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We consider the effects of off shell Hawking radiation on scattering processes involving black holes
coupled to quantum fields. The focus here is on the case of gravitational scattering of a scalar field mediated
by the exchange of virtual Hawking gravitons from a four-dimensional Schwarzschild black hole. Our
result is obtained in the context of a worldline effective field theory for the black hole and is valid in the
semiclassical limit where the Schwarzschild radius rs is larger than the Planck length 1=mPl. In addition, we
assume that four-momentum exchange q is smaller than r−1s and that the incoming particle has energy
larger then the black hole’s Hawking temperature. The inelastic cross section we obtain is a new, leading-
order quantum gravity effect, arising at the same order in q2=m2

Pl as the well-understood one-loop graviton
vacuum polarization corrections to gravitational scattering between massive particles.
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Introduction.—While quantum gravity at the Planck
scale still remains a mystery, it is commonly believed that
the low-energy gravitational S matrix is by now completely
understood. In particular, the UV divergences that arise in
the calculation of scattering amplitudes containing either on
shell or virtual gravitons can be treated systematically by
the standard tools of effective field theory (EFT) [1]. For
instance, the graviton-graviton elastic scattering amplitude
in pure gravity is finite at one loop [2], while at two loops
[3] it exhibits logarithmic divergences that can be absorbed
into the Einstein-Hilbert action supplemented by higher-
derivative operators, schematically

S ¼ −2m2
Pl

Z
d4x

ffiffiffi
g

p �
Rþ 1

m4
Pl

R3
μναβ þ � � �

�
; ð1Þ

with higher-order terms suppressed by more powers of
E2=m2

Pl ≪ 1 at low energies. [We define m2
Pl ¼ 1=32πGN .

In Eq. (1), curvature squared terms can be either removed
by field redefinitions of the graviton or traded for topo-
logical terms that have no effect on perturbative observ-
ables.] Although this methodology yields well-defined
predictions in the low-energy approximation of quantum
gravity for processes involving elementary particles
coupled to gravitons, the computation of the quantum
gravity S matrix with black hole asymptotic states has
yet to be accomplished, even at energies below the Planck

scale. (The meaning of “asymptotic state” for the case of
black holes that decay via the emission of Hawking
radiation will be further discussed in the next section.)
In this case, there are new nonperturbative quantum effects
associated with Hawking radiation [4], which play a crucial
role. The emission of on shell Hawking radiation from
fixed black hole backgrounds has been thoroughly studied
[5]. However, the effects of virtual Hawking modes
represent another source of quantum gravity corrections
whose analysis is still unchartered territory that should be
amenable to a field theoretic treatment.
In a recent paper [6], we have introduced an effective

field theory framework designed to calculate quantum
corrections to processes involving black holes interacting
through the exchange of long wavelength fields. It builds
on methods described in [7,8] to treat the effects of classical
absorption by the horizon of a black hole within a worldline
effective theory [9] of the gravitational dynamics of
compact objects. The main idea of [6–8] is that emission
and absorption of quanta by the horizon are due to horizon
localized degrees of freedom that couple to external fields.
In the limit where the black hole radius rs ¼ 2GNM is
small, these localized modes are described by a quantum
mechanical (0þ 1) theory whose correlation functions can
be extracted model independently, by matching on shell
emission and absorption processes in the full semiclassical
black hole spacetime. The same correlators can then be
used to predict observables where the black hole horizon
exchanges off shell modes with other objects, for instance,
the classical dissipation of energy in the binary dynamics of
comparable mass black holes [7,8].
A somewhat counterintuitive property of the black hole

worldline correlators obtained in [6] is that, for black holes
in the Unruh state [10] (i.e., black holes formed from the
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gravitational collapse of matter), Hawking emission is not
suppressed by powers of ℏ. Instead the Hawking response
is enhanced at low frequency relative to classical absorption
by the horizon. This is tied to the well-known fact that the
distribution of emitted Hawking quanta from a semiclass-
ical black hole is independent of ℏ, as well as to detailed
balance arguments for black holes in thermal equilibrium
[11] with a radiation bath at the Hawking temperature
TH ¼ ℏ=4πrs. While the Wightman functions calculated in
[6] are themselves not suppressed by powers of ℏ or,
equivalently, 1=mPl, the causal (retarded) Green’s functions
in the Unruh state were shown to be insensitive to Hawking
radiation, at least up to corrections from bulk interactions of
the fields propagating around the black hole. As a conse-
quence, there are no observable corrections to classical
processes (e.g., binary dynamics) from Hawking modes, as
classical intuition would suggest.
On the other hand, there are processes, such as quantum

mechanical scattering of matter fields incident on the black
hole, that depend on worldline correlators other than the
causal two-point function. In this case, the effects of (off
shell) Hawking radiation do not cancel. It is then interesting
to ask how their magnitude compares to the more familiar
loop corrections based on a perturbative treatment of
Eq. (1). To address this, in this Letter, we consider an
inelastic scattering process where a quantum field (for
simplicity, a complex scalar ϕ) minimally coupled to
gravity scatters off a black hole via the exchange of an
off shell Hawking graviton mode. We obtain a well-defined
(calculable) prediction for the inelastic scattering cross
section, which is of the same order in 1=m2

Pl as the
canonical one-loop quantum gravity corrections to the
elastic scattering cross section corrections arising from
interference with single graviton exchange.
In next section, we summarize the EFT setup, including

the relevant hierarchy of scales in which our description
holds, as well as the systematics of the power counting.
Details of the matching calculation needed to extract the
relevant worldline correlators can be found in [12]. We then
compute the leading-order inelastic process induced by
Hawking graviton exchange and compare to the elastic
scattering process. Our main result is given in Eq. (18). In
the Conclusions, we summarize and outline directions for
future work.
The EFT formalism and power counting.—We are

interested in scattering processes where matter fields scatter
gravitationally off a quantum mechanical black hole. To be
definite, we consider the case of a complex scalar field ϕ
coupled minimally to gravity,

S ¼
Z

d4x
ffiffiffi
g

p ðgμν∂μϕ
†∂νϕ −m2ϕ†ϕÞ: ð2Þ

This action, along with the Einstein-Hilbert term
SEH ¼ −2m2

Pl

R
d4x

ffiffiffi
g

p
Rþ � � �, is sufficient to study the

effects of quantum gravity as long as we are interested in
processes where all energy and momentum scales, and there
fore the curvature, are small compared to the Planck scale.
Of particular interest here is the case where the scalar ϕ

and the graviton field hμν propagate in the background of a
black hole solution to Einstein’s equations. We take the
case of Schwarzschild black holes for simplicity and
assume that the curvature at the horizon is small in
Planck units. Then the interactions of scalar and graviton
can be analyzed in a derivative expansion of the action
about the Schwarzschild background that is both systematic
and tractable.
In order to sidestep the technical difficulties of quantiz-

ing the graviton in the full Schwarzschild background,
including the effects of Hawking radiation from the black
hole horizon, we will use the effective field theory methods
developed in [6–9]. In this EFT, one begins by first
considering the black hole in the point particle approxi-
mation. In so doing, we have integrated out all of the
internal dynamics, with finite size effects systematically
accounted for by including all higher-dimensional oper-
ators (composed of the curvature, as well as other fields)
that are consistent with symmetries of the underlying UV
theory. This will not suffice, however, to describe either
Hawking radiation or absorption, which imply the exist-
ence of gapless degrees of freedom associated with the
dynamics of the horizon.
To account for these gapless modes in a model-

independent way, we introduce a quantum mechanical
Hilbert space of states localized on the black hole worldline
coordinate xμðτÞ. In this description, the semiclassical black
hole with mass M ≫ mPl corresponds to a highly excited
state jMi where the mass is hierarchically larger than 1=rs.
In the absence of couplings to, e.g., external gravitational or
electromagnetic interactions, the state jMi is an eigenstate
of the black hole Hamiltonian Ho. The external fields
couple to composite worldline operators made out of the
black hole internal degrees of freedom. Absent a specific
model, we classify these operators by their quantum
numbers under SO(3) isometries of the Schwarzschild
geometry and couple them to external fields in all ways
consistent with symmetry. For instance, at leading order in
the multipole expansion, the tidal gravitational response is
accounted for by including l ¼ 2 (quadrupole) operators
QE

abðτÞ, QB
abðτÞ of electric and magnetic parity, whose

gravitational interactions are encoded in the action

Sint ¼ −
Z

dτQE
abðτÞEab½xðτÞ� −

Z
dτðτÞQB

abðτÞBab½xðτÞ�:

ð3Þ

Here, the indices a, b ¼ 1, 2, 3 refer to a spatial frame eaμðτÞ
that describes the orientation of the black hole relative to
the ambient space. By definition this frame obeys the
constraints vμeaμ ¼ 0, and

PHYSICAL REVIEW LETTERS 125, 211301 (2020)

211301-2



gμνeaμeaν ¼ −δab;

δabeaμebν ¼ gμν − vμvν; ð4Þ

with vμ ¼ dxμ=dτ the four velocity of the black hole. The
projected curvature tensors are Eab ¼ eaμebνEμν and
Bab ¼ eaμebνBμν, where the electric and magnetic compo-
nents of the curvature tensor are

Eμν ¼ Rμανβvαvβ;

Bμν ¼ R̃μανβvαvβ ¼
1

2
ϵμαρσRρσ

βνvαvβ: ð5Þ

(In practice, the Ricci curvature parts of Rμναβ can be
removed by field redefinitions of the graviton, so do not
have any physical effects.)
The validity of the effective worldline description is

limited to the regime where the black hole interacts with
probes whose typical frequency (or wave number) ω lies in
the range

τ−1BH ≪ ω ≪ 1=rs; ð6Þ

where the upper bound arises as a consequence of the point
particle approximation (rs ¼ 2GNM is the Schwarzschild
radius), and the lower bound ensures that we are looking at
timescales short compared to the Page time τBH ∼M3=m2

Pl,
so that we can ignore the backreaction due to the evapo-
ration process. We also take the black hole to be semi-
classical, with mass M ≫ mPl.
As explained in [6,7], physical processes involving the

black hole coupled to other fields are described in this EFT
in terms of the Wightman functions of worldline operators
such as QE

abðτÞ and QB
abðτÞ, which can be obtained by a

matching calculation to the full theory of fields propagating
in the black hole spacetime. For a nonrotating black hole,
the two-point Wightman functions in the frame where the
black hole is at rest then take the form

hMjQE;B
ab ðtÞQE;B

cd ð0ÞjMi¼ha;bjc;di
Z

∞

−∞

dω
2π

e−iωtAE;B
þ ðωÞ;

ð7Þ

where ha; bjc; di ¼ 1
2
½δacδbd þ δadδbc − 2

3
δabδcd� is the

identity operator on the space of l ¼ 2 tensors.
The Wightman functions AE;B

þ ðωÞ are obtained by a
matching calculation described in [7], which compares the
EFT to multiparticle scattering and production probabilities
[13,14] pðn → mÞ for the black hole in the Unruh state [10]
(corresponding to a noneternal black hole, formed by
realistic gravitational collapse). Adapting the methods of
[7] to the case of gravitons, we find in the Appendix of [12]
that, to leading order in rsω ≪ 1,

AEþðωÞ ¼ ABþðωÞ ≈
r5s

360πGN
: ð8Þ

In particular, the presence of nonvanishing response at ω <
0 accounts for emission of Hawking gravitons near the
horizon, while the ω > 0 branch represents absorption.
In this Letter, we will use the EFT to analyze the inelastic

scattering of matter fields, represented here by the complex
scalar ϕ of Eq. (2) incident on a black hole with
mass M ≫ m. Since the case where the scalar field has
negligible mass compared to the Hawking temperature,
TH ¼ ð4πrsÞ−1, corresponding to absorption and reemis-
sion of on shell scalars, is well understood [13], we focus
instead on the limit m ≫ TH. In this regime, the dominant
inelastic process is through the exchange of off shell
Hawking gravitons between the scalar and the black hole.
Alternatively, one could also study the limit where the
incoming scalar has energy Eϕ ≫ TH, where again the
scattering process is dominated by graviton exchange.
However, in order to remain within the regime of validity
of the EFT, we take the typical momentum transfer q
(or, equivalently, the impact parameter b ∼ 1=q) to lie in the
region defined by Eq. (6). Thus, to ensure the validity of the
EFT, we assume the following hierarchy of kinematic
scales:

M ≫ Eϕ ≫ TH ≫ q ∼ b−1 ≫ τ−1BH: ð9Þ

Scattering by off shell Hawking radiation.—We now
compute the inelastic process ϕðpÞ þ BHM → ϕðp0Þ þ X,
where a scalar field scatters off a heavy Schwarzschild
black hole. Because of the presence of the horizon, the
scalar can tidally exchange energy and momentum with the
black hole. In the Unruh state, the exchanged energy can be
of either sign, due to the possibility that ϕ absorbs a virtual
Hawking mode emitted by the black hole.
In the EFT, the inclusive probability is given in Fig. 1,

where we sum over the unobserved internal states X of the
final black hole. The interaction between the black hole and
ϕ is mediated by graviton exchange. Linearizing about flat
space, gμν ¼ ημν þ hμν=mPl, the relevant term in Eq. (2) is

Lint ¼ −
hμν

mPl

�
∂μϕ

†∂νϕ −
1

2
ημνðj∂ϕj2 −m2ϕ†ϕÞ

�
: ð10Þ

FIG. 1. Leading-order gravitational inelastic scattering of a
scalar field incident on a semiclassical Schwarzschild black hole.
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Our calculation is performed in Feynman gauge, where
the propagator of the exchanged graviton is i

q2 Pμν;αβ, with

Pμν;αβ ¼
1

2
½ημαηνβ þ ημβηνα − ημνηαβ�: ð11Þ

In the rest frame of the black hole vμ ¼ ð1; 0Þ, the
amplitude to leading order in the EFT of Eq. (3) takes
the form (q ¼ p − p0 is the momentum transfer)

iAX ¼ −
1

2m2
Pl

i
q2

Z
dτe−iqvτhXjQE

abðτÞjMiAE
ab þmag:;

ð12Þ
where the tensors AE

ab ¼ eμaeνbAE
μν are given by

AE
μν ¼ ½ðvpÞq − ðvqÞp�μ½ðvpÞq − ðvqÞp�ν

−
1

2
m2½q⊥μ q⊥ν þðvqÞ2η⊥μν�;

AB
μν ¼ ϵμαρσvαpρqσ½ðvqÞp − ðvpÞq�ν

þ 1

2
m2ðvqÞϵμνρσvρqσ: ð13Þ

[qμ⊥ ¼ qμ − ðvqÞvμ, ημν⊥ ¼ ημν − vμvν.] In order to perform
the tensor contractions, we have used the package [15].
Summing over the final states X and assuming unitarity

of the black hole quantum mechanics,
P

X jXihXj ¼ 1, the
inclusive squared amplitude breaks up into electric and
magnetic contributionsX

X

jAXj2 ¼ jAEj2 þ jABj2; ð14Þ

which depend on the two-point Wightman functions
defined in Eq. (7) (note that, by parity invariance, the
mixed correlator hQEQBi vanishes). For example, the
electric term in the case of zero black hole spin is

jAEj2 ¼
1

4m4
Pl

T
q4

AEþðωÞha; bjc; diAE
abA

E
cd; ð15Þ

and similar for the magnetic piece. The timescale
T ¼ 2πδðω → 0Þ is an arbitrary IR cutoff associated with
time translation invariance, which will not appear in
physical observables. We find, from Eqs. (13),

jAEj2 ≈
TAEþðqvÞ
6m4

Pl

�
ðvpÞ4 −m2ðvpÞ2

�
1 −

3

2

ðvqÞ2
q2

�

þ 1

4
m4

�
1þ 3

ðvqÞ4
q4

��
; ð16Þ

jABj2 ≈
TABþðqvÞ
8m4

Pl

�
ðvpÞ4 −m2ðvpÞ2

�
1 − 2

ðvqÞ2
q2

�

−m4
ðvqÞ2
q2

�
1 −

ðvqÞ2
q2

��
; ð17Þ

where we drop terms subleading in powers of the momen-
tum transfer q. The resulting black hole frame differential
cross section for inelastic scattering is then

d3σ
dq2dðqvÞ ≈

7GNr5s
270π½ðvpÞ2 −m2�

�
ðvpÞ4 −m2ðvpÞ2

�
1 −

12

7

ðvqÞ2
q2

�
þ 1

7
m4

�
1 − 3

ðvqÞ2
q2

þ 6
ðvqÞ4
q4

��
: ð18Þ

It is useful to compare the magnitude of this result with
the leading-order cross section for Newtonian potential
scattering off the black hole. In the black hole rest frame,
this is given by

dσN
dq2

¼ 4πr2s
q4

½ðvpÞ2 − 1
2
m2�2

ðvpÞ2 −m2
: ð19Þ

To compare this to the off shell Hawking process, we would
need to integrate Eq. (18) over the region −∞ < vq < ∞.
Although the EFT breaks down when the magnitude of qv
is of order rs, we expect, by unitarity, that the integral over
the form factors AE;B

þ ðqvÞ is finite and dominated by scales
near qv. Thus, we may estimate the magnitude of the
integrated inelastic (Hawking) differential cross section
dσH=dq2 by taking the result in Eq. (18) and multiplying it
by a factor of qv ∼ r−1s . We then find that, parametrically,

dσH
dσN

∼
q2

m2
Pl

; ð20Þ

up to factors ðrsqÞ2, which we cannot determine by purely
dimensional arguments and are treated as being of order
unity for the purposes of this estimate. We see that inelastic
scattering is a quantum gravity effect, of the same order in
q2=m2

Pl as the one-loop correction to elastic scattering that
arises from graviton vacuum polarization effects of the type
first computed in [2] and illustrated in Fig. 2. Our result in

FIG. 2. Selected one-loop corrections to the elastic scattering
process in perturbative quantum gravity. Diagram (a) contributes
at first order in q2=m2

Pl ≪ 1, while (b) encodes both classical
corrections of order rsEϕ ≪ 1 and quantum effects of order
q2=m2

Pl. The top (arrowed) line corresponds to ϕ, while the
(bottom) solid line corresponds to the black hole, treated as static
point source.
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Eq. (18) should then be interpreted as a new type of
calculable, leading-order, quantum gravity effect in black
hole quantum mechanics. Moreover, the prediction is made
within a systematic expansion with calculable corrections.
Conclusions.—We have presented what, to our knowl-

edge, is the first computation of quantum gravity effects in
scattering processes that account for the black holes
horizon fluctuations. Our approach relies on EFT methods
presented in [6,7]. In this EFT, the leading quantum
corrections due to horizon dynamics is represented by
the exchange of virtual Hawking radiation. What is
interesting about these effects is that, despite being non-
perturbative in nature, they are not as suppressed as one
might naively have expected. Instead, they scale in the
same way in the q2=m2

Pl power counting as the more
familiar one-loop graviton vacuum polarization [2] correc-
tions to scattering that arise when treating the black hole
sources as elementary particles (i.e., quantum fields).
A natural question to ask is how the inelastic scattering

rate calculated here compares to on shell processes, e.g.,
radiative pressure. Given the on shell nature of the incom-
ing graviton in this case and the fundamental (pointlike)
nature of the scattered particle, such a process will
necessarily be suppressed by further powers of q2=m2

Pl
due to the existence of final state reradiation. Similarly,
such a process would be suppressed in the case of a particle
with nontrivial internal structure, even if no radiation
appears in the final state.
In this Letter, we have only considered a simple inelastic

process in which a scalar field scatters gravitationally off a
4D Schwarzschild black hole. However, our methods
should apply more broadly to a larger class of scattering
processes as well as to more generic black holes that may
carry electric and magnetic charges and/or spin. Work on

such generalizations is under way and will be presented in
future publications.
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