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The finite-time dynamics, apart from its fundamental importance in nonequilibrium thermodynamics, is
of great significance in designing heat engine cycles. We build an experimental apparatus to test the
predicted long-time 1=τ scaling of the irreversible entropy generation in the finite-time (τ) thermodynamic
process by compressing dry air in a temperature-controlled water bath. We present the first direct
experimental validation of the scaling, utilized in many finite-time thermodynamic models at the long-time
regime. The experimental data also demonstrate a clear deviation from the scaling at the short-time regime.
We show the optimal control scheme to minimize the irreversible entropy generation in finite-time process.
Such optimization shall bring new insight to the practical design of heat engine cycles.
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Introduction.—Heat engines, converting heat into useful
work, have important practical applications and attract a
wide range of research interests in both classical and
quantum thermodynamics [1–6]. The Carnot theorem [1]
limits the maximum efficiency of heat engines with the
well-known Carnot efficiency. Unfortunately, achieving
such efficiency is typically accompanied by a vanishing
output power due to the infinite long operation time in a
quasistatic thermodynamic process [1,7–10]. The futility of
the Carnot engine with vanishing power has pushed us to
design a finite-time cycle to achieve high efficiency while
maintaining the output power [11–16]. And the quantitative
evaluation of the irreversibility is the key for such design
[6,11,14–20].
The thermodynamics irreversibility is typically quanti-

tatively evaluated via irreversible entropy generation in
both classical and quantum thermodynamics [1–6]. The
trade-off relation between power and efficiency [21–24] is
significantly determined by the 1=τ scaling of irreversible
entropy generation on the long control time τ. Such scaling
has been predicted in different finite-time thermodynamic
models [25], such as the endoreversible [11,12,26,27],
linear [14,19,28,29], stochastic [30–34], and low-
dissipation models [16,24,35] for both the classical [12]
and quantum system [23,24,36]. Despite great theoretical
progresses, direct experimental testing remains lacking due
to the unavailability of suitable platforms.
In this Letter, we fill the gap between theory and

experiments by designing an apparatus to test such 1=τ
scaling of the irreversible entropy generation at the long-
time regime by compressing dry air in a temperature-
controlled water bath. The utilization of pressure sensors is

surprisingly practical despite its extreme simplicity and
provides sufficient accuracy for the current measurement.
Given this feature, we validate the scaling with enough
precision to quantitatively determine the coefficient C of the
scaling, i.e., C=τ. Further, we verify that the compression
with a constant speed is the optimal scheme to minimize the
coefficient C within the set of power control functions to
reduce the irreversible entropy generation. Additionally,
our experimental results reveal the deviation from the
scaling at the short-time regime.
The 1=τ scaling in the ideal gas system.—We first derive

the 1=τ scaling for the ideal gas system, which is in contact
with a heat bath of constant temperature Te. The volume V
of the gas is tuned from V0 at t ¼ 0 to Vf at the end of the
process t ¼ τ. Under the endoreversible assumption
[11,12,26,27], the irreversible entropy generation is written
as [12]

ΔSðirÞ ¼
Z

τ

0

�
_Qs

Ts
þ

_Qe

Te

�
dt; ð1Þ

where _Qs ¼ − _Qe ¼ δQs=dt is the heat flow from the heat
bath to the system. The effective temperature TsðtÞ of the
system generally varies with time t in the control process.
In the quasistatic process with infinite control time
(τ → ∞), the system is always in the thermal equilibrium
with the bath, namely, TsðtÞ ¼ Te. For the long-time τ in
comparison with the relaxation time tr between the gas and
the heat bath, the system is in the linear irreversible regime
with Ts slightly deviated from the bath temperature,
namely, jTsðtÞ − Tej=Te ≪ 1. Here, the relaxation time
tr characterizes the time for the system to equilibrate with
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the thermal bath and can be experimentally measured.
The heat exchange between the system and bath follows
Newton’s law of cooling as

δQs ¼ −κ½TsðtÞ − Te�dt; ð2Þ

where κ is the thermal conductance of the system and can
be determined by the relaxation time tr and the heat
capacity CV of the system (see the Supplemental
Material [37] for detailed explanation). Combining
Eqs. (1) and (2), we obtain the irreversible entropy
generation as

ΔSðirÞ ¼
Z

τ

0

κ
½TsðtÞ − Te�2

TsðtÞTe
dt: ð3Þ

For the current dry air system, the irreversible entropy
generation under the long-time limit is proportional to the
irreversible work WðirÞ

Th , namely,

WðirÞ
Th ¼ TeΔSðirÞ ¼

P0Piso
f ðVf − V0Þ2
κTeτ

; ð4Þ

where P0 is the initial pressure of the dry air and Piso
f is the

isothermal pressure Piso
f ¼ P0V0=Vf of the air at the end of

the process. The detailed derivation of the above equation is
shown in the Supplemental Material [37]. The relation in
Eq. (4) shows the 1=τ scaling for the current dry air system
at the long-time τ and also provides the connect between
the irreversible entropy generation and the measurable
quantity WðirÞ

Th . Experimentally, such irreversible work
WðirÞ

expðτÞ ¼ WexpðτÞ −Wq is obtained by subtracting the
work Wq ¼ P0V0 ln ðV0=VfÞ of the quasistatic isothermal
process from the measured work via

WexpðτÞ ¼ −
Z

τ

0

PðtÞ _VðtÞdt: ð5Þ

With the experimentally measured pressure P and volume
V, we evaluate the work via Eq. (5) and compare it with the
theoretical result of Eq. (4). Hereafter, the irreversibility of
the current system is measured via the irreversible work
[12,17] to validate the scaling and to demonstrate the
deviation from the scaling at the short-time regime.
Verification of the 1=τ scaling.—To test the scaling with

dry air, an apparatus in Fig. 1(a) is designed to measure the
state of the dry air, which is sealed in a compressible
cylinder (A) and three buffer cylinders (B, C, D). A piston
is installed in the cylinder A to compress the air with a
computer-controlled stepper motor M. By setting push
programs, a controllable change in the volume of the
gas over time is achieved, i.e., VðtÞ ¼ V0 −ALðtÞ, where
V0 ¼ 2.584 × 10−3 m3 is the initial volume of the gas and
A ¼ 1.963 × 10−3 m2 is the cross-sectional area of the
cylinder A. The stepper motor allows us to realize the

finite-time quasi-isothermal compression process with
different process time τ. To measure the work WexpðτÞ
in Eq. (5), we monitor the gas pressure P ¼ PðtÞwith three
sensors, numbered S1, S2, and S3 (range 0–0.15 MPa,
accuracy 0.1%) on the top of the three cylinders B, C, and
D, respectively. The volume change dV ¼ AdLðtÞ is
measured through the piston position LðtÞ with the sensor
S4 (range 0–0.3 m, accuracy 0.1%).
In the compression process, the four cylinders are

immersed in a water bath with fixed temperature (accuracy
0.5 K). For the gas system, the endoreversible condition
[11,12,26,27] ensures the system is in the internal
equilibrium and characterized with the effective temper-
ature Ts, known as the endoreversible temperature.
Physically, the internal relaxation time of the gas is much
smaller than the relaxation time tr for the gas to equilibrate
with the thermal bath. In the current setup, tr ¼ 1.94 s is
measured in the experiment, with details explained in the
Supplemental Material [37].
The state of the dry air is illustrated via the P − V

diagram in Fig. 1(b) with the pressure PðtÞ measured from
the sensor S1 and the volume calculated from the sensor S4.

FIG. 1. Experimental setup for measuring irreversible entropy
generation in the finite-time quasi-isothermal process. (a) Exper-
imental setup. The dry air is sealed in four connected cylinders A,
B, C, and D. The piston A is propelled by the computer-
controlled stepper motor M to achieve the controlled compres-
sion. Three pressure sensors S1, S2, and S3 are connected to the
top of the three cylinders B, C, and D, respectively, to measure
the air pressure PðtÞ in the cylinders. And the displacement of the
piston LðtÞ is detected by a position sensor S4 to reveal the gas
volume VðtÞ. The cylinders are immersed in the water bath with
fixed temperature Te. (b) P − V diagram of the gas under the bath
temperature Te ¼ 313.15 K. The green diamonds, blue triangles,
and yellow circles are obtained for the piston speeds v ¼ 150,
v ¼ 40, and v ¼ 1 mm=s, respectively. The red solid line
represents P − V curve of the theoretical quasistatic isothermal
process, namely, PV ¼ const, while the black solid line,
i.e., PVγ ¼ const, corresponded to the adiabatic process. Here,
γ ¼ 1.4 is the heat capacity ratio of the dry air [38].
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The motor is designed to control the piston to move at a
constant speed v and the piston displacement at time t is
LðtÞ ¼ vt. The total displacement of the piston is
ΔL ¼ LðτÞ ¼ 240 mm. In the plot, we show the P − V
diagram for the different piston speeds v ¼ 150 mm=s
(green diamond), v ¼ 40 mm=s (blue triangle), and
v ¼ 1 mm=s (yellow circle). At the low piston speed,
the P − V curve approaches that of the quasistatic iso-
thermal process illustrated by the red solid line. At the high
piston speed, the P − V curve approaches the one of the
adiabatic process marked with the black solid line
(PVγ ¼ const). Here γ ¼ 1.4 is the heat capacity ratio
for dry air [38]. The data from pressure sensors S2 and S3
are illustrated in the Supplemental Material [37].
The measured workWexpðτÞ is illustrated as the function

of the process time τ in Fig. 2(a). The red circles and blue
diamonds show the measured work at the bath temperature
Te ¼ 323.15 and Te ¼ 313.15 K, respectively. Each data
point is averaged from 20 repeats. In Fig. 2(a), the
measured work approaches a stable value, which matches
the work Wq in the quasistatic isothermal process (the
dashed line). The workWq ¼ P0V0 ln ðV0=VfÞ is obtained
from the initial pressure P0, volume V0, and the final
volume Vf. The log-log plot of the irreversible work WðirÞ

exp

in Figs. 2(b) and 2(c) show the good agreements in the
long-time regime of τ ≫ tr with the theoretical prediction
WðirÞ

Th in Eq. (4), which is represented by the black solid line.
Therefore, we validate the behavior that the entropy
generation is inversely proportional to the process time
in the long-time regime.
The data also show significant discrepancy between the

scaling behavior in Eq. (4) and the experimental data at the
short-time regime (τ < 10tr) in Figs. 2(b) and 2(c). To
understand the discrepancy at the short-time regime, we
simulate the exact dynamics of the temperature change in
Eq. (2) without approximation and calculate the work
accordingly. The calculated work is illustrated as functions
of the control time τ with dash-dotted lines in the figures. The
simulated results match the theoretical equation at the long-
time τ. At the short-time regime, the simulated result follows
the trend of the data, yet does not match the exact value.
The mismatch between the experimental data and the

simulated results is caused by treating the thermal conduct-
ance κ as a constant in the simulation [39,40]. We fit the
experimentally obtained PðtÞ curve with the corresponding
simulated curve (taking κ as the fitting parameter) for each
compression speed v. The fitted value of κðvÞ increases with
the compression speed v (see Supplemental Material [37] for
detailed discussion). In the short-time regime, κ is higher
than the constant κ0 we measured with the isochornic
relaxation process, and the gas relaxes to the equilibrium
state faster with less irreversible work. The irreversible work
calculated with the fitted value κ is plotted as dotted lines in
Figs. 2(b) and 2(c). The curves with fitted thermal conduct-
ance match well with the experimental data.

Effect of the control scheme.—With the above compres-
sion process at the constant speed, we have validated the
1=τ scaling of the irreversible entropy generation via the
measurement of the irreversible work at the long-time limit.
As predicted in the previous study [12,36], the coefficient C
in the C=τ scaling is not only determined by the parameters
of the system and heat bath, but also related to the specific
way the system is controlled. In the following experiment,
we show the impact of different control schemes on the
irreversible work with our setup in a discrete quasi-
isothermal process [17].
The discrete quasi-isothermal process, introduced by

Andresen et al. in Ref. [41], is an effective approach for
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FIG. 2. Work in the finite-time quasi-isothermal process. (a)Work
done by the piston onto the gas as the function of the process time τ.
The experimental results WexpðτÞ are illustrated by the red circles
and blue diamonds with the corresponding bath temperature
Te ¼ 323.15 and Te ¼ 313.15 K, respectively. The work Wq in
the quasistatic process is marked by the red (blue) dashed line for
Te ¼ 323.15ð313.15Þ K. The log-log plot of the irreversible work
WðirÞ

expðτÞ as the function of dimensionless time τ=tr is illustrated in
(b) with Te ¼ 323.15 K and (c) with Te ¼ 313.15 K. The
corresponding theoretical result WðirÞ

Th of Eq. (4) is represented
by the black solid line. The dash-dotted lines and dotted lines,
respectively, show the irreversible work calculated numerically
from Eq. (2) with the constant κ0 and the fitted κðvÞ.
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optimizing the finite-time Carnot engine. The basic idea of
the discrete quasi-isothermal process is to use a series of
adiabatic and isochoric processes to approximate the finite-
time quasi-isothermal process. And the discrete step
processes have been used to study different thermodynamic
issues, such as work distribution [42], thermodynamic
length [43], and optimization of quantum heat engines
[36,44]. We utilize the discrete quasi-isothermal process to
take the two advantages. Theoretically, the state of the
system can be analytically solved and experimentally the
work and the heat exchange happen in different subpro-
cesses to allow direct measurement.
The scheme of the discrete quasi-isothermal process is

shown in Fig. 3(a). The piston is rapidly pushed to the
position Li (i ¼ 1; 2;…;M) for the ith step to form an
adiabatic process. And then the gas relaxes to thermal
equilibrium through the isochoric process with duration δτ.
The stepper motor is controlled to push the piston to the
designed position Li given by a power function
Li ¼ ði=MÞαΔL in the ith step. Here α is the index for
the realization of different control functions. In Fig. 3(a),

the green dashed line, red dotted line, and blue dash-dotted
line show the volume changes where the piston has been
pushed sublinearly α ¼ 0.6, linearly α ¼ 1, and super-
linearly α ¼ 3, respectively. The initial (final) piston
position is L0 ¼ 0 (LM ¼ ΔL). For clarity, we show three
control schemes with total step numberM ¼ 3 and duration
time δτ ¼ 8 s as an example. At the beginning of the each
adiabatic process, the gas maintains the same temperature
as the water bath, since δτ is larger than the relaxation time
tr that exp½−δτ=tr� ≪ 1. We define the average speed of the
piston in one step as vi ¼ ðLi − Li−1Þ=δτ.
For the discrete quasi-isothermal process with M ≫ 1

steps, the irreversible work of the system is explicitly
written as (see Supplemental Material [37] for detailed
derivation)

WðirÞ
Th ¼ ΛΘ

M
; ð6Þ

where Θ ¼ ðγ − 1ÞP0ðVf − V0Þ2=ð2V0Þ shows the
dependence on the initial and final state of the system.
And Λ ¼ hv2i=hvi2, characterizing the speed fluctuation
of the piston, is determined by the control scheme
of the stepper motor with hv2i≡P

M
i¼1 v

2
i =M and

hvi ¼ P
M
i¼1 vi=M. With the fixed process time τ ¼ Mδτ,

any control scheme with the power function [36,45,46]
results in Λ ≥ 1.
The change of the control functions are realized with

different power indexes α. The schematic P − V curve for
the discrete quasi-isothermal process is illustrated in Fig. 3
(b). The irreversible work done in discrete quasi-isothermal
process is illustrated in Fig. 4(a) as the function of the total
step number M for three different power indexes
α ¼ 0.6 (green triangle), 1.0 (red circle), and 3.0 (blue
diamond). Each data point has been averaged from 20
repeats. The corresponding dashed lines show the fitting
with the theoretical result in Eq. (6). At the largeM regime,
the irreversible work is inversely proportional to M.
To show the dependence of the irreversible work on the

control function, we extract the coefficient Λ of the 1=M
scaling in Eq. (6) by fitting curves in Fig. 4(a) with Eq. (6)
for different α at the large step numberM, and plot Λ as the
function of the index α in Fig. 4(b). The coefficient Λ
estimated from the experiments is shown as the red
diamonds in Fig. 4(b). The theoretical result of Eq. (6)
is shown as the green circles in Fig. 4(b). The figure shows
the agreement between the theoretical result and the
experimental data. The experimental data demonstrate
the minimum irreversible work at the index α ¼ 1. We
conclude that, within the set of power function, the minimal
irreversible work is achieved with the linearly control
function [36], namely, α ¼ 1 as shown in Fig. 4.
With the dependence of the control function Λ, we can

control the irreversible work of the system via different
schemes to adjust the power and efficiency of the heat
engine [36] in the Carnot-like cycle. Experimentally, such

FIG. 3. The volume change and the P − V diagram in the
discrete quasi-isothermal process with the three-step case as an
example. (a) Volume changes with time in the three-step discrete
quasi-isothermal process with different push modes. The step
time is δτ ¼ 8 s. The piston is pushed to the position Li ¼
ði=3ÞαΔL; ði ¼ 1; 2; 3Þ at the end of the ith step. The volume
Vi ¼ V0 −ALi with sublinearly (α ¼ 0.6), linearly (α ¼ 1), and
superlinearly (α ¼ 3) are illustrated by the green dashed line,
red dotted line, and blue dash-dotted line, respectively.
(b) P − V diagram of the three-step DIP. Series of adiabatic
(black dashed line) and isochoric (blue dotted line) processes
are used to approach a finite-time quasi-isothermal process (red
solid line). In the ith (i ¼ 1, 2, 3) step, the gas volume is
first compressed from Vi to Viþ1 adiabatically, then the gas
isochorically relaxes to the thermal equilibrium state with the
temperature Te. The experimental P − V diagram is shown in
the Supplemental Material [37].
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tuning of irreversible entropy generation via adjusting the
mode of operation is meaningful for the design of heat
engines with high output power and efficiency.
Conclusion.—We have designed the apparatus with the

cylinder-gas system to test the theoretically predicted 1=τ
scaling of the irreversible entropy generation at the long-
time regime in the finite-time thermodynamics. Our experi-
ment for the first time directly shows that the irreversible
entropy generation, obtained by measuring the irreversible
work, is inversely proportional to the process time τ in the
long-time regime [Fig. 2(b)], namely, ΔSðirÞ ∝ 1=τ. It is
worth mentioning that the experimental obtained results
also show a clear deviation from the 1=τ scaling at the
short-time regime; such phenomenon needs further
theoretical and experimental exploration. Moreover, we

demonstrated the proportional relation between entropy
generation and the speed fluctuation of the piston with
different gas compression schemes for the discrete quasi-
isothermal process. Specifically, we verified the minimal
entropy generation can be achieved by pushing the piston
linearly within the set of the power control functions. This
provides a feasible and convenient solution for the opti-
mization of the actual heat engine by applying different
control schemes to the work substance in different proc-
esses of the thermodynamic cycle.
The similar detection of the irreversible work can

potentially be realized in several quantum systems, such
as trapped ions [47–49], nuclear magnetic resonance
system [50], Bose-Einstein condensate [51], and super-
conducting circuit systems [52,53]. The generalization of
the current measurement in quantum regime could show the
influence of coherence on these thermodynamic quantities
[54–56].
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