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We propose a hybrid quantum-classical atomic clock where the interrogation of atoms prepared in a
spin-coherent (or weakly squeezed) state is used to feed back one or more highly spin-squeezed atomic
states toward their optimal phase-sensitivity point. The hybrid clock overcomes the stability of a single
Ramsey clock using coherent or optimal spin-squeezed states and reaches a Heisenberg-limited stability
while avoiding nondestructive measurements. When optimized with respect to the total number of particles,
the protocol surpasses the state-of-the-art proposals that use Greenberger-Horne-Zeilinger or NOON states.
We compare analytical predictions with numerical simulations of clock operations, including correlated
1=f local oscillator noise.
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Atomic clocks provide stable and accurate frequency and
time references [1,2]. These are crucial for technological
applications and fundamental research—from relativistic
geodesy [3–6] to the search for variations of the fine-
structure constant [7–9]. Intense efforts are currently
focusing on new strategies to further increase the stability
of atomic clocks. These include the realization of low-
decoherence lasers [10,11], the decrease of interrogation
dead times [12–14], and the reduction of phase estimation
uncertainties below the standard quantum limit (SQL)
ΔθSQL ¼ 1=

ffiffiffiffi
N

p
[15,16], a bound imposed by quantum

mechanics when using N classically correlated atoms
[17–19]. In principle, the clock sensitivity can arbitrarily
increase with the number of atoms. In realistic scenarios,
however, N is limited either by the use of specific non-
scalable platforms or by decoherence effects like collisional
shifts and three-body recombinations. The possibility of
overcoming the SQL by creating tailored quantum corre-
lations among the atoms is therefore attracting increasing
interest [15]. Experiments have explored the creation of
spin-squeezed states [20–25] with Bose–Einstein conden-
sates [26–28], trapped ions [29], and cold atoms [30–33],
demonstrating proof-of-principle atom interferometers with
sensitivities overcoming the SQL [15,16,33–36]. Squeezed
states have reduced fluctuations of some chosen observable
with respect to spin-coherent states and are far more robust
to decoherence than Greenberger-Horne-Zeilinger (GHZ)
or NOON states. Squeezed states are therefore good
candidates for magnetometers [37–39] and atom inter-
ferometers [40] with performances overcoming the current
technology. However, the possible advantages offered by
squeezing in noisy atomic clocks, where the main sources
of noise are the fluctuations of the local oscillator (LO)
during a Ramsey interrogation, is still debated [41–47].

The reason is that squeezed states allow one to decrease the
phase uncertainty Δθ below the SQL only when the
unknown phase θ is sufficiently close to the optimal point
θopt of the Ramsey interference fringes, while Δθ rapidly
degrades once θ drifts away. In addition, the more the state
is squeezed, the narrower is the range of phase values where
Δθ < ΔθSQL. These effects dramatically limit the useful-
ness of squeezed states to increase the long-term stability of
noisy clocks, providing an Allan variance σ2sq ∼ N−4=3 [41]
far from the Heisenberg scaling σ2HL ∼ N−2. The possibility
of overcoming this limitation has triggered many efforts to
develop protocols combining squeezing and nondestructive
measurements [42,43]. Unfortunately, back-action effects
introduce a loss of atomic coherence [48–50] that limits the
performances of these protocols.
Here we propose an atomic clock where a single

coherent and a few spin-squeezed states interrogate the
same LO. Figure 1 illustrates a hybrid coherent-squeezed
clock using two states. The central idea is to take advantage
of the θ-independent sensitivity of the coherent state to
steer, via a phase feedback, the squeezed state toward its
optimal sensitivity point (namely toward the equatorial
plane of the Bloch sphere in Fig. 1). In practice, to increase
the stability, it is desirable to run each interferometer with
the maximum number of particles, N, available. The clock,
using ν ≥ 2 optimized states with the same number of
particles, N, (a coherent state and ν − 1 spin-squeezed
states), reaches an Allan variance σ2ν;opt ∼ N−2þ1=3ν−1 , which
asymptotically saturates the Heisenberg scaling. An even
higher stability is obtained for the cascade joint inter-
rogation of ν optimal spin-squeezed states. When optimiz-
ing over the number of ensembles for a fixed total number
of particles, Nt ¼ νN, the stability of the hybrid atomic
clock surpasses the best proposal discussed so far in the
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literature [44] that uses GHZ or NOON states and achieves
σ2GHZ ∼ logNt=N2

t . The high stability of our clock is
reached using robust states that are now routinely created
in labs with large numbers of atoms and without requiring
entanglement between different atomic ensembles or the
implementation of nondestructive measurements.
Stability of a hybrid coherent-squeezed clock.—A pas-

sive atomic clock operates by locking, via a feedback loop,
the frequency of a laser to the energy transition of a two-
level atom [51]. In the hybrid clock illustrated in Fig. 1, a
Ramsey interferometric sequence is identically applied to a
coherent spin state made by uncorrelated atoms and to a
spin-squeezed state. A free precession about the z axis of
the Bloch sphere rotates the atomic states by the same angle
θ ¼ R

T dtδωLOðtÞ during the interrogation time T (which is
the same in both states), where δωLOðtÞ ¼ ωLOðtÞ − ω0,
ωLOðtÞ is the time-dependent locked LO frequency and ω0

is the reference atomic frequency. After having accumu-
lated the same phase, both states are rotated around the x
axis by an angle π=2.
The central operation of the hybrid clock is the phase

feedback (see Fig. 1). First, the relative population differ-
ence Ĵz between the two atomic hyperfine levels in the
Ramsey interferometer using the coherent state is measured
[52]. Given the result −N=2 ≤ μ ≤ N=2, the phase is

estimated as θð1Þest ¼ arcsinð2μ=NÞ, with a sensitivity

Δθð1Þest ¼ 1=
ffiffiffiffi
N

p
, independently of θ [53]. The phase feed-

back is implemented by a rotation of the spin-squeezed

state by the angle θð1Þest about the y axis. The spin-squeezed
state is thus rotated toward the equatorial plane of the Bloch
sphere within an uncertainty region of the order of 1=

ffiffiffiffi
N

p

about its most sensitive phase estimation point θopt ¼ 0.
This is the key idea of this proposal. The overall trans-
formation of the spin-squeezed state is equivalent to a
Ramsey sequence with an accumulated phase equal to

θ − θð1Þest (see Fig. 1). The measurement of the relative

number of particles provides an estimate θð2Þest of θ − θð1Þest .

We emphasize here that θð1Þest plays the role of a stochastic
but exactly determined number that has to be added to the
unknown stochastic value θ that we want to estimate. In

other words, the estimation uncertainty of θð1Þest does not
propagate to the error of the final estimation. Therefore,

θest ¼ θð1Þest þ θð2Þest estimates θ with a sensitivity

ðΔθestÞ2 ¼ ½Δθð2Þest �2. Finally, the LO frequency is steered
by ωest ¼ θest=T.
In the following, we consider the unlocked LO

ω̃LOðtÞ with power spectrum SðfÞ ¼ 2γ2LO=f [51], where
δω̃LOðtÞ ¼ ω̃LOðtÞ − ω0 has a time-independent variance
E½δω̃LOðtÞ2� ¼ γ2LO and zero mean E½δω̃LOðtÞ� ¼ 0, and E
indicates statistical averaging. These fluctuations are a most
important source of noise in realistic clocks, where atomic
decoherence typically occurs on longer time scales. Our
analysis also neglects the effect of dead times [47]
and dephasing during clock operations. We quantify the
stability of the clock by

σ2 ¼ E½ðΔθestÞ2�
ω2
0τT

; ð1Þ

where τ is the total averaging time andΔθest ¼ θ − θest is the
difference between the phase shift and its estimated value.We
show in the Supplemental Material [53] that Eq. (1) corre-
sponds to the Allan variance (see also [41–44]). In the
following, we derive a simple analytical approximation of
Eq. (1) and compare it to numerical simulations of the full
clock operations.

We recall here that ðΔθestÞ2 ¼ ½Δθð2Þest �2 and the statistical
averaging in Eq. (1) can be evaluated as Ef½Δθð2Þest �2g ¼R
dϕPðθ2Þ½Δθð2Þest �2, where ½Δθð2Þest �2 ¼

P
μ½θestðμÞ − θ2�2

Pðμjθ2Þ is the estimator variance, Pðμjθ2Þ is the conditional
probability to obtain the measurement result μ for a given

stochastic θ2 ¼ θ − θð1Þest with distribution Pðθ2Þ. In the
following, we take Pðθ2Þ ∼ e−θ

2
2
=ð2κ2

1
Þ, where the width κ1

quantifies the phase noise of θ2. From error propagation we
have

½Δθð2Þest �2 ¼
ðΔĴyÞ2
hĴxi2

þ ðΔĴxÞ2
hĴxi2

θ22; ð2Þ

where the spin moments on the r.h.s of Eq. (2) are
calculated for the input state of the second interferometer
jψ2i [53]. Analytical results can be obtained with
jψ2i ∼

R
dμ e−μ

2=ðs2
2
NÞjμiy, where s is a squeezing para-

meter (s < 1 for metrological spin-squeezed states

frequency feedback

Ramsey 1 with classical state phase  
feedback

LO
Ramsey 2 with squeezed state

FIG. 1. Hybrid schemewith two atomic clocks interrogating the
same local oscillator. Both Ramsey interferometers consist of
state preparation (left-hand side showing the Husimi distribu-
tion), phase shift (center—the interrogation time T, and thus the
accumulated phase θ, is the same for both ensembles), and π=2
rotation about the x axis (right). Ramsey 1 uses a coherent spin
state, while Ramsey 2 uses a spin-squeezed state. Before readout,
Ramsey 2 is rotated around the y axis by the angle θð1Þest obtained
from the phase estimate in Ramsey 1. This implements a phase
feedback (red line) that places the spin-squeezed state of Ramsey
2 close to its most sensitive phase estimation point. The frequency
estimates ωð1;2Þ

est ¼ θð1;2Þest =T are combined to steer (blue lines) the
frequency of the local oscillator by ωð1Þ

est þ ωð2Þ
est .
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[15,21,23]) and jμiy are eigenstates of Ĵy. We get ðΔĴyÞ2 ¼
s22N=4, hĴxi ¼ ðN=2Þe−1=ð2s22NÞ, and hĴ2xi ¼ ðN2=8Þ½1þ
e−2=ðs22NÞ� [53]. Replacing into Eqs. (1) and (2), for
s22N ≫ 1, we obtain

σ22 ¼
1

ω2
0τT

�
s22
N

þ κ21
2s42N

2

�
: ð3Þ

In the absence of fringe hops, namely when jθj≲ π=2, the
fluctuations of θ2 are dominated by the quantum phase
noise due to the phase estimation in the first interferometer,
namely κ21 ¼ 1=N. Replacing this value into Eq. (3) and
optimizing over the squeezing parameter gives s22;opt ¼
N−2=3 [53], verifying the assumption s22;optN ¼ N1=3 ≫ 1

for N ≫ 1, and finally

σ22;opt ¼
1

ω2
0τT

×
3

2

1

N5=3 : ð4Þ

This is the most important result of this paper for the hybrid
clock of Fig. 1, which is based on the interrogation of two
atomic states. This result will be extended in the next sections.
Equation (4) shows a scaling of the stability with respect

to the number of atomsN that is superior to the one reached
by optimal spin-squeezed states in a single Ramsey clock,
σ2sq ∼ N−4=3 [41]. It is worthwhile to briefly elaborate on
this point. For large squeezing, the second term in r.h.s. of
Eq. (3) becomes significant due to the bending of the state
in the equatorial plane of the Bloch sphere and strongly
depletes the sensitivity except in a restricted phase interval
around θopt ¼ 0 where can we still expect sub-SQL
sensitivities. High sensitive atomic clocks work in regimes
of large Ramsey times, which means large (stochastic)
phase shifts jθj≲ π=2. Therefore, a single Ramsey clock
operating with a spin-squeezed state would mostly explore
suboptimal phase sensitivity regions, eventually providing
only modest improvements with respect to the SQL [41].
The sub-SQL region shrinks with s and only a modest spin-
squeezing parameter is optimal for the single Ramsey
clock. In contrast, the hybrid clock allows the use of states
having much higher squeezing (s2;opt ≪ 1).
In Fig. 2, we show the stability of the optimized hybrid

clock as a function of the interrogation time T, with N ¼
106 particles in each state. Equation (4) is in excellent
agreement with the numerical results [54] up to γLOT ≈ 0.4,
where phase slips become likely and deplete the stability.
We compare the performance of the hybrid coherent-
squeezed clock with that of a single atomic clocks operat-
ing with a coherent spin state of N ¼ 2 × 106 particles,
where the optimal interrogation time is also given by
γLOT ≈ 0.4. In this case, the clock has an SQL Allan
variance [1,17]

σ2SQL ¼ 1

ω2
0τTN

: ð5Þ

The hybrid clock surpasses by orders of magnitude the
SQL long-term stability. It also overcomes the long-term
stability reached by a single clock operating with a
spin-squeezed state of N ¼ 2 × 106 particles with
the squeezing parameter optimized for each Ramsey
time T. The corresponding Allan variance

σ2sq ¼
3

2

1

ω2
0τ

�
γ2LO
TN4

�
1=3

ð6Þ

is obtained for an optimal squeezing parameter
s2sq ¼ ðγ2LOT2=NÞ1=3. The hybrid clock using 2N atoms
in total leads to a smaller Allan variance than the Ramsey
clock using a single optimal squeezed state of 2N atoms
for an interrogation time γLOT ≥ 4=

ffiffiffiffi
N

p
, which is

obtained by comparing Eq. (4) to σ2sq.
Extended coherent-squeezed clock.—We now extend the

hybrid clock discussed above by considering three or more
atomic states having the same number of atoms, N, and
interrogating the same LO. In this case, the phase feedback
is implemented by rotating the state of the third Ramsey

interferometer by θð1Þest þ θð2Þest around the y axis before

readout, where θð2Þest is the estimated phase from the second
Ramsey interferometer, and so on. In a cascade of ν states
(one coherent and ν − 1 spin-squeezed) [53] the optimal
value of the squeezing for the νth state is

FIG. 2. Inverse Allan variance as a function of the interrogation
time T for the hybrid clock implemented with two ensembles of
N ¼ 106 particles each: (i) a coherent state and an optimal
squeezed state (red circles), the solid red line being Eq. (4), and
(ii) optimal spin-squeezed states (orange triangles) with the dot-
dashed orange line being Eq. (10) with ν ¼ 2. For comparison,
we show the inverse Allan variance for a Ramsey clock using a
coherent spin state (black circles) and an optimal spin-squeezed
state (blue diamonds) of N ¼ 2 × 106 particles. The black dotted
line is σ2SQL, Eq. (5), while the blue dashed line is σ2sq, Eq. (6).

Here we have used rescaled units T̃ ¼ γLOT, σ̃ ¼ σω0

ffiffiffiffiffiffiffiffiffiffiffiffi
τ=γLO

p
.

The thin dotted lines are guides to the eye.
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s2ν;opt ¼
�
3

2

�1
2
½1−ð1=3ν−2Þ� 1

N1−1=3ν−1
; ð7Þ

which provides the optimized Allan variance

σ2ν;opt ¼
1

ω2
0τT

×

�
3

2

�3
2
½1−ð1=3ν−1Þ� 1

N2−1=3ν−1
: ð8Þ

These equations assume s2ν;optN ∼ N1=3ν−1 ≫ 1, which
require asymptotically large N [53]. Equation (8) quickly
approaches σ2ν;opt ∼ 1=ðω2

0τTN
2Þ when 3ν−1 ≫ 1 with a

prefactor ð3=2Þ3=2 ≈ 1.84. This is the second main result of
this paper, which extends Eq. (4) to the case of more than
two atomic states. By increasing ν, optimal states are more
and more squeezed [Eq. (7)], which provides an increase in
long-term stability compared to Eq. (6).
In Fig. 3(a), we show the scaling with N of the optimized

Allan variance of the hybrid clock at γLOT ¼ 0.1. The lines
are the results of a numerical optimization (see [53]) that
agree with Eq. (8) asymptotically in N. All symbols in
Fig. 3(a) are the results of Monte Carlo simulations.
Stability of a hybrid squeezed-squeezed clock.—As

shown in Fig. 2, for very short interrogation times, the
stability of the hybrid coherent-squeezed clock is surpassed
by the single Ramsey clock using optimal squeezed states.
We thus study here a hybrid scheme where the first
interferometer has a spin-squeezed input state rather than
a coherent state as considered above. Using a cascade of ν
optimized squeezed states leads to [53]

s2ν;opt ¼
�
3

2

�1
2
ð1−ð1=3ν−1Þ ðTγLOÞ2=3ν

N1−2=3ν ; ð9Þ

σ2ν;opt ¼
1

ω2
0τT

×

�
3

2

�3
2
ð1−ð1=3νÞ ðTγLOÞ2=3ν

N2ð1−1=3νÞ : ð10Þ

Equation (6) is recovered for ν ¼ 1. In Fig. 2, we show the
numerical results for the stability of the hybrid squeezed-
squeezed clock (ν ¼ 2). The hybrid scheme with optimal
squeezed states overcomes both the stability of the single
squeezed clock and that of the hybrid coherent-squeezed
clock (see Fig. 2).
Discussion.—Considering a fixed number of particles,

N, in each atomic state is a natural condition in clock
experiments, where one increases the stability by inter-
rogating the largest possible number of particles [1]. When
fixing the total number of particles, Nt, it is possible to
optimize the hybrid clock with respect to the number ν of
states, defining νopt (σ2opt being the corresponding Allan
variance), all states having the same N ¼ Nt=ν. Results of
this optimization are shown in Fig. 3(b): νopt increases with
Nt, e.g., it is νopt ¼ 4 (νopt ¼ 3) for the hybrid coherent-
squeezed (squeezed-squeezed) clock in the relevant range
105 ≲ Nt ≲ 108. The scaling of the Allan variance with Nt
is arbitrarily close to the Heisenberg scaling for a suffi-
ciently large Nt at the price of an increasing prefactor
[53,55]. These results should be compared to the proposal
of Ref. [44], which is based on the cascade interrogation of
GHZ or NOON states of increasing numbers of
particles, and represents the state-of-the-art metrological
proposal for timekeeping. Using Nt total particles,
optimally distributed in ð16=π2ÞðlogNtÞ2 ensembles
[44], the GHZ or NOON scheme reaches σ2GHZ ¼
ð8=πÞ2 logðNtÞ=ðω2

0TτN
2
t Þ [44], shown as the black dashed

line in Fig. 3(b). It is remarkable that σ2GHZ is surpassed in
our scheme by using a much smaller number of robust
states that are now routinely created in labs. To the contrary,
GHZ or NOON states are very fragile to losses and have
been created so far up to about N ≈ 20 particles [56,57].
It is worth noting that the analysis of the hybrid clock can

be extended to states that have a fluctuating number of
particles, as is common in experiments with cold atoms
[15]. As shown in [53], the above results generalize by
replacing N with the average number of particles in the
state N̄. Furthermore, since the readout of the squeezed
state ensemble is close to the optimal phase point, we can
make use of nonlinear readout schemes to overcome
detection noise [58–61]. It is also possible to combine
the present hybrid scheme with different protocols
proposed in the literature to increase the Ramsey inter-
rogation time [45,62–66] to achieve the optimal condition
T ≈ τ [44].
Conclusions.—We have proposed a hybrid clock based

on the joint interrogation of a cascade of states of increas-
ingly high spin squeezing and interrogating the same noisy
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FIG. 3. (a) Rescaled inverse Allan variance as a function of N.
The symbols are the numerical results for the single Ramsey
clock with optimal squeezed states (blue diamonds) and the
hybrid coherent-squeezed clock with ν ¼ 2 (red dots), ν ¼ 3
(green squares), and ν ¼ 4 (black asterisks). The dotted blue line
is Eq. (6) for the single Ramsey clock; the dot-dashed red line is
Eq. (8) for the hybrid coherent-squeezed clock; the dashed black
and green lines are the results of a numerical optimization for the
coherent-squeezed clock with ν ¼ 3 and ν ¼ 4, respectively, and
agree with Eq. (8) for sufficiently large N. The thick black line is
the asymptotic ν → ∞ prediction of Eq. (8). (b) Allan variance
rescaled by σ2HL ¼ 1=ðω2TτN2

t Þ as a function of the total number
of particles, Nt, for the hybrid clock with νopt ensembles. The
solid blue (red) line is the result of a numerical optimization of the
coherent-squeezed (squeezed-squeezed) clock over ν. Circles and
squares are results of Monte Carlo simulations for the two
protocols, respectively, at γLOT ¼ 0.1. Values of νopt are indi-
cated in the figure. The black dashed line is σ2GHZ (see text).
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local oscillator. Despite using spin Gaussian states, the
hybrid clock surpasses the state-of-the-art stability reached
by GHZ or NOON states [44], while being more resilient to
noise and decoherence. The basic principle of our hybrid
clock has some analogies with the hybrid quantum com-
putation [67,68] and simulation [69,70] protocols recently
explored in the literature, where classical algorithms were
combined with quantum resources to speed up specific
tasks. Adaptive strategies for measurement optimization—
with aims similar to the strategy applied here to frequency
stabilization in atomic clocks—are important in quantum
state and parameter estimation [71–75].
The clock operations discussed in this Letter, including

the creation of atomic spin-squeezed states, measurement,
and estimation, are within the current technology.
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[19] L. Pezzè and A. Smerzi, Entanglement, Nonlinear Dynam-
ics, and the Heisenberg Limit, Phys. Rev. Lett. 102, 100401
(2009).

[20] D. J. Wineland, J. J. Bollinger, W.M. Itano, F. L. Moore,
and D. J. Heinzen, Spin squeezing and reduced quantum
noise in spectroscopy, Phys. Rev. A 46, R6797(R) (1992).

[21] D. J. Wineland, J. J. Bollinger, W.M. Itano, and D. J.
Heinzen, Squeezed atomic states and projection noise in
spectroscopy, Phys. Rev. A 50, 67 (1994).

[22] M. Kitagawa and M. Ueda, Squeezed spin states, Phys. Rev.
A 47, 5138 (1993).

[23] J. Ma, X. Wang, C. P. Sun, and F. Nori, Quantum spin
squeezing, Phys. Rep. 509, 89 (2011).

[24] D. Meiser, J. Ye, and M. J. Holland, Spin squeezing in
optical lattice clocks via lattice-based QND measurements,
New J. Phys. 10, 073014 (2008).

[25] L. I. R. Gil, R. Mukherjee, E. M. Bridge, M. P. A. Jones, and
T. Pohl, Spin Squeezing in a Rydberg Lattice Clock, Phys.
Rev. Lett. 112, 103601 (2014).

[26] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K.
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