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Any successful alternative gravity theory that obviates the need for dark matter must fit our cosmological
observations. Measurements of microwave background polarization trace the large-scale baryon velocity
field at recombination and show very strong Oð1Þ baryon acoustic oscillations. Measurements of the large-
scale structure of galaxies at low redshift show much weaker features in the spectrum. If the alternative
gravity theory’s dynamical equations for the growth rate of structure are linear, then the density field growth
can be described by a Green’s function: δðx⃗; tÞ ¼ δðx⃗; t0ÞGðx; t; t0Þ. We show that the Green’s function
Gðx; t; t0Þmust have dramatic features that erase the initial baryon oscillations. This implies an acceleration
law that changes sign on the ∼150 Mpc scale. On the other hand, if the alternative gravity theory has a large
nonlinear term that couples modes on different scales, then the theory would predict large-scale non-
Gaussian features in large-scale structure. These are not seen in the distribution of galaxies nor in the
distribution of quasars. No proposed alternative gravity theory for dark matter seems to satisfy these
constraints.
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Introduction.—The astronomical evidence for dark
matter continues to grow: the velocities of galaxies imply
the existence of dark matter in clusters [1,2]; measurements
of rotation curves reveal its presence in galaxies like our
own [3–5]; dynamical arguments demonstrate its ubiquity
[6]; and gravitational lensing measurements confirm its
presence in clusters and galaxies [7,8]. Cosmological
observations provide another line of evidence for the
existence of dark matter: the popular Λ cold dark matter
(ΛCDM) model is remarkably successful in simultaneously
fitting cosmic microwave background (CMB) observations
and the large-scale distribution of structure [9,10]. This
concordance requires that the dominant form of matter is
not baryons but cold, weakly interacting (or noninteracting)
dark matter.
While dark matter has become part of the standard

paradigm, we have yet to detect it. With ever improving
dark matter experiments ruling out much of the parameter
space associated with the “WIMP” miracle [11,12], there
has been renewed interest in alternative gravity theories that
obviate the need for dark matter.
However, it has proven very challenging to develop a

satisfactory alternative to general relativity (GR). Any
successful modified gravity theory will need to reproduce
the successes of ΛCDM and GR: 1. Provide an explanation
for the flatness of galaxy rotation curves at large radii, the
distribution of hot gas in elliptical galaxies and clusters of
galaxies, and match the gravitational lensing shear mea-
surements; 2. Satisfy the classical tests of GR, including the

precession of the perihelion of Mercury and other solar
system tests, the Shapiro time delay, and the timing of
binary millisecond pulsars [13]. 3. Provide a consistent fit
to LIGO’s gravitational wave signals. These measurements
provide strong constraints on the tensor content of any
gravitational wave theory [14–18]. 4. Predict an expanding
universe and provide an acceptable fit to measurements of
the distance-redshift relationship. This constrains the
homogeneous cosmological solution of the alternative
theory, cf. Ref. [19]. 5. Provide a satisfactory fit to
measurements of both the CMB fluctuations and the
large-scale structure.
This Letter quantifies the final constraint on this list: any

alternative gravity theory that obviates the need for dark
matter needs to provide an explanation for the growth and
evolution of structure.
The ΛCDM model accurately explains how structure

forms from initial density perturbations and how these
perturbations are imprinted in the cosmic microwave
background [20–24]. The initial fluctuations are adiabatic:
overdense regions have an excess of baryons, dark matter,
and photons. In the early Universe, the fluctuations in the
tightly coupled baryon-photon fluid oscillate like sound
waves. On the other hand, the dark matter is cold and its
fluctuations evolve only through gravity. After recombi-
nation, baryons decouple from the photons and then fall
into the growing dark matter potential wells. This dark
matter driven gravitational fluctuation growth erases most
of the signature of the sound waves. Thus, the ΛCDM
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model can explain why the acoustic oscillations in the
cosmic microwave background temperature and polariza-
tion fluctuations have Oð1Þ amplitude and the oscillations
in the distribution of galaxies are subtle with amplitude of
O½ðΩb=ΩmÞ2� ∼ 0.04. Any alternative gravity theory will
have to provide an alternative explanation for this sup-
pression of the acoustic fluctuations, one of the distinctive
effects of dark matter.
In this Letter, we outline how to determine the required

infrared (IR) behavior of any dark matter theory based on
linking the baryon density field at recombination (z ∼ 1100)
to the baryon power spectrum at low redshift (z ∼ 0). Any
successful theory for dark matter, whether it invokes
particles or alternative theories of gravity, must properly
explain this evolution. These density fields are typically
probed indirectly through fitting the CMB power spectra and
thematter power spectrum in tandem [9,10]. This necessarily
assumes ΛCDM (or some simple extension), as well as GR.
The test we propose here does not invoke GR nor a specific
cosmology. Instead it relies solely on small-scale physics—
Thomson scattering and the Newtonian continuity equation.
Note that while similar tests have been proposed before
[25,26], they have not been explicitly formulated nor
calculated for general modified gravity theories.
The polarization of the CMB on small scales is exclu-

sively due to Thomson scattering, which itself only relies
on the velocities of the electrons. Because protons and
electrons are tightly coupled via Coulomb scattering at
early times, we can assume that the velocities of the
electrons exactly equals that of the protons. The CMB
polarization spectrum then directly measures the velocity of
the baryons at z ∼ 1100. The Newtonian continuity equa-
tion, which is valid at small scales, relates the velocities of
the baryons to their density field. Thus, the CMB polari-
zation spectrum is a direct measurement of the baryon
velocity field at z ∼ 1100. At z ∼ 0, the galaxy-galaxy
correlation function traces the baryon density field at large
scales. With these two direct measures of the baryon
density field, we can then define the form a linear alternate
theory of dark matter must take in the IR. We combine
observations of the CMB and the galaxy power spectrum at
low-redshift to determine the required Green’s function of
structure formation between these redshifts for alternate
theories. This Green’s function has a distinctive form as it
must suppress the baryon acoustic oscillations by nearly an
order of magnitude, as well as greatly increase power on
small scales.
Below we describe the theoretical framework for deter-

mining the IR behavior of modified gravity theories for
dark matter. We first outline the general idea behind our
method, which will depend on the baryon power spectrum
at both z ∼ 0 and z ∼ 1100. We then describe how we
calculate each of these power spectra. Finally, we give the
resulting necessary form for an alternative dark matter
theory and conclude.

Infrared behavior of modified gravity.—We assume that
the modified gravity theory predicts our universe is
expanding with a scale factor RðtÞ, determined by its
dynamical equations and that the form of RðtÞ fits the
current measurements of the distance-redshift relation.
This assumption already places a very profound constraint
on any alternative to GR.
As is usual in cosmology, we represent the density field

as the sum of a mean density field ρðtÞ and spatial
fluctuation—ρðx⃗; tÞ ¼ ρðtÞ½1þ δðx⃗; tÞ� and expand the
density field in Fourier modes: δðk⃗; tÞ, where k⃗ is an
angular wave vector. The power spectrum PðkÞ is then
given by the spatial, two-point correlation function of these
Fourier modes at any one time: hδðk⃗; tÞδðk⃗0; tÞi ¼
ð2πÞ3δ3ðk⃗ − k⃗0ÞPðkÞ, where δ3ðxÞ is the 3D Dirac delta
function.
In alternative gravity theories, the acceleration encodes

the deviation from GR—these theories generally assume
matter and momentum conservation. Thus, we will also
assume these conservation laws hold. In agreement with the
cosmological principle and observations of large scale
structure, we will also assume that any modifications to
GR must be isotropic.
We assume that the acceleration in the modified gravity

theory only depends on the amplitude of the baryon density
fluctuations: a⃗ðδbÞ. We then expand the function as a series
of sums of Fourier modes:

aðk; tÞ ¼ F̂1ðkÞδbðk; tÞ þ
X
k0
F̂2ðk; k0Þδbðk; tÞδbðk0; tÞ þ…;

ð1Þ

where k≡ kk⃗k, F̂1ðkÞ is the linear response to the density
fluctuation (including both GR and modified terms), and
F̂2 encodes the second order correction.
Since the density field is small, the linear term should

dominate the gravitational acceleration in most modified
gravity theories. Thus, we focus on linear modifications to
GR in this Letter. Note that this linear term acts like a
transfer function—it has no explicit time dependence and is
simply multiplied with a given density configuration in k
space to give the resulting acceleration force.
If the modified gravity theory has strong nonlinear terms,

then the theory will produce significant mode-mode cou-
plings that would be apparent in the large-scale structure.
The theory could evade the current strong constraints from
Planck on non-Gaussianity [27] if the theory is linear at
early times. However, if the theory is nonlinear enough at
late times to erase the baryon acoustic oscillations, then
these same nonlinearities would induce large non-Gaussian
features in the large-scale distribution of structure. These
are not seen in the large-scale distribution of structure [28].
Thus, it is unlikely that a strongly nonlinear theory could
produce the correct evolution for the baryons and evade
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low-redshift non-Gaussianity constraints. Detailed calcu-
lations showing this point are left to future work.
Linear modification to general relativity.—In ΛCDM

after recombination, baryons fall into the dark matter
potentials. This imprints the large-scale distribution of
the dark matter on the baryons. Thus, the transfer function
of CDM, along with the initial spectrum of fluctuations, is
all that is needed to accurately describe the matter power
spectrum. The baryon power spectrum follows directly by
using the CDM potential created by the evolution of these
perturbations. However, if we no longer have CDM in our
model, the baryon transfer function itself must encode all of
this information. In modified gravity theories of dark
matter, the baryon transfer function must account for all
of the changes in the baryon perturbations from early to
late times.
The matter power spectrum depends on the transfer

function as PðkÞ ∝ PϕðkÞT2ðkÞ, where Pϕ is the primordial
spectrum of perturbations. In analogy to this, we can define
the transfer function:

T̂2
bðkÞ ¼

Pbbðk; z ∼ 0Þ
Pbbðk; z ¼ 1100Þ : ð2Þ

T̂2
bðkÞ describes how the baryon perturbations evolve from

z ¼ 1100 to z ∼ 0, where the hat indicates a different
normalization than is typically used.
Any theory for dark matter must adequately explain both

the shape and normalization of T̂2
bðkÞ. Our transfer function

can be exactly represented with measurable data and does
not rely on any assumptions about underlying theories,
outside of the small-scale physics described below. It is also
possible to find the theoretical solutions for any dark matter
or modified gravity theories. In this Letter, we will focus
solely on the shape of T̂2

bðkÞ—a more precise analysis is
required to use the normalization as well.
As a way of building intuition, we will also consider the

Fourier pair of the transfer function—Green’s function:

ĜbðrÞ ¼
Z

dk
k2

2π2
T̂bðkÞj0ðkrÞ; ð3Þ

where j0ðxÞ is a spherical Bessel function. This function
shows, in real space, the inherent acceleration response of
the modified gravity.
The baryon power spectrum at z ∼ 0.—The baryons at

low redshift and large scales (≳10 Mpc) are well traced by
galaxies. Thus, we can take the 3D power spectrum of
galaxies as the baryon power spectrum. We use the data
from Ref. [29] for the galaxy-galaxy power spectrum at low
z. Reference [29] measures the BAO signal from galaxies
from z ¼ 0.2–0.75 using the Sloan Digital Sky Survey-III
[30][SDSS-III] Baryon Oscillation Spectroscopic Survey
(BOSS) DR12 dataset [31,32]. As part of this measure-
ment, they also calculate the 3D galaxy-galaxy power

spectrum in 3 different redshift bins. We use the lowest
redshift bin, z ¼ 0.2–0.5, which has an effective redshift of
z ¼ 0.38. This is measured from k ¼ 0.016–0.15 hMpc−1.
We use their fiducial value of h ¼ 0.676 to transform to
physical units.
Power spectrum at z ∼ 1100.—The polarization of the

CMB can be related to the velocity of the baryons as [33]

Δpðn̂; x⃗Þ ¼ Qðn̂Þ þ iUðn̂Þ ≈ 0.17Δτ�m̂im̂j∂ivj; ð4Þ

where Δp is the polarization fluctuation, Q and U are
Stokes parameters, n̂ is the direction of observation (i.e.,
into the sky), Δτ� is the width of the last scattering surface,
m̂ is a 2D unit vector on the plane of the sky, and v is the
baryon velocity on the sky.
The velocity due to density perturbations is irrotational.

Thus, the polarization spectrum is just the gradient of the
baryon velocity field: Δpðn̂; k⃗Þ ≈ 0.17Δτ�ikvb.
Typically, polarization results are reported using E and B

modes, which are just a rotation of theQ −U basis that sets
B ¼ 0 on small scales in the early Universe. Thus, the
polarization power spectrum is just the E-mode power
spectrum:

PEEðkÞ ≈ ð0.17Δτ�Þ2k2v2bðkÞ: ð5Þ

Prior to recombination, the baryons and photons can be
treated as a single fluid. In a universe with no DM, the
behavior is simple inside the horizon:

δ̈b þ c2sk2δb ¼ 0; ð6Þ

where _≡ ðd=dτÞ (conformal time) and cs is the
sound speed.
For adiabatic initial conditions, this admits the solution

δb ¼ AðkÞ cosðkrsÞ; ð7Þ

where rs ¼
R
dηcs is the sound horizon.

The density can be related to the velocity via the
continuity equation. At small scales, we can ignore any
changes in the potential and simply treat the baryon-photon
fluid as a normal Newtonian fluid. Using the continuity
equation in Fourier space, we find

vb ¼
i
k
_δbðkÞ ¼ −icsAðkÞ sinðkrsÞ: ð8Þ

From Eq. (5), we have

PEEðkÞ ≈ ð0.17Δτ�Þ2c2sk2jAðkÞj2 sin2ðkrsÞ: ð9Þ

We can find AðkÞ using the observed EE power spectrum
and then use Eq. (7) to find the density power spectrum.
Note that velocity overshoot may shift the peak positions
here, but will not change the overall shape of the power
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spectrum. There is also a small effect from the finite
thickness of the last scattering surface—this amplifies
scales that are smaller than the thickness of the surface.
To account for this effect, we multiply Eq. (9) by an
exponential factor exp½k=kΔτ� �, with Δτ� ¼ 19 Mpc [34].
For the EE power spectrum, we use the Planck 2018 [35]

and the Atacama Cosmology Telescope ACTPol Two
Season [36] angular power spectra. The data are given
as multipoles, CEE

l , of the 2D power spectrum, which we
convert to the 3D power spectrum, PEEðkÞ, using
l ¼ kη� − 1

2
, where η� is the conformal distance to the last

scattering surface [37,38]. Then, to order unity, the 3D
power spectrum is [37,39] PEEðkÞ ∼ ðπl2=k3ÞCEE

l¼kη�−ð1=2Þ.
We bin the CEE

l data into l-bins with width Δl ¼ 50 to
increase the signal to noise. We also only use l ≤ 2000, due
to the high noise in the data above this point.
In Fig. 1, we show the baryon power spectrum at

z ¼ 1100 and z ¼ 0.38. As can be seen, the proper dark
matter theory must somehow explain how the z ¼ 1100
spectrum smooths out and increases in power on small
scales. Note that our peaks do not precisely correspond
with the CAMB-derived [40] peaks at low k. This occurs
because we ignore the cold dark matter driving-term in the
continuity equation, which is more prominent at low k
(i.e., velocity overshoot; cf. Refs. [22,41,42]).

Constraining linear modified gravity theories.—To
derive the transfer and Green’s functions for the modified
gravity theory we only use the data from each survey where
they both overlap in k.
The transfer function is shown in Fig. 2. We also include

the CAMB-derived transfer function, which we derive by
taking the baryon power spectrum at the same redshifts as
our data and dividing them. The transfer function makes the
exact evolution of perturbations needed apparent. Power
should grow the most on small scales and should oscillate
to smooth out the baryon acoustic oscillations. This aligns
with the standard ΛCDM picture.
We show the associated Green’s function, computed

using the hankel PYTHON package [43] in Fig. 3. Because
the transform includes an integral over all k modes, the
exact form of Green’s function depends on the behavior of
the transfer function outside of our data range. For the
purposes of determining Green’s function, we need to
extrapolate the high-k range as it determines the small-r
behavior. We extrapolate the transfer function using
Gaussian process regression from the scikit-learn
PYTHON package [44] and assume the ΛCDM baryon
transfer function, as computed with CAMB as a prior.
Regardless of the extrapolation choice, Green’s function

changes sign multiple times, including near the BAO scale.
Green’s function shows the response a modified gravity
theory of dark matter must have in order to explain the
evolution of baryons on large scales. Thus, any alternative
gravity theory would need to (i) contain this scale to suppress
the BAO features over time—changing them from dominant

FIG. 1. Baryon power spectra at z ¼ 0.38 (solid circles) and
z ¼ 1100 (open circles). The z ¼ 0.38 data is taken from
Ref. [29]. The z ¼ 1100 points use the polarization data from
Refs. [35,36] and our analytical model, described in the text. The
difference between the circles and the spectrum produced by a
full treatment by the CAMB code for each redshift (blue dotted
line), assuming the Ref. [10] values, provides an estimate of the
error in the approximation we use. The majority of this error is
due to the lack of a DM potential driving term in Eq. (6). This
would shift the peaks to align with the camb case. The black,
dashed line gives the acoustic scale, as given by Ref. [10]. All
high-redshift curves are arbitrarily normalized.

FIG. 2. Baryon transfer function from z ¼ 1100 to z ¼ 0.38
using the data (black line) and CAMB, assuming ΛCDM and the
values from Ref. [10] (blue, dotted line). The difference between
the two shows the limitations of the analytical approximation
used to derive the transfer function. The gray region shows the 1σ
error from the data.
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at z ∼ 1100 to very low amplitude at z ∼ 0.4; and (ii) have an
acceleration law that changes sign around this scale.
Conclusions.—Cosmological observations place strong

constraints on the form of any modification to general
relativity. In the absence of dark matter, the modified theory
must explain how density fluctuations grow from the
electron velocity field traced by the CMB polarization at
z ¼ 1100 to the galaxy density field seen in the local
universe. In this Letter, we show that any theory that
depends linearly on the density field must have the peculiar
Green’s function shown in Fig. 3. Given the extreme form
of the function, it is not clear that it is possible to find such a
theory—in particular, the sign changes would induce quite
extreme dynamics within the local volume (for a recent
work that performs this sort of analysis for Horndeski
models, see Ref. [45]). While there are candidate modified
gravity theories that fit the CMB temperature spectrum
[46], none have shown they can correctly predict the CMB
polarization spectrum and the large-scale structure. CDM
remains the simplest explanation for our cosmological
observations.
The software to reproduce the analysis and plots in this

Letter can be found in Ref. [47].
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