after Fourier transformation, and thus is consistent with the
classical intuition of the chiral string.
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