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The O(D, D) covariant generalized metric, postulated as a truly fundamental variable, can describe
novel geometries where the notion of Riemannian metric ceases to exist. Here we quantize a closed string
upon such backgrounds and identify flat, anomaly free, non-Riemannian string vacua in the familiar critical
dimension, D =26 (or D = 10). Remarkably, the whole Becchi-Rouet-Stora-Tyutin closed string
spectrum is restricted to just one level with no tachyon, and matches the linearized equations of motion
of double field theory. Taken as an internal space, our non-Riemannian vacua may open up novel avenues

alternative to traditional string compactification.
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Motivation: Absence of tachyon kinetic term in double
field theory.—Ever since the adoption of Riemannian
geometry into the formulation of general relativity,
the metric g,, has been privileged to be the fundamental
variable that provides a concrete mathematical tool to
address the notion of spacetime. In particular, the “flat”
spacetime where the gravitational effect is negligible
is simply given by a constant metric of Minkowskian
signature. Needless to say, the standard model upon
this background is arguably the best tested theory.

The flat Minkowskian spacetime is famously known to
be unstable in bosonic string theory, as both the open and
closed string spectra contain a negative mass-squared
tachyon. Open string tachyon means the instability of a
D-brane. Its tachyon potential has a local minimum which
corresponds to a closed string vacuum without any D-brane
[1-5]. Yet, for the closed string tachyon, little is known
except the effective description,
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In this Letter, we construct a novel bosonic closed string
theory with a finite spectrum free of tachyon, by going
beyond the Riemannian paradigm. Our working hypoth-
esis, motivated by 7 duality, is to view an O(D,D)
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invariant metric, 7y, and an O(D, D) covariant gener-
alized metric, H,y, as fundamental entities (instead of g, ).
The former is put in an off-block diagonal form,

Tun = ((1) (1)), and, with its inverse, lowers and raises
the O(D, D) indices, capital Roman M,N = 1,2, ...,2D.
The latter then satisfies twofold defining properties:

Hun = Hywm, Hy*Hy " Tk = Tun- (2)
A famous parametrization reads [6]

Hun = (Bgﬂg,w
Kp

_g/w'B 2
O RN ©)
gK/l_BKpgu Ba/l

which contains g,, and a skew-symmetric B field, corre-
sponding to a well-known coset, O(D, D)/[O(1,D — 1) x
O(D - 1,1)] for Minkowskian signature. Over the last
three decades, this has been a cornerstone for the develop-
ments of O(D,D) symmetry manifest formulations of
worldsheet string theory [7-14] and also target spacetime
effective descriptions [15-20]. They go under the
name doubled string or double field theory (DFT),
as the spacetime coordinates are formally doubled,
M = (x,.x").

With Eq. (3), the closed string effective action (1) can be
reformulated as a DFT coupled to the tachyon,

Xt = x

2(D =2
/6_2d [S(O)—i( 30 6)—HMN8MT(9NT
4 2 3
JrgT +O(7°)]. (4)

Here d is the O(D, D) singlet DFT dilaton related to the
conventional dilaton through e = ,/=ge >/, and S,
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denotes the scalar curvature in DFT which can be spelled
out explicitly in terms of d, Hyy, and Ty [20]:

1 1
S(O) - gHMNaMHKLaNHKL + EHMNaKHMLaLHNK
— Oy ONHMN + 40, (HMNOyd) — 4HMN D), d0yd.

The so-called section condition should be imposed on the
doubled coordinates, 9, = (9",9,),

0y 0" = 9, + 80, =0, (5)

such that all quantities have D-dimensional halved depend-
ence. After solving the section condition by letting * =0
and assuming the Riemannian parametrization (3), the DFT
action (4) reduces to Eq. (1).

Crucially, Eq. (3) is not the most general solution to the
defining relations (2). It only becomes so if the upper left
D x D block, i.e., H", is invertible. DFT works perfectly fine
with any generalized metric that satisfies Eq. (2). In particular,
the D x D block can be degenerate, hence non-Riemannian
by nature [21-27] (see also Refs. [28—33] for supersymmetric
or exceptional examples). The most general parametrizations
of a generalized metric have been classified by two non-
negative integers, (n,71), which set dim(ker H**) = n + 7,
and render string chiral and antichiral over the n and 7
directions, respectively [23]; see also Eq. (13) later. The
Riemannian geometry of Eq. (3) is of (0,0) type, and
nonrelativistic or ultrarelativistic strings [34-40] belong to
(1,1) or other non-Riemannian types [22,23,25,32].

Postulating {7 yn, Hyuy,d} as the only geometric
quantities, one can uniquely identify a covariant derivative,
Vs [41,42], and then construct the scalar curvature, S(0), as
well as “Einstein” tensor, Gy, which is off-shell con-
served, V,,GMN = 0 [43]. This is all analogous to general
relativity, though there seems no four-index Riemann
tensor [44]. Using them, one can concisely express all
the equations of motion of the DFT action (4):

MV VT 4 ST+ O =0, Guy = Ty (6
The former is the tachyonic equation of motion and the
latter is the “Einstein equations” in DFT [45,46]. It unifies
the equations of motion of H, and d into a single
formula, equating the Einstein tensor with a generalized
stress-energy tensor. For the tachyon field it reads

1
Ty = (T + M) (T = H) w0k TOLT — EjMNT(O)s

where 7o) = —(1/D)T )" is the O(D, D) singlet trace
part,

2(D —26)

3a

4
T (o) = H"NOyTONT — ;TZ -O(T%) +

In particular, the equation of motion of the DFT dilaton, or
the trace of the Einstein equations, implies S = 7'(q).
Thus, in D = 26, if the tachyon potential admits a global
minimum away from 7" = 0, we have T < 0 and hence
the background cannot be flat, S(g) < 0.

While we refer the interested readers to Sec. II of Ref. [45]
for a detailed review of the above formalism, for now what
suffices us is that the Einstein curvature, G,,y, vanishes for
constant H,y,y and d. Any flat background with vanishing
tachyon, T = 0, solves all the equations of motion (6) in the
critical dimension, D = 26. Surely this statement is also
valid for the Riemannian action (1). The novelty here is that
the DFT action (4) allows non-Riemannian geometries. With
the choice of the section by " =0, the tachyon kinetic term
reads H"*0,T0, T which obviously vanishes when H* = 0.
The vanishing kinetic term then may eliminate the instability
of the static configurations: There is no dynamics for the
tachyon to roll down (at least classically at linear order). The
absence of the kinetic term was also discussed for tachyon
condensation in open string field theory [47,48], while it is a
generic feature of “pregeometrical” or “purely cubic” string
field theories [49,50].

The generalized metric with ‘H* =0 is in a way
“maximally” non-Riemannian, invalidating any notion of
Riemannian metric, not to mention its signature. It corre-
sponds to the (n, 71) type with n 4+ 72 = D, and assumes the
most general form [23],

0 YiXi - 7K

Hun =\ yiye _sigw oyi vip oo (D
(XK YV —X.¥¢ 2XI B, Y! -2X| B, Y?)

where i = 1,2,...,nand 7= 1,2, ..., 7. Viewing (Xi.X,)
as a Dx D matrix, (Y%, Y?) is its inverse satisfying
XYY+ X,Y* =45, The underlying coset is
O(D,D)/[0(n,n) x O(#, )] [25] whose dimension 4ni
matches the number of infinitesimal fluctuation modes, i.€.,
moduli, around the generalized metric (7) [26]. The types
of (D,0) or (0, D) are worthy of note. They are uniquely
given by Hyy = £J yn. and correspond to the most
symmetric vacua of DFT with no moduli [24].
Intriguingly then, Riemannian spacetime may arise in
DFT after the spontaneous symmetry breaking of
O(D, D), which identifies g,, and B,, as the massless
Nambu-Goldstone bosons [25] (cf. Refs. [51,52]).

In the remainder of this Letter, we investigate the
quantum consistency of the non-Riemannian geometries
(7) as for novel string vacua. Through Becchi-Rouet-Stora-
Tyutin (BRST) quantization of the string, we show that the
type of (n,i) = (13,13) with D =26 is anomaly free.
Remarkably, the string spectrum is finite with no tachyon
mode, matches the coset underlying (7), and agrees with the
linearized DFT equations of motion, i.e., the vacuum
Einstein equations, Gy = 0. We shall conclude with
remarks on extension to type II superstring and application
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as an alternative to string compactification on Riemannian
manifolds.

BRST quantization of doubled-yet-gauged string.—The
doubled string action we consider is [14,21],

1
S 47[(1/ / Jﬁ’

1
L=- 2 \/r/:lh(’/}D(zxMD/}xNHMN - €aﬂDaxMA[)’M' (8)

D, is a covariant derivative with an auxiliary potential that
satisfies a section-condition-like constraint,

DM = 9 xM — AM AM9,, = 0. 9)
While the action is completely covariant under desired
symmetries like O(D, D) rotations, Weyl symmetry, world-
sheet as well as doubled target spacetime diffeomorphisms,
it also concretely realizes the idea that the doubled
coordinates in DFT are actually gauged and each gauge
orbit corresponds to a single physical point [53]. The
relevant “coordinate gauge symmetry” reads

oxM =AM, SAM = §,AM, AM9,, =0, (10)
which leaves D x%, H,,y invariant (A9, H,,y = 0), and
enables us to identify the first term in the Lagrangian (8) as
a “proper area” in doubled geometry [54].

With the choice of the section, (0¥, 0,) = (0,9, ), which
we henceforth assume throughout, the constraints on the
gauge potential (9) and parameter (10) are solved by
Al =(A4.0) and AM = (A,,0). Clearly then, it is the
tilde coordinates X, that are to be gauged:
DM = (0,5, — Ay 0X°).

Upon the Riemannian background (3), the potential A,
appears quadratically in the action, (1/4zd")L =
(127 )L,

1 1
L=- 5V —hh*P 8, xH Opx g, + Eeaﬂ DX Dyx* By,

1 _ 1 . }
+§eaﬂaaxﬂ8ﬂxﬂ —1\/—hh P(Auy = V) (Ap,— V)",

(11)

where V,, = 0,%, — B,,0,x* + (1/ V—=h)e,f 9uOpx”, and
the worldsheet indices are raised (lowered) with 7% (hgp)-
Integrating out the auxiliary potential and further fixing the
coordinate gauge symmetry by ¥, = 0 (cf. Ref. [55]), one
recovers the familiar (Riemannian) string action.

We now focus on the maximally non-Riemannian con-
stant background (7). For simplicity, we ignore the B field
and diagonalize the square matrices, (X!, X},), (Y%, Y¥), to
be identity matrices. The D-dimensional index y decom-
poses into two parts: p = (i,7). We perform a field
redefinition of the potential A,, to a coordinate gauge
symmetry invariant quantity, p,,

Pai == 80[52,- - Aah Pai = Aoﬁ - aaxi’

and prepare a pair of projection matrices from [56]

hiaﬂhiﬁy = hiay’
hihey! =0.

1 ah
hf—h{’;’_i(h“ﬁi < > (12)

V—h
The string Lagrangian (8) now assumes the form

Ly = =V =h(paih? Opx’ + puh®Ipx’) + € 0,3, 05",
(13)

Evidently, p,,’s are Lagrange multipliers imposing the
chirality and antichirality on the untilde coordinates:
hP9px' =0 and h¥9yx' = 0 [21,23] (cf. Refs. [57-59]
which are fully chiral and equipped with a Riemannian
metric).

Toward the BRST quantization, it is convenient to
parametrize /—hh*, which has unit determinant, by
two variables, without loss of generality,

2

1
Vol =——, V==L, Vhhoo=e-2
e e e

Under diffeomorphisms 6.6% = ¢“ these two transform,

S.e =cqe + (0,¢" = 0,¢%)e — 20, we,

8,0 = "y + (0,c" — 0,¢%)w + 0,¢ — 0,7 (0 + €2),
(14)

which match the standard transformation of v/—hh*?. We

shall also use (from time to time) the worldsheet light-cone
convention,

(0; £9,).

1
Pty = 5 (pry + paﬂ)'

N[ =

ct=1+o,

8j::
¢t ="+ ¢°,

In addition to the coordinate gauge symmetry (10) and the
worldsheet diffeomorphisms (14), from Eq. (12), the
Lagrangian (13) admits extra gauge symmetry:

{51’ai = h+aﬂé‘ﬂi o {5pj:i = ((U_ e+ 1)C; (15)

5pai = h—aﬂéﬁi 5pj:7 = (a) te + I)CT’

where C‘ﬂ”’s are arbitrary local parameters. Yet, despite
their seemingly free index, i.e., “f,” since h,”’s are 2 x 2
projection matrices with nontrivial kernel, the extra gauge
symmetry can be specified simply by the alternative
parameter C,, carrying no worldsheet index.
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We proceed to fix all the gauges, (10), (14), (15):

e=1, w=0, x,=0, p:=0, (16)
which imply, —v/—hh® = (91 on the light cone and the
vanishing of the topological term in Eq. (13).

The full Lagrangian with Faddeev-Popov ghosts is

P-i EO?

ﬁfull = ‘CO - léB (111 ebe + wbm + X,MB” + p—iBi + p+TBi)’
(17)

where {b,.b,,B*, B*} are the antighosts for the gauge

symmetries of Egs. (14), (10), and (15). With the associated

ghosts, {c%, Cﬂ, C,}., and auxiliary Nakanishi-Lautrup
fields, {«,, k,,k*,k*}, the BRST transformations are

w?

Spxt = %0 XM, OpX, = c%0,%, + C,,
Opp+i = (@—e £ 1)Ci+ c“Oypsi+0rc™p i+ 0™ py,
Sppui=(w+eE£1)C+c0ypis+ 0 pyy+0:c7py,

Spc” = P dye”, 5BCﬂ = caa,lé,,,

6gCi = c?0,Ci + (w0 —e)0,c*C; + 0,¢°C;,

6pC; = c?0,C; + (w+€)0,c"C; 4+ 0,¢°C,

ogb, = ix,, Ogb, = ik,, OgB' =ik’ OB’ =ik’

Sgk, = Ogk, = Ogkt = gkt =0, (18)
while dge = d.¢ and dopw = d.w are already given in
Eq. (14), promoting the diffeomorphism parameters c®
ag gh(())sts. The transformations are off-shell nilpotent,
6BFr0n.1 the variational principle, setting b, = b, , + b
b,=b,, —b__, and similarly for «,, x,, we acquire

——>

——

pi0yx' +2ib 0 ct +i(01byy)et =k,
pO_x' +2ib__0_c™ +i(0_b__)c™ =k__,
p_i:p_'»T:]h("’l:K”:Eﬂ:CM:Bﬂ:Cﬂ:0’
and the left-moving (right-moving) chiral (antichiral)
properties,
O_x'=0,
8+xi — 0,

O_ct =0,
a+c_ — O,

3—P+i =0, a—b++ =0,

d.p=0, d,.b__=0,

which can be also derived from the reduced Lagrangian,
Lrea=2(pi0_x"+p_;0. X" +ib  0_cT+ib__d,c7).
(19)

Naturally, {p,;, p_;} are identified as the conjugate
momenta of {x',x'}, forming D pairs of the “By” system
[56,60] with the conformal weights 1 and 0, for

pi=piPi=ps and y/ =x/,77 =xI, respectively.
Each pair contributes to a central charge by two.
The BRST charge decomposes Qg = Qy, + Or with

O = %dffﬂiaﬁ’iﬁ +i(by 04ct)ct

Z n(_iﬁmiﬂl + bmcn)c—m—n: — aco; (20)

m,n=—oo

and mirroring expression for Qg. The quantization is given
by [7£mﬁn]] = iéijém#»n and {bma Cn} - 5m+n’ which gen-
erate the normal ordering constant a. The BRST charges,
0L, OR, are nilpotent, if and only if n = i = 13, implying
the usual critical dimension, D = 26, since the central
charges are ¢;, =2n—26 and cg = 2in — 26, both of
which should vanish.

Physical states are annihilated by Qp, and the antighost
zero mode b, (mirrored by the right-moving sector). Their
anticommutator is

Ly=1{by,Qg} =Ny+N,+N,+N,—a, (21)

where
Ny => =ipp_pivh.  N,y=_ipri, B
p=1 p=1

o0 o
N, :Zpb_pcp, N, :ch_pbp,
p=1 p=1

are the level-counting operators for each creation operator
with p > 1. These are all positive semidefinite. Hence, the
vanishing of L; (21) on physical states means a drastic
truncation of the entire string spectrum to just one level.
Computing (0|[L, L_]|0) = =2 with L,, = {Qy., b, }, we
identify the level to be unity, a =1. Then, from
Boilk) = kilk), Qrc_1lk) = Qry’,|k) =0, and

OLp-iilk) =kic_y[k),  Qub_i[k) = (ikiy", +2¢c_bo)|k),

the physical states consist of four sectors, (with |k])
satisfying bylkl) = 0 [56,60]),

SHy ki) @ 711k ).
SH P 1k L) @ 7L1ks ).

5Hi77i_1|kj¢> ®B—17|k,7¢>’
5Hﬁﬂ—1i|kji> ®B—1z|k,7¢>v

which should satisfy on-shell relations for Qg closedness,
ki(SHlj:O, kiéHiTZO,

kiSHT=0, kSHT=0, (22)

and equivalence relations as for gauge symmetries,
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OHjz ~ Hi + kidi — kid;,
67_{1'7 ~ 5’}'{1-7 + kiéi, 5Hi7 ~ 5Hi7 - kfgi, (23)

where &, & need to be divergenceless, k;& = k& =

We have a good reason to denote the physical states by
the same symbol as the generalized metric: the 4nn of
{6H;z, 6H,', 6H';,6H"} are literally the moduli of the
generalized metric (7) that we have been dealing with,
in the diagonal form where the only nontrivial components
are H/ = H/; = 6/ and Hy = H’; = =8 [26]. On-shell,
they meet the linearized DFT equations of motion [22] (see
also Ref. [61]):

8,(3]57'07 = 878]57-[’7 = 0, aiaiéfl_[ﬁ —
85515Hj7 - 873;57'(;7 +40,0;6d = 0, (24)

which enjoy local symmetries inherited from the general
covariance of DFT (generalized Lie derivative, L:Hyy),
8(0H'") = 0,¢",

8(6H;") = =0,

S(5He) = 0= 0, 5(6d) =~ (08 + D). (25)
We may choose a gauge, 6d = 0. Remarkably then,
Egs. (22), (23) imply Egs. (24), (25). Further, restricted
to normalizable solutions, the converse appears also
true. The first and second in Eq. (24) give
9;6H/ = 0,0;6H"7 = 0, which are generically solved by

SHT — ikl ik '0;0;®y..11..» and hence the third holds.
The last implies 0;0; 67-[ = 0;0;0H;) = 0;0;¢ for some g.
Again for normalizable solutions, we get 0 jéHj ; = Oxp and
0;6H;) = 0;¢, which can be gauged away using the
remaining Eq. (25).

As the spectrum is finite, DFT itself is to be identified as
string field theory around the non-Riemannian vacua.
Evident from the position of the indices, it is 6" that
may condensate and reduce the ‘“non-Riemannianity,” to
build up Riemannian spacetime [26].

Comments.—Our BRST charge formula (20) can be
easily extended to a generic (n,77) non-Riemannian back-
ground, to include n pairs of chiral fy, i1 pairs of antichiral
/7, and ordinary (left-right combined) D — n — /i number
of x*. The central charges are ¢y, jg = D & (n —7) — 26,
and thus necessarily n =7 and D = 26. Nonrelativistic
string theories [34-37] are examples of (n,7)=
(1,1) [62].

The necessity of putting n =7 was also noted in
Ref. [23] as a condition to embed non-Riemannian geom-
etries into type II doubled superstring [29,32] or super-
symmetric DFTs [63-65], the constructions of which rely
on genuine O(D, D) covariant vielbeins rather than the
Riemannian zehnbein, e, [66]. The central charges should
be ¢ g = D £ (n— 1) — 10, indicating that n = 7 non-
Riemannian geometries are consistent superstring vacua in

D = 10, which enlarges the string theory landscape far
beyond the Riemannian paradigm.

Chiral string means x'(z,6) = x'(0, 7 4 0): it is fixed in
space and thus hardly interacts with one another. This
classical intuition may suggest to us to explore non-
Riemannian backgrounds (either flat or curved) as candi-
dates for an internal space, alternative to string compacti-
fication traditionally on “small” Riemannian manifolds. At
a glance, in the presence of external four-dimensional
Minkowskian spacetime, the truncation of the string
spectrum to just one level may be no longer the case as
L, will include external pﬂpyn/“’, which is not positive
definite. Nevertheless, since [x'(7},6,),x/(15, 0,)] = 0, the
correlation functions of bosonic string tachyon vertex
operators will have trivial dependency along all non-
Riemannian directions: with k - x = k,x* + k jxj + k]x7 ,

(T vy e (o0t
a=1

where F(k,,,7,,0,) is independent of k,;, k,;’s. This
indicates delta-function interactions on the internal x space
after Fourier transformation, and thus is consistent with the
classical intuition of the chiral string.
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