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We consider microscopic models of active particles whose velocities, rotational diffusivities, and
tumbling rates depend on the gradient of a local field that is either externally imposed or depends on
all particle positions. Despite the fundamental differences between active and passive dynamics at the
microscopic scale, we show that a large class of such tactic active systems admit fluctuating hydrodynamics
equivalent to those of interacting Brownian colloids in equilibrium. We exploit this mapping to show how
taxis may lead to the lamellar and micellar phases observed for soft repulsive colloids. In the context of
chemotaxis, we show how the competition between chemoattractant and chemorepellent may lead to a
bona fide equilibrium liquid-gas phase separation in which a loss of thermodynamic stability of the fluid
signals the onset of a chemotactic collapse.
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Over the past ten years, the development of a wealth of
synthetic active systems has paved the way for engineering
active materials [1–9]. Unlike in equilibrium, however,
there is no guiding principle for the self-assembly of active
systems due to the lack of a generic expression for their
steady states. A natural way forward that has been heavily
investigated recently [10–17] is to determine to what extent
the knowledge we have garnered in—and close to—
equilibrium remains relevant to active matter. A first
positive answer is provided by the wealth of works on
effective temperatures in active systems [18–23], which
show that an effective fluctuation-dissipation relation may,
under some conditions, survive activity. Then, similarities
between active and passive dynamics have also been
detected at the level of collective behaviors [24–27]. For
instance, the interplay between self-propulsion and repul-
sive forces leads to a motility-induced phase separation
(MIPS) that is only observed far from equilibrium at large
propulsion velocities [28]. Nevertheless, from the equality
of pressures in coexisting phases to its coarsening dynam-
ics, MIPS shares several features, at the macroscopic scale,
with an equilibrium liquid-gas phase separation [10–13,
29–31]. Two natural questions, then, are how general is this
meso- to large-scale similarity between active and passive
dynamics and under which conditions, if any, does the
microscopic driving out of equilibrium of active particles
disappears upon coarse graining [32]?
Among the physical phenomena that control active

dynamics, taxis plays an important role in a large range
of situations [33]. It is widespread in the biological world—
from the chemotaxis of run-and-tumble bacteria [34] to
the phototaxis of algae [35] through the durotaxis of
cells [36]. Taxis is not limited, however, to living systems.

Self-propelled colloids often rely on the presence of
chemicals in their environment to power their self-
propulsion [1] that also bias their dyamics [37,38]. Taxis
is known to lead to rich, system-specific behaviors that
occur at the microscopic and collective levels [37–45].
While some of these phenomena are nonequilibrium in
nature [42,44,46–48], the aforementioned connections
between active systems and equilibrium physics raise the
question as to whether microscopic tactic dynamics may
also lead to emerging behaviors described by coarse-
grained equilibrium theories.
In this Letter, we answer this question for a broad class of

active particles, which we refer to as ‘tactic active particles’
(TAPs), whose propelling speeds or orientational dynamics
are biased by the gradients of a field cðr; tÞ. Using a
diffusive scaling of time and space, we construct their
fluctuating hydrodynamics and determine under which
conditions the latter satisfy detailed balance, whence
admitting a free-energy functional. This allows us to reveal
a one-to-one correspondence, at this coarse-grained level,
between tactic active particles and interacting Brownian
colloids. Despite the fundamental differences between
these two systems at the microscopic scales, a mapping
may thus exist between the large-scale dynamics and
steady-state statistics of their density fields. We then exploit
this result to report the existence of the micellar and
lamellar phases usually observed for softly repulsive
Brownian colloids. In the context of chemotaxis, we further
show how the competition between chemoattractant and
chemorepellent can be rationalized using the physics of
Brownian colloids undergoing a liquid-gas phase separa-
tion. A simple criterion is then proposed to predict the onset
of a chemotactic collapse, which amounts to a loss of
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thermodynamic stability of the fluid phase. Finally, we
show that externally imposed chemical fields cðrÞmap onto
external potentials in equilibrium.
We consider N self-propelled particles whose positions

evolve as

_ri ¼ vpui þ
ffiffiffiffiffiffiffiffi
2Dt

p
ηi; ð1Þ

where ui is a unit vector indicating the orientation of
particle i, vp is its self-propulsion speed, and fηig forms a
set of N Gaussian white noises whose spatial components
satisfy hηai ðtÞηbj ðt0Þi ¼ δabδijδðt − t0Þ. The particles’ orien-
tations evolve through rotational diffusion (in d > 1
dimensions) and instantaneous tumbles. To model taxis,
we consider two possible couplings between the field c and
the active dynamics. First, the speed of a particle may
depend on its orientation with respect to ∇c through a
linear coupling

vp ¼ v0 − v1ui · ∇c: ð2Þ

Alternatively, taxis may stem from the anisotropy of the
orientational dynamics. We model the latter as direction-
dependent tumbling rate α and rotational diffusivity Γ [49]:

α ¼ α0 þ α1ui · ∇c and Γ ¼ Γ0 þ Γ1ui · ∇c: ð3Þ

Positive values of v1, α1, and Γ1 drive the particles toward
lower values of c [50].
Experimentally, Eq. (2) can be implemented using

feedback loops [51,52] when the speed of self-propelled
particles can be controlled by light—a class that comprises
both Janus colloids [5,51,53] and bacteria [54–57]. The
field cðr; frigÞ can then be an arbitrary function of all
particle positions. Equation (3) is also a standard model for
the chemotaxis of run-and-tumble bacteria [34,41,47,58].
The field cðrÞ then models a chemorepellent (α1 > 0) or a
chemoattractant (α1 < 0), which can be either produced by
the bacteria or imposed externally. To cover both cases, we
consider the many-body dynamics in which cðri; ½ρ�Þ is
both a function of ri and a functional of the particle density.
In the context of diffusing fields, this amounts to integrating
out the dynamics of the chemotactic fields, following,
e.g., [37,38].
Fluctuating mesoscopic description.—While much

insight can be gained from deterministic hydrodynamic
descriptions of active systems [47,59–61], measuring their
irreversibility by, say, computing entropy production
requires working at the fluctuating level. At scales much
larger than their persistence length, noninteracting active
random walks lead to diffusive behaviors [62,63]. We thus
rescale space and time as ðx; tÞ → ðx=L; t=L2Þ, where L is
the linear size of the system, and study the fate of
interacting TAPs under this scaling. To proceed, we average
out the orientational degrees of freedom in the spirit of

[10,25,58,64–66]. To lighten the notations, we focus for
now on rotational diffusion. The N-body probability
density ψðfri;uig; tÞ then evolves as

∂tψ ¼ −L
XN
i¼1

∇ri ·

��
v0 −

v1
L
ui · ∇ri c

�
uiψ −

Dt

L
∇riψ

�

þ L2
X
i

Δui

��
Γ0 þ

Γ1

L
ui · ∇ri c

�
ψ

�
: ð4Þ

Integrating over all orientational degrees of freedom
leads to a conservation equation ∂tϕðfrig; tÞ ¼ −

P
i∇ri ·

Jiðfrig; tÞ, where Ji ≡ −Dt∇riϕþ R
Πjdujðv0L − v1ui ·

∇ri cÞuiψ is the probability current along direction ri and
ϕ is the marginal in space of ψ . To compute the diffusive
limit of Ji, the dynamics, Eq. (4), can be projected onto its
successive N-body harmonics, leading to a hierarchy of
equations [67]. Under the assumption of a lack of long-
range correlations between the particle orientations, a
closure is obtained by noticing that all moments beyond
ϕðfrig; tÞ are fast fields and decay as 1=L (or faster) in the
large system-size limit, leading to

Ji ≃ −
�
Dt þ

v20
dðd − 1ÞΓ0

�
∇riϕ − ϕ

� ∇riv
2
0

2dðd − 1ÞΓ0

þ
�
v0Γ1 þ v1Γ0

dΓ0

�
∇ri c

�
: ð5Þ

At this stage, we have constructed a coarse-grained diffusive
description of the dynamics given by Eq. (1)–(3). We
now restore, for full generality, the possibility of tumbles
and take vi, αi, and Γi constant to focus on the consequences
of taxis. Using stochastic calculus, one then obtains a
corresponding fluctuating hydrodynamics for the density
field ρðrÞ ¼ P

N
i¼1 δðr − riÞ:

∂tρ ¼ −∇ · ½JD þ
ffiffiffiffiffiffiffiffiffi
2Dρ

p
Λ� ð6Þ

JD ¼ −Dρ∇
�
logρþ

�
v1 þ v0

α1 þ ðd− 1ÞΓ1

α0 þ ðd− 1ÞΓ0

�
c
dD

�
; ð7Þ

where Λðr; tÞ is a Gaussian noise field of zero mean and
correlations hΛðr; tÞΛðr0; t0Þi ¼ δðt − t0Þδðr − r0Þ, JD is the
deterministic part of the current, and D is a large-scale
diffusivity:

D ¼ Dt þ
v20

d½α0 þ ðd − 1ÞΓ0�
: ð8Þ

Equations (6) and (7) describe the stochastic dynamics of the
density field of TAPs at scales much larger than their
persistence lengths and times and can now be used to study
their emerging collective behaviors.
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Effective free-energy functionals.—Inspection of Eq. (7)
shows that the deterministic part of the current can be
written as JD ¼ −Dρ∇μ, where μ plays the role of a
nonequilibrium chemical potential [68]. An interesting
outcome of the diffusive scaling is that the noise field
and the mobility appearing in JD satisfy a generalized
Stokes–Einstein relation. The dynamics, Eq. (6), then
satisfies detailed balance whenever one can find a free
energy F ½ρ� whose functional derivative is given by μ.
The solution of such an inverse variational problem [69]

can be obtained by generalizing the Schwarz condition
of integrability to functional integration. In practice, we
introduce

Dðr; r0Þ ¼ δμð½ρ�; rÞ
δρðr0Þ −

δμð½ρ�; r0Þ
δρðrÞ ; ð9Þ

which is such that μðr; ½ρ�Þ is a functional derivative iff for
any two test functions f, g [70],

Z
Dðr; r0ÞfðrÞgðr0Þdrdr0 ¼ 0: ð10Þ

Note that Eq. (10) means that D vanishes as a distribution,
which is not always straightforward to read in its expres-
sion. For instance, in one dimension, μ ¼ ∂k

xρ leads
to Dðx; x0Þ ¼ ð∂k

x − ∂k
x0 Þδðx − x0Þ; μ admits a functional

integral iff k is even, which can be checked easily
using Eq. (10).
Let us now consider a field c given by

cð½ρ�; rÞ ¼
Z

Kðr; r1;…; rp−1Þρðr1Þ;…;

× ρðrp−1Þdr1;…; drp−1: ð11Þ

Equation (10) is satisfied whenever the kernelK is invariant
under any permutation of its variables. The fluctuating
hydrodynamics (6)–(7) then becomes

∂tρ ¼ ∇ ·

�
Dρ∇ δF

δρ
− ffiffiffiffiffiffiffiffiffi

2Dρ
p

Λ
�
; ð12Þ

where the effective free-energy functional F is given by

F ½ρ� ¼
Z

drρðrÞ log ρðrÞ þ v0
dD

�
v1
v0

þ α1 þ ðd − 1ÞΓ1

α0 þ ðd − 1ÞΓ0

�

×
1

p!

Z
Kðr1;…; rpÞρðr1Þ;…; ρðrpÞdr1;…; drp:

ð13Þ

Importantly, Eqs. (12) and (13) also describe the fluctuating
hydrodynamics of N Brownian colloids interacting via a
p-body potential. More precisely, consider N particles
undergoing the equilibrium Langevin dynamics

γ_ri ¼ −
X

j1<…<jp−1

∇riVðri; rj1 ;…; rjp−1Þ þ
ffiffiffiffiffiffiffiffi
2γT

p
η; ð14Þ

where we have introduced a temperature T, a damping γ,
and a p-body potential V. Equations (12) and (13) describe
the fluctuating hydrodynamics of this system upon
identifying

γ−1T ⇔ D

γ−1Vðr1;…; rpÞ ⇔
�
v1
d
þ v0

d
α1 þ ðd − 1ÞΓ1

α0 þ ðd − 1ÞΓ0

�
Kðr1;…; rpÞ:

ð15Þ

The mapping, Eq. (15), establishes a macroscopic connec-
tion between the nonequilibrium dynamics, Eqs. (1)–(3), and
the equilibrium dynamics, Eq. (14), which strongly differ at
the microscopic scale. In particular, the roles played by K
and V in these microscopic dynamics are of very different
natures, despite their similar role in the macroscopic
dynamics of ρ. This differs from approaches in which the
chemotaxis of cells is already modeled at the microscopic
level by Brownian dynamics in which the field c plays the
role of a potential [71]. The macroscopic equivalence
described there with equilibrium dynamics directly stems
from a microscopic one. Note that, while a similarity
between active and passive collective behaviors has been
reported in the case of MIPS [10–13,29–31], the mapping,
Eq. (15), suggests a much broader relationship between
passive and active systems, which we now explore.
Micellar, lamellar, and crystalline phases.—The recent

development of active systems in which the particle
velocities can be controlled individually using light
[51,52] makes the realization of dynamics, Eqs. (1)–(2),
within experimental reach. Once the particle density has
been measured, their velocities can be set according to
Eq. (2) by adjusting the light field, where cðrÞ is obtained
from ρðrÞ using Eq. (11) and an arbitrary kernel K. To
explore the physics these systems can access, we consider a
convolution kernel Kðr; r1Þ ¼ Kðr − r1Þ with two typical
length scales:

KðrÞ ¼ Ae−½σ20=ðσ20−r2Þ�Θðσ0 − jrjÞ þ ϵe−½σ21=σ21−r2�Θðσ1 − jrjÞ;
ð16Þ

where ΘðuÞ is the Heaviside function and we consider
A > ϵ and σ1 > σ0. We report in the top row of Fig. 1
simulations of the active dynamics, Eqs. (1)–(2). As the
density increases, the system undergoes a series of phase
transitions: a disordered gas (not shown) is first replaced by
a crystal of “micelles,” each comprising an increasing
number of particles as the density increases (1st column),
until a laning transition occurs. Further increasing the
density increases the local number of particles forming
the lanes (2nd and 3rd columns). At higher densities,
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inverted crystals develop, in which voids and particles
have exchanged their previous roles (4th column). The
underlying physics can be rationalized thanks to our
equilibrium mapping: simulations of the passive dynam-
ics, Eq. (14), for parameters satisfying Eq. (15) indeed
perfectly match those of TAPs (Fig. 1, bottom row). In the
passive picture, the kernel, Eq. (16), corresponds to a
pairwise potential with a repulsive central core and a
softer repulsive shoulder. Using equilibrium Monte Carlo
simulations, similar potentials have been shown to lead
to a variety of exotic phases [72–74], which are thus
accessible to TAPS.
Chemotaxis: competition between attraction and

repulsion.—While fields cðr; ½ρ�Þ given by Eq. (11) can
be engineered in the lab, they can also be found in nature.
In biological systems, tactic interactions are often mediated
by diffusing molecules, which naturally lead to a linear
coupling between ρ and c. Interactions mediated by
fluctuating membranes or interfaces would lead to non-
linearities that offer an interesting (and challenging) prob-
lem for future works. Inspired by bacterial chemotaxis, we
consider a model system in which active particles interact
through the production of a chemoattractant and a chemo-
repellent. Introducing their concentration fields ca and cr,
we write the tumbling rate of particle i as α ¼ α0 − αa1ui ·∇ca þ αr1ui ·∇cr. Taking αr1 > 0 and αa1 > 0, then bias the
random walk of particle i toward high-ca regions and away
from high-cr regions.
After their production by the particles, at rates aa;r, the

signaling molecules diffuse with diffusivity νa;r and are
degraded at rates λa;r, leading to the dynamics

∂tcnðrÞ ¼ νnΔcnðrÞ − λncn þ an
X
i

δðr − riÞ; ð17Þ

where n ∈ fa; rg. A standard, fast variable treatment on cn
then leads to the screened Poisson equation

�
Δ −

λn
νn

�
cn ¼ −

an
νn

ρ; ð18Þ

which can be solved as cn ¼ ðan=νnÞGn � ρ, where Gn
is the Green function of Eq. (18). The system thus satisfies
the mapping condition, Eq. (11), with p ¼ 2. Introducing
the screening lengths l≡ ffiffiffiffiffiffiffiffiffiffiffi

νn=λn
p

, the Green functions are
given by GnðrÞ ¼ lne−jrj=ln=2 in 1D, GnðrÞ ¼
K0ðjrj=lnÞ=2π in 2D, where K0 is the 0th order modified
Bessel function of the second kind, and KðrÞ ¼
e−jrj=ln=4πjrj in 3D. The mapping, Eq. (15), then shows
this system of active particles to be equivalent at the
fluctuating hydrodynamic level to passive Brownian par-
ticles interacting via a pair potential

VðrÞ ¼ γv0
dα0

�
αr1

ar
νr

GrðrÞ − αa1
aa
νa

GaðrÞ
�
: ð19Þ

The superposition of chemoattractant and chemorepellent
thus directly maps onto an equilibrium problem with
attractive and repulsive interactions. Let us consider the
case in which αr1 > αa1 and lr ≤ la. The physics of this
chemotactic system is now mapped onto the well-known
problem of repulsive hard-core interactions with attractive
tails. The system is purely repulsive for la ¼ lr, hence

ρ

ρ

FIG. 1. Simulations of dynamics, Eqs. (1)–(2), (top) and of the equilibrium dynamics, Eq. (14), (bottom) under the conditions of the
mapping, Eq. (15), with KðrÞ defined by Eq. (16). Color encodes the local density. Parameters: v0 ¼ 1, v1 ¼ 0.2, α0 ¼ 50, σ0 ¼ 0.3,
σ1 ¼ 1, ε ¼ 5, A ¼ 10, Dt ¼ α1 ¼ Γi ¼ 0, dt ¼ 10−3. Snapshots taken at t ¼ 20000 in a system of size 20 × 20. From left to right,
ρ0 ≡ N=L2 is equal to 2, 4, 8, and 10.
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leading to a gas phase. As lr decreases, the attractive tail
develops, allowing for a liquid-gas coexistence. For even
shorter lr, the liquid phase becomes thermodynamically
unstable, leading to a collapse of the system when V̄ ≡R
drVðrÞ < 0 [75]. Figure 2 compares simulations of the

passive dynamics, Eq. (14), and the active dynamics,
Eqs. (1)–(3), using the 2D Green functions of Eq. (18)
as lr is varied. Once again, despite the fundamental
differences between their microscopic dynamics and inter-
actions, the large-scale physics of these two systems is
hardly distinguishable.
External fields.—Finally, while we have focused so far

on collective effects, nothing prevents an additional taxis
toward an externally controlled field wðrÞ. Our models of
taxis, Eqs. (2) and (3), are easily generalized to this case,
using, for instance,

8<
:

vp ¼ v0 − v1ui ·∇c − v2ui ·∇w

α ¼ α0 þ α1ui ·∇cþ α2ui · ∇w
Γ ¼ Γ0 þ Γ1ui ·∇cþ Γ2ui ·∇w;

ð20Þ

where the field c still accounts for interactions between the
self-propelled particles given by Eq. (11). The equilibrium
mapping still holds, with a free energy now given by

F̃ ½ρ� ¼ F ½ρ� þ v0
dD

�
v2
v0

þ α2 þ ðd − 1ÞΓ2

α0 þ ðd − 1ÞΓ0

� Z
drwðrÞρðrÞ;

where F remains given by Eq. (13). The external field wðrÞ
is thus equivalent to an external potential for Brownian
colloids. Much like gravity, it can be used to localize a
dense phase in a phase-separated system.

Discussion.—The mapping between TAPS and Brownian
colloids presented in this Letter offers an interesting route to
control synthetic active matter—for instance, to prepare a
desired initial condition in a light-controlled active system
[51,52]. It also offers a qualitative insight into the large-scale
behaviors of tactic active particles, which, as for MIPS,
should hold beyond the sole systems that will obey exactly
the dynamics, Eqs. (1)–(3).
The derivation of Eq. (5), detailed in the Supplemental

Material [67], works directly at the interacting N-body
level. This differs from standard treatments of chemotaxis
that rely on an explicit dynamics of the field c, assumed to
be slow, to work at an essentially noninteracting level [76].
Our treatment relies on a lack of long-range orientational
order and precludes, in particular, large-scale collective
motion. Whether the latter may emerge in a setting as
simple as the one described by Eqs. (1)–(3) is an open,
challenging question, stimulated in particular by the works
on bacterial traveling waves [42,47]. Furthermore, our
derivation assumes that the field gradients remain finite,
which has to be checked self-consistently. In particular, it
certainly does not hold in the late-stage dynamics of the
chemotactic collapse reported in Fig. 2, which only high-
lights the remarkable agreement between passive and active
dynamics in this case.
In this Letter, we have focused on active systems whose

large-scale dynamics obey detailed balance, but the interest
of our mapping is not limited to these cases. Studying the
linear response to fields violating Eq. (10) or (15) is a
natural next step. Near-equilibrium studies of active matter
models have indeed been shown to capture many interest-
ing properties of active systems [77–80]. Furthermore, the
approach to the inverse variational problem described in
Eqs. (9)–(10) can easily be generalized to more complex
situations—for instance, involving several species of active
particles [44,81–83].
Finally, we have focused on the consequences that the

mapping, Eq. (15), bears on the steady-state distributions
of tactic active systems. The one-to-one correspondence is
established, however, at a dynamical level, as illustrated by
videos 1 and 2 in the Supplemental Material [67]. This
paves the way toward studying the transition states of
tactic active systems using methods like transition path
sampling [84] or the string method [85].
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