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We uncover that antiskyrmion crystals provide an experimentally accessible platform to realize a
magnonic quadrupole topological insulator, whose hallmark signatures are robust magnonic corner states.
Furthermore, we show that tuning an applied magnetic field can trigger the self-assembly of antiskyrmions
carrying a fractional topological charge along the sample edges. Crucially, these fractional antiskyrmions
restore the symmetries needed to enforce the emergence of the magnonic corner states. Using the
machinery of nested Wilson loops, adapted to magnonic systems supported by noncollinear magnetic
textures, we demonstrate the quantization of the bulk quadrupole moment, edge dipole moments, and
corner charges.
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Higher-order topological phases ofmatter ind-dimensional
systems are characterized by the presence of in-gap states that
belong to boundaries of dimension lower than (d − 1),
namely, to hinges or corners [1–3]. Such states could be
protected by crystalline symmetries, sometimes in conjunc-
tion with time reversal, or, alternatively, by particle-hole
symmetry if superconductivity is involved [4–8]. Although
theywere initially postulated in electronic systems, they have
been extended to include also bosonic excitations such as
phonons [9–12] and photons [13–16]. A stringent require-
ment for the realization of these topological states is the local
preservation of the protecting symmetries at the correspond-
ing higher-order boundaries. Therefore, experimental real-
izations of higher-order topology usually involve careful
engineering of the sample boundaries.
Magnons, the quanta of spin waves, are another bosonic

excitation in condensed matter. While theoretical predic-
tions of first-order topological magnonic states are abun-
dant [17–29], so far there have been only a few reports on
their higher-order counterparts [30]. This may be related to
the fact that, in the vicinity of sample boundaries, the
magnetization field can get easily deformed, making it
difficult to preserve crystalline symmetries.
Among the two-dimensional magnetic platforms pre-

dicted to host first-order topological magnonic edge states
are ferromagnetic and antiferromagnetic skyrmion crystals
[26–29]. Magnetic skyrmions are microscopic, stable,
swirling spin configurations characterized by an integer
topological charge [31–34], which in the continuum is
given by Q ¼ ð1=4πÞ R d2 rm · ð∂xm × ∂ymÞ, where m ¼
M=jMj is the normalized magnetization field. The strict
requirements for the integer-valuedness of the net topo-
logical charge are no longer met in confined systems, thus
allowing a net fractional topological charge. In fact, sky-
rmion nucleation has been predicted to take place from the

sample edges [35,36] through continuous growth of inter-
mediate states with fractional topological charge. Isolated
antiskyrmions, a kind of skyrmion with opposite topologi-
cal charge, as well as antiskyrmion crystals were recently
observed in acentric tetragonal Heusler compounds with
D2d crystal symmetry [37].
Here, we show that a magnonic quadrupole topological

insulator can be realized in two-dimensional antiskyrmion
crystals (Fig. 1). This second-order topological phase is
protected by the combined effect of C2xT and C2yT
symmetries, which quantize and render nontrivial the bulk
quadrupole moment [1,2]. The expected robust magnonic
corner states emerge only upon tuning the external mag-
netic field below a critical value, triggering the self-
assembly of fractional antiskyrmions stabilized along the

FIG. 1. Antiskyrmion crystals support topological magnonic
corner states. Magnetic texture of an antiskyrmion crystal in the
vicinity of a sample corner. Fractional antiskyrmions that self-
assemble along the sample edge allow the emergence of a
topological magnonic state whose probability amplitude (de-
picted in yellow) is corner localized.
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sample edges that restore the protecting symmetries
(Fig. 2). Our modeling is inspired by the already available
antiskyrmion-hosting Heusler compounds [37], in which
our predictions could be experimentally tested. However,
we emphasize that our results also apply to ferromagnetic
skyrmion crystals (Supplemental Material [38]).
Antiskyrmion crystal model.—As a minimal model that

can describe the magnetism of acentric tetragonal Heusler
compounds, we consider the following two-dimensional
spin lattice Hamiltonian:

H¼ 1

2

X
hr;r0i

ð−Jr;r0Sr ·Sr0 þDr;r0 ·Sr×Sr0 Þ−gμBBz

X
r

Sr · ẑ;

ð1Þ
where Sr is a spin operator at site r on a square lattice with
lattice constant a. The nearest-neighbor coupling includes

ferromagnetic exchange Jr;r0 ¼ Jðδr−r0;�ax̂ þ δr−r0;�aŷÞ with
J > 0 and Dzyaloshinskii-Moriya (DM) interaction Dr;r0 ¼
Dð∓ x̂δr−r0;�ax̂ � ŷδr−r0;�aŷÞ consistent with D2d crystal
symmetry. Throughout this Letter, we take D=J ¼ 1.0
for numerical simplicity [38]. The last term represents
the coupling to the external magnetic field, Bzẑ, where g
and μB denote the g factor and Bohr magneton, respec-
tively. Dipolar interactions do not affect our results in the
zero-thickness limit [38]; hence, we neglect them for
simplicity.
The classical ground-state texture at zero temperature is

obtained using Monte Carlo simulated annealing [47] and
then minimizing the energy further by solving the atomistic
Landau-Lifshitz-Gilbert equation [38]. A triangular crystal
of antiskyrmions is found in the external magnetic field
range 0.27 ≤ gμBBz=ðJSÞ ≤ 0.7.
It is convenient to introduce the rectangular enlarged

magnetic unit cell (MUC) shown in Fig. 3(a), which
encompasses two antiskyrmions and is commensurate with
the underlying square lattice of spins. This MUC is

(a)

(b)

(c)

FIG. 2. Formation of magnonic corner states in confined
antiskyrmion crystals. (a),(b) Characterization of confined anti-
skyrmion crystals at gμBBz=ðJSÞ ¼ 0.3 and gμBBz=ðJSÞ ¼ 0.42,
respectively. Left: Classical ground-state magnetic texture.
Middle: Magnon spectrum showing corner states (red) and trivial
bound states (blue) localized at the fractional antiskyrmions away
from the corners. Right: Probability density of the corner states,
Γλ (defined in Ref. [38]). (c) Magnon spectrum against the
applied magnetic field with corner and edge-localized states
highlighted as in the above panels. The bottom color bar indicates
different configurations with the configuration in (a) and (b) cor-
responding to the red and green region, respectively.
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FIG. 3. Bulk symmetries and Wannier spectra in antiskyrmion
crystals. (a) Magnetic unit cell of the antiskyrmion crystal with
symmetry lines for C2x=2y. The C2z rotation axis is at the center of
the magnetic unit cell. The first Brillouin zone is also shown.
(b) Bulk magnon spectrum of the antiskyrmion crystal. The
fourth bulk magnon gap is highlighted in yellow. (c),(d) Wannier
spectrum of the four lowest-energy magnon bands showing the
Wannier sector νþx=y in red and ν

−
x=y in blue. (e),(f) Wannier centers

of the Wannier sector ν−x=y. For all panels, the magnetic field is
gμBBz=ðJSÞ ¼ 0.35 and Gx=y ¼ 2π=ðLx=yaÞ with Lx=y denoting
the number of lattice sites in the magnetic unit cell along the
x=y axis.
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invariant under the action of either of the symmetry
operations: C2z, twofold rotation about the z axis; C2xT ,
twofold rotation about the x axis together with time
reversal; and C2yT , twofold rotation about the y axis also
together with time reversal. These are defined with respect
to Cartesian axes with origin at the center of the MUC as
depicted in Fig. 3(a).
Another consequence of adopting such an enlarged

MUC that carries over to the spectrum of magnonic
excitations is the doubling, due to backfolding, of the bulk
magnon bands. For instance, Fig. 3(b) shows the bottom of
the bulk magnon spectrum computed using the enlarged
MUC. Details of the calculation of the magnon spectrum of
the antiskyrmion crystal are in Ref. [38]. Lastly, the double
degeneracy observed for all bands along the paths XM and
MX0 is the result of and is protected by C2xT and C2yT
symmetries [38].
Fractional antiskyrmions and magnonic corner states.—

When confined to finite-sized samples, the magnetic
texture of antiskyrmion crystals exhibits a reconstruction
with drastic consequences for the supported magnonic
excitations. In the vicinity of the sample edges, a tendency
to twist the magnetization is induced by the DM interaction
which competes with the out-of-plane alignment favored by
the magnetic field. For high field values, a twisted magnetic
texture is attained along the edges [48,49], as seen in
Fig. 2(b). As the field is lowered, a critical value Bc, with
gμBBc=ðJSÞ ≈ 0.41, is reached, below which the edge
texture becomes unstable to the nucleation of fractional
antiskyrmions [38]. Because of their mutual repulsion,
antiskyrmions from within the bulk stabilize the newly
nucleated fractional antiskyrmions along the edges of the
sample. This is confirmed by our field-cooling numerical
simulations, which ensure the presence of an antiskyrmion
crystal in the bulk. A similar edge instability behavior has
been reported for skyrmions [36,50], but so far no edge-
stabilized fractional skyrmions have been observed.
The magnon spectrum of a confined antiskyrmion crystal

at gμBBz=ðJSÞ ¼ 0.3 with fractional antiskyrmions stabi-
lized along the sample edge is shown in Fig. 2(a).
Highlighted in red are four degenerate states which are well
separated from the bulk states (gray). They correspond to
corner states, one for each corner of the sample, which will
be shown to originate from higher-order topology. There
also exist topologically trivial bound states (blue) localized
at the fractional antiskyrmions far away from the corners. On
the other hand, at gμBBz=ðJSÞ ¼ 0.42, there are no frac-
tional antiskyrmions [Fig. 2(b)]. Although four modes with
significant probability density near the corners can still be
identified, they are buried among bulk modes, and they
spread over the edges and into the bulk of the sample.
A clearer picture emerges from plotting the magnon

spectrum as a function of the applied magnetic field
[Fig. 2(c)]. We first note that the bulk magnon gap where
corner states are found corresponds to the fourth bulk

magnon gap of the antiskyrmion crystal [Fig. 3(b)].
Remarkably, corner states emerge only when fractional
antiskyrmions are stabilized along the sample edges, i.e.,
for gμBBz=ðJSÞ ≤ 0.40. In this range, the energies of corner
states (red) and states localized at fractional antiskyrmions
(blue) increase linearly with the applied field. These
magnonic corner states are remarkably robust against the
effect of magnetic impurity disorder [38]. Although their
degeneracy is lifted by disorder, they remain isolated,
avoiding hybridization with bulk modes. Furthermore,
taking advantage of finite-size effects and introducing holes
within the bulk of the sample, we show in Ref. [38] that
magnonic corner states can be engineered at select corners
and inside the sample, respectively.
Bulk quadrupole moment.—The robust magnonic corner

states we have uncovered are, in fact, second-order topo-
logical magnonic states. More precisely, antiskyrmion
crystals provide a platform to realize magnonic quadrupole
topological insulators. This higher-order topological phase
is protected by the combined action of C2xT and C2yT
symmetries, resulting in a quantized bulk quadrupole
moment. We use the nested Wilson loop construction,
which we adapted to magnons to compute the bulk
quadrupole moment [38].
Parallel transport in the subspace of occupied states

over noncontractible loops in the Brillouin zone is equiv-
alent to a unitary transformation whose matrix representa-
tion is called a Wilson loop. Crucially, the eigenvalues
of the position operator along x=y projected on the sub-
space of occupied bands coincide with the complex phases
of the Wilson loop eigenvalues along kx=ky, given by

2πνjxðkyÞ=2πνjyðkxÞ [51]. From this connection and because
the eigenstates of the projected position operator are
Wannier states, the νjxðkyÞ and νjyðkxÞ are called Wannier
centers or Wannier spectra. They describe how magnons
from the subspace of occupied bands distribute over
the MUC.
Before computing the bulk quadrupole moment, the

following three essential requirements must be fulfilled [2]:
(i) The corner states lie within the nth bulk magnon gap
with n ≥ 2; (ii) the lowest n magnon bands carry a
vanishing net Chern number; and (iii) the bulk dipole
moment vanishes. As mentioned above, the magnonic
corner states are found within the fourth bulk magnon
gap. Also, the four bulk magnon bands below this gap carry
no Chern number in the magnetic field range of interest.
The bulk polarization of the occupied bands is defined as
the dipole moment of the corresponding Wannier states,
which is equivalent to a sum over Wannier centers [52].
Thus, the Cartesian components of the total bulk polari-
zation are given by

px ¼
1

2π

Z
dky

XM
j¼1

νjxðkyÞ mod 1; ð2Þ

PHYSICAL REVIEW LETTERS 125, 207204 (2020)

207204-3



py ¼
1

2π

Z
dkx

XM
j¼1

νjyðkxÞ mod 1; ð3Þ

where M ¼ 4 is the number of bulk bands below the gap
where the magnonic corner states are found. We show in
Ref. [38] that the symmetries of the MUC translate into the
following constraints on the Wannier spectra:

νjxðkyÞ ¼C2yT − νjxð−kyÞ mod 1; ð4Þ

νjyðkxÞ ¼C2xT − νjyð−kxÞ mod 1: ð5Þ

Therefore, νjx can be constant and equal to either 0 or 1
2
, the

other possibility being that it has a partner νj
0
x such that

νjxðkyÞ ¼ −νj
0
x ð−kyÞ. Similar allowed values can be

expected for νjy. Figures 3(c) and 3(d) show the Wannier
spectra of the lowest four bulk magnon bands. The absence
of flat Wannier bands at 1

2
implies that the bulk dipole

moment vanishes, i.e., ðpx; pyÞ ¼ ð0; 0Þ.
Now that we have established the fulfillment of the

above three desiderata, we proceed to compute the bulk
quadrupole moment. As shown in Figs. 3(c) and 3(d), the
Wannier spectra can be separated into two Wannier sectors
corresponding to the subspaces of magnonic states that
localize along the positive (red) and negative (blue) x=y
directions of the MUC (the origin of coordinates is located
at its center). Within each of these subspaces, the nested
Wilson loops can be constructed (details in Ref. [38]).
Figure 3(e) depicts the Wannier centers νν

−
x ;p
y ðkxÞ of the

nested Wilson loop along ky of the Wannier sector ν−x ,
which indicate the localization along the y direction of the
subspace of magnonic states that are localized toward the
negative x direction. Similarly, Fig. 3(f) shows the Wannier
centers ν

ν−y ;p
x ðkyÞ of the nested Wilson loop along kx of the

Wannier sector ν−y . These Wannier centers from positive
and negative Wannier sectors determine the Wannier sector
polarizations

pν�x
y ¼ 1

2π

Z
dkx

X2
p¼1

νν
�
x ;p
y ðkxÞ mod 1; ð6Þ

p
ν�y
x ¼ 1

2π

Z
dky

X2
p¼1

ν
ν�y ;p
x ðkyÞ mod 1; ð7Þ

which, in turn, are used to define the bulk quadrupole
moment

qxy ¼ pνþx
y p

νþy
x þ pν−x

y p
ν−y
x : ð8Þ

Although not critical to our results, constraints from C2z
symmetry on the nested Wilson loop eigenvalues further

simplify it to qxy ¼ 2pν−x
y p

ν−y
x . The Wannier bands needed to

compute pν−x
y and p

ν−y
x are shown in Figs. 3(e) and 3(f). As

constrained byC2xT andC2yT symmetries, within numeri-
cal error, one of the bands is quantized to 0 and the other to
− 1

2
. Therefore, we obtain p

ν−y
x ¼ pν−x

y ¼ − 1
2
, which implies

the quantization of the bulk quadrupole moment to qxy ¼ 1
2
.

Furthermore, our numerical calculations show that the
bulk quadrupole moment is quantized for any value of the
external magnetic field, as long as the antiskyrmion crystal
remains stable.
Bulk-boundary correspondence and fractional antiskyr-

mions.—The emergence of magnonic corner states is not
guaranteed by a quantized bulk quadrupole moment.
Boundaries must also preserve the protecting C2xT and
C2yT symmetries. At high applied fields, even though the
bulk quadrupole moment is quantized, no magnonic corner
states are realized, because the magnetic texture of the
antiskyrmion crystal is distorted near the sample bounda-
ries [Fig. 2(b)], thus breaking the protecting symmetries.
Decreasing the magnetic field below the critical value Bc
triggers the nucleation of fractional antiskyrmions from the
sample boundaries. The newly formed fractional antiskyr-
mions play the role of the nearest neighbors missing from
antiskyrmions located near the edge of the sample.
Therefore, by virtue of their mutual repulsion with bulk
antiskyrmions, fractional antiskyrmions self-assemble
along the sample edges. This process restores the protecting
symmetries, thus allowing the formation of magnonic
corner states.
Two hallmark signatures are expected of a quantized

quadrupole moment: edge dipole moments and corner
charges. These should also be quantized in a manner
consistent with the bulk quadrupole, i.e., qxy¼jpedge

x j ¼
jpedge

y j¼jQcj. The edges of the sample are themselves
topological insulating, and the corner states are simulta-
neous end states of two converging edges [1,2]. Therefore,
as an initial consistency check, we can just count the number
ofmagnonic corner states. Only one such state is expected at
each corner.
To compute the edge dipole moments, we study the

antiskyrmion crystal in a strip geometry [38]. Indeed, we
find that, only for applied fields below Bc, the edge dipole
moments are quantized to jpedge

x j ¼ jpedge
y j ¼ 1

2
with oppo-

site signs at opposite edges.
Although magnons carry no electric charge, we can still

introduce a quantity similar to the electric boundary
charges [53–59] constructed out of magnon number den-
sities. The fractional corner “charge” carried by the lowest
four bulk magnon bands of the antiskyrmion crystal in a
finite system is given by [60]

Qc ¼
X

r∈one sector

ϕðrÞ mod 1; ð9Þ
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with ϕðrÞ ¼ ρðrÞ − ½ρ1ðrÞ þ ρ2ðrÞ�, where ρðrÞ is the mag-
non density of the finite system and ρ1ðrÞ=ρ2ðrÞ is the
magnon density of a 1D periodic system along the x=y axis
(precise definitions in Ref. [38]). C2xT and C2yT define
four equivalent symmetry sectors [separated by green
dashed lines in Fig. 4(a)], and the magnon charge density
ϕðrÞ is summed over one of them to obtain Qc. Figure 4(a)
clearly shows the magnon charge density is corner local-
ized and Qc is quantized to 1

2
at each symmetry sector. As a

function of the magnetic field, depicted in Fig. 4(b), Qc
remains quantized below and suddenly increases above the
edge instability critical field, signaling a topological phase
transition.
Conclusions.—We have uncovered that antiskyrmion

crystals can realize a magnonic quadrupole topological
insulator. Tuning an applied magnetic field induces the
self-assembly of fractional antiskyrmions along the edges
of the sample. Remarkably, these fractional antiskyrmions
restore the protecting symmetries that allow the formation
of robust magnonic corner states. Acentric tetragonal
Heusler compounds, where antiskyrmion crystals and edge
fractional objects have already been observed, constitute
an ideal platform to test our findings. But we note that
our theory also applies to ferromagnetic skyrmion crystals,
where the protecting symmetries for Bloch and
Néel skyrmions, also symmetries of the MUC, are
fC2xT ; C2yT g and fMxT ;MyT g, respectively [38]. The
magnonic corner states energy can be measured by ferro-
magnetic resonance spectroscopy. An ac magnetic field can
selectively excite the corner states, and then their spatial
distribution can be measured with NV center magnetometry
[61] or near-field Brillouin light scattering [62]. SinceQc is
defined in terms of magnon densities, the aforementioned

techniques can be used to measure it as in Ref. [60].
Magnonic corner states can be used as a magnon cavity
[63] with a high Q factor [14] to enhance magnon-photon
[64,65] interactions for quantum computing and quantum
information applications. Our study highlights a new form
of topological excitation in magnetic systems and its
potential use in the design of future magnonic devices.
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