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Strong zero modes provide a paradigm for quantum many-body systems to encode local degrees of
freedom that remain coherent far from the ground state. Example systems include Zn chiral quantum clock
models with strong zero modes related to Zn parafermions. Here, we show how these models and their zero
modes arise from geometric chirality in fermionic Mott insulators, focusing on n ¼ 3 where the Mott
insulators are three-leg ladders. We link such ladders to Z3 chiral clock models by combining bosonization
with general symmetry considerations. We also introduce a concrete lattice model which we show to map to
the Z3 chiral clock model, perturbed by the Uimin-Lai-Sutherland Hamiltonian arising via superexchange.
We demonstrate the presence of strong zero modes in this perturbed model by showing that correlators of
clock operators at the edge remain close to their initial value for times exponentially long in the system size,
even at infinite temperature.
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Quantum many-body systems supporting local degrees
of freedom that remain coherent for long times even away
from the ground state may open up nonzero temperature, or
even nonequilibrium, regimes for quantum information
processing [1–17]. A key requirement for such coherence
is the presence of degeneracies across the energy spectrum.
“Strong zero modes” [3] provide a compelling mechanism
for this (another route is by many-body localization
[9–17]): these are objects that commute with the
Hamiltonian (up to corrections exponentially decaying in
system size), but they do not commute with a discrete
symmetry, hence ensuring spectral degeneracies. When
located at the system edge, they furthermore furnish the
desired longtime-coherent local degrees of freedom [1–8].
One of the most intriguing paradigms where zero modes

appear are quantum clock models with Zn≥3 symmetry
[1–4]. The zero modes include Zn parafermions, signifying
a (nonlocal) relation to electronic systems proposed for
beyond-Majorana schemes of topological quantum com-
putation [1–4,18–33]. To support strong zero modes, the
clock models require a chiral (i.e., reflection-symmetry
breaking) deformation of their couplings [1–4,34–36].
While phase transitions in the chiral-quantum-clock-model
universality class have seen realizations [37–41], the chiral
quantum clock models themselves, and their strong zero
modes, are yet to find their origin in an underlying
microscopic system.
Here, we describe a paradigm for how chiral quantum

clock models and their strong zero modes can arise in
Mott insulators. While somewhat abstract in terms of clock
models, chirality is a simple geometrical feature for
particles hopping on a lattice [42], with examples such
as chiral nanotubes, molecules, or crystals [43,44].

Our approach is centered on the combination of such
geometric chirality with strong interactions.
We focus on the simplest case of Z3 symmetry and study

spinless fermion systems such as the three-leg ladder in
Fig. 1. We take two complementary approaches: (i) boso-
nization that captures generic features beyond a single
microscopic model but which is only phenomenological
in interactions, and (ii) strong-interaction perturbation
theory for the system in Fig. 1. Using bosonization, we
show how chiral-quantum-clock-model physics, including
zero modes, can arise in the presence of certain symmetries

(a)

(b)

(c)

FIG. 1. Three-leg geometry for spinless fermions. (a) The
hopping amplitudes J and J⊥. (b) The interaction U between
fermions at the same i and the interactions between neighboring
sites V0, V1, and V2. Geometric chirality [e.g., as in panel (c)]
naturally leads to chiral interactions (V1 ≠ V2).
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(e.g., Z3 and time reversal) and sufficiently strong and
chiral interactions. In our lattice system, we provide an
explicit mapping to the chiral three-state clock model
perturbed by terms arising via superexchange, and assess
the presence of strong zero modes by computing dynamical
correlators of clock operators at the edge using exact
diagonalization.
Models and symmetries.—We set our terminology using

the system in Fig. 1. Anticipating the clock-model map-
ping, we refer to the positions i along the legs as sites.
The legs are of length l and the sites are a0 apart. The
Hamiltonian is H ¼ H0 þHint with

H0 ¼ −
J
2

X
i;a

c†i;aciþ1;a þ J⊥
X
i;a

c†i;aci;aþ1 þ H:c:;

Hint ¼
X
i;a;b

�
Vbni;aniþ1;aþb þ

U
2
ni;ani;b

�
: ð1Þ

Here, c†i;aþ3 ¼ c†i;a creates a fermion at site i and leg
a ∈ f0; 1; 2g; ni;a ¼ c†i;aci;a is the corresponding number
operator. We use real intraleg and interleg tunneling
amplitudes J and J⊥, respectively.
Geometric chirality is present if V1 ≠ V2. We character-

ize this by introducing V ¼ 1
3

P
a Va and

V 0 sinΦ ¼ V1 − V2ffiffiffi
3

p ; V 0 cosΦ ¼ 2V0 − V1 − V2

3
: ð2Þ

The system is invariant under the Z3 transformation S
cyclically permuting the legs. Further symmetries include
time-reversal T and, for the bulk physics (i.e., far from the
boundaries), lattice translations along the legs. The generic
systems we shall discuss are three-leg ladders beyond
Eq. (1), but which still respect these symmetries [45].
We work at 1=3 filling,

P
i;a ni;aa0=l ¼ 1.

Low-energy processes.—We next prepare for bosoniza-
tion by describing the low-energy bulk processes. By low
energy, we mean processes near the Fermi points. Our
bosonization thus starts with moderate interactions; how-
ever, its phenomenological scope is broader and includes
strong interactions [46,47]. We first diagonalize the Z3

transformation using fi;α ¼
P

a vαaci;a, where v is a 3 × 3
unitary matrix; this diagonalizes the single-particle
Hamiltonian into three bands labeled by α ∈ f1; 2; 3g
(Fig. 2 for our concrete model [48]). Z3 and time-reversal
symmetries now act as Sfj;αS−1 ¼ ωαfj;α (where
ω ¼ e2πi=3), and T fj;1T −1 ¼ fj;2, T fj;3T −1 ¼ fj;3. At
1=3 filling, and for moderate band splitting [J⊥ ≲ J=3
for Eq. (1)], there are six Fermi points kF;α. Working near
kF;α, we can split fj;α into left (L) and right (R)
movers, fj;α=

ffiffiffiffiffi
a0

p ¼ RαðxÞeikF;αx þ LαðxÞe−ikF;αx, with
x ¼ ja0 ∈ ½0;l�. The symmetries (including crystal-
momentum conservation) allow three classes of four-
fermion processes: forward scattering, band-3 pairing,

and “not-3” scattering. Forward scattering contributes to
the quadratic part of the theory [46,47]. The band-3
pairings Op1 ¼ L†

1R
†
2L3R3 and Op2 ¼ L†

2R
†
1L3R3 describe

the transfer between band-3 fermion pairs and fermions in
bands 1, 2. Not-3 scattering O3̄ ¼ L†

1R
†
2L2R1 does not

involve band-3 fermions. These, and their Hermitian
conjugates, are the lowest-order symmetry-allowed proc-
esses. They transfer R movers (and L movers) across
different bands, but conserve their total number separately.
To capture the phenomenology, we include the umklapp
Ou ¼ L†

1L
†
2L

†
3R1R2R3, which is the lowest-order

symmetry-allowed process scattering R and L movers into
each other without interband transfer.
Bosonization.—The complementary character of the

Oa≠u and Ou processes translates to the separation into
charge and neutral degrees of freedom. This becomes
transparent in bosonization, an approach describing
the corresponding density fluctuations [46,47]. We con-
sider densities for charge Ñc ¼

P
j Nj and neutral

Ñ1 ¼ N1 − N2, Ñ2¼N1þN2−2N3 combinations, where
Nα is the particle number in band α. Note that
S ¼ exp½ð2πi=3ÞÑ1�, as implied by the transformation of
fα. We use conjugate pairs of fields θμ and φμ (μ ¼ c; 1; 2)
whose only nonzero commutators are ½θμðxÞ;φνðyÞ� ¼
iδμνΘðx − yÞ with ΘðxÞ the Heaviside step function. The
densities (relative to the Fermi sea) are ρμ ¼

ffiffiffiffiffiffiffiffiffiffi
βμ=π

p ∂xθμ
with βc;1;2 ¼ 3, 2, 6. In terms of these fields, the band-α
electron operators ψþα ¼ Rα and ψ−α ¼ Lα are ψηα∝
ðκα= ffiffiffiffiffi

a0
p Þexpfi ffiffiffi

π
p ½ðφcþηθcÞ=

ffiffiffi
3

p þdα ·ðφ̃þηθ̃Þ�g where
κα are Klein factors, φ̃ ¼ ðφ1;φ2Þ, θ̃ ¼ ðθ1; θ2Þ,
d1 ¼ ð1= ffiffiffi

2
p

; 1=
ffiffiffi
6

p Þ, d2¼ð−1= ffiffiffi
2

p
;1=

ffiffiffi
6

p Þ, −d3¼d1þd2
[38,49,50]. At the boundaries (x ¼ 0;l), zero charge
current implies ∂xφcjx¼0;l ¼ 0; in the neutral sector we
require only that boundary conditions respect S and T .

FIG. 2. The single-particle spectrum of H0 in Eq. (1) for
J⊥=J ¼ 0.12. Bands α ¼ 1, 2 remain degenerate for nonzero J⊥
[48]. At 1=3 filling, momentum-conserving interband four-
fermion processes combine pairs of two-fermion processes
(arrows) between kF;α. The arrow colors indicate the bands
involved (red, 3 and 1; blue, 3 and 2; purple, 1 and 2); the
vertical offset is only for visualization. Z3 symmetry fixes the
combinations to be those in the dashed boxes. Reversing all
arrows gives the Hermitian conjugate processes.
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The low-energy bulk Hamiltonian is Hb ¼
Hfw þ R

dxV. Here, Hfw encodes single-particle and
forward-scattering terms. Although Hfw influences the
phase diagram, for the essential features of the gapped
regime we are interested in we can focus entirely on

Vðθc;θ1;φ2Þ ¼ g3̄ cos
ffiffiffiffiffiffi
8π

p
θ1 þ g2 cos

ffiffiffiffiffiffi
2π

p
θ1 cos

ffiffiffiffiffiffi
6π

p
φ2

þ g1 sin
ffiffiffiffiffiffi
2π

p
θ1 sin

ffiffiffiffiffiffi
6π

p
φ2 þ gu cos

ffiffiffiffiffiffiffiffi
12π

p
θc

ð3Þ

encoding the Oa processes. (We absorbed in g1;2 the
product iκ1κ2.) The following hold for the neutral-
sector couplings g1;2;3̄, regardless of microscopic details:
(i) interactions involving only the total density [such as the
U term in Eq. (1)] conserve each band particle number and
hence do not contribute to g1;2; (ii) chirality enters via g1
because spatial reflections take Op1 ↔ Op2 and preserve
O3̄, so g2;3̄ are invariant but g1 changes sign.
The physics we are interested in is where V has deep

minima confining θc;1 and φ2, a gapped regime that is
expected to arise for sufficiently strong repulsive total-
density interactions, as we shall confirm for our concrete
model Eq. (1). Such strong microscopic interactions may
place the problem beyond the scope of the weak-coupling
renormalization group. One can, however, seek the chiral-
clock-model phenomenology via a semiclassical analysis
[46,47] of the field configurations that minimize V. We start
with the charge sector: the field θc is a constant locked to
one of the minima of the umklapp cosine. The fluctuations
ρc ∝ ∂xθc are thus absent; 1=3 filling now means constant
density of one particle per site.
The neutral sector works analogously. We focus on the

chiral-clock-model phenomenology arising for g3̄ > 0, a
regime suggested by the contributions of strong repulsive
total-density interactions. In the absence of chirality
(g1 ¼ 0), a gap arises for large jg2j ≫ g3̄; in this case
the fields ð ffiffiffiffiffiffi

2π
p

θ1;
ffiffiffiffiffiffi
6π

p
φ2Þ are locked to the configuration

π½nx; nx þ 2ny þ Θðg2Þ�. For large g3̄ ≫ jg2j, the system is
gapless if g1 ¼ 0 and has central charge c ¼ 1. These
features for jg2j ≫ g3̄ and g3̄ ≫ jg2j are similar to those of
the ordered and incommensurate phases of the nonchiral
regimes of the clock model, respectively. Furthermore, the
chiral coupling g1 ≠ 0 can open a gap for g3̄ ≫ jg2j (with
locking configuration π½nx þ 1

2
; nx þ 2ny − 1

2
sgnðg1Þ�),

while for jg2j ≫ g3̄ it can close the gap (provided
jg1j ≈ jg2j), similarly to the effects of chiral deformations
on the incommensurate and ordered phases of the clock
model. The neutral part of V for g3̄ ≫ jg2j and g1 ≠ 0 is
illustrated in Fig. 3.
The correspondence between the fermions ψηα and the

fields θμ, φμ implies that the latter are periodic variables. In
particular, ðθc; θ1;φ2Þ ∼ ðθc; θ1;φ2Þ þ

ffiffiffi
π

p
n · Γ (together

with a suitable shift of the conjugate pairs) where n is a
vector of integers and the matrix Γ is

Γ ¼

0
B@

ffiffiffi
3

p
0 0

0
ffiffiffi
2

p
0

1=
ffiffiffi
3

p
−3=

ffiffiffi
2

p
1=

ffiffiffi
6

p

1
CA:

Under this compactification, the six minima in Fig. 3, at a
given θc, are inequivalent. Six inequivalent minima can
also be arranged using a single θ1 (and θc) but doubling the
φ2 interval. The operator expð2πiÑ2=6Þ, which commutes
with Hb, toggles between the six minima in the
latter arrangement; since the values of Ñc;1 specify
expð2πiÑ2=6Þ, for a given Ñc;1 there is a single ground
state corresponding to a superposition between the six
minima. The presence of Z3 symmetry, however, guaran-
tees the conservation only of Ñ1 mod 3; e.g., boundary
terms (or corresponding neutral-sector boundary condi-
tions) generically couple states with Ñ1 and Ñ1 þ 3. For
fixed particle number Ñc, we are thus left with three towers
of excitations, each labeled by its Z3 eigenvalue.
Zero modes.—A Z3 label in itself does not imply

degeneracies in the spectrum. However, a threefold degen-
eracy arises if a zero-mode operator χ exists that commutes
with the Hamiltonian while toggling theZ3 label. To obtain
such zero modes, we consider the ground-state projections
χ0;l of neutral operators at the edge (x ¼ 0;l), taking
operators that change Ñ1 mod 3. Neutrality ensures
maintaining a fixed particle number, while being at the
edge means that χ0;l create in ðθ1;φ2Þ only boundary kinks,
a feature compatible [18–21] with commutation with at
least the ground state (or, more generally, subgap) sector of
the Hamiltonian. As in parafermion systems, there are
several choices for χ0;l [21]. We choose χ0;l as the ground-
state projection of an operator Oτðx ¼ 0;lÞ in the expan-
sion of f†1f2, with O†

τ ∝ ei
1
3

ffiffiffiffiffiffi
12π

p
θcei

ffiffiffiffi
2π

p
φ1ei

1
3

ffiffiffiffi
6π

p
θ2 . Hence,

χ0;l are local operators with χ0χl ¼ χlχ0. They also satisfy
χ0;lS ¼ ωSχ0;l, the requisite toggling of the Z3 label.

FIG. 3. The neutral part of V=jg3̄j, for g1=g3̄ ¼ −0.15, g2=g3̄ ¼
0.1 and g3̄ > 0. Taking the compactification of the fields into
account, there are six inequivalent minima (blue). For a given
charge Ñc and Z3 label Ñ1 mod 3, the ground state corresponds
to a superposition involving all six minima.
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By introducing the nonlocal combination χ0l ¼ Sχl, we can
also use a pair of mutual Z3 parafermions: χ0χ0l ¼ ωχ0lχ0.
The phenomenology recovered here matches that of the
chiral clock model [1–4], including the nonlocal nature of
its parafermions. However, bosonization indicates the zero-

mode character of χð0Þ0;l only for subgap energies, which is
sufficient only for their status as “weak” zero modes [4].
To study whether strong zero modes emerge, and for a
concrete illustration of our bosonization phenomenology,
we next turn to our microscopic model Eq. (1).
Strong-interaction perturbation theory.—We work deep

in the Mott insulator regime U ≫ jJj. We start with J ¼
J⊥ ¼ Va ¼ 0 in Eq. (1). This limit has a highly degenerate
multiplet of lowest-energy states, each with one fermion
per site. Turning on a small Va and J⊥ splits the low-energy
states, without coupling to high-energy states with more
than one fermion per site. In contrast, intraleg tunneling
HJ ¼ −ðJ=2ÞPa;i c

†
i;aciþ1;a þ H:c: connects low- and

high-energy states. To obtain the Hamiltonian governing
the physics of low-energy states, we perform perturbation
theory in J=U. The first nonzero correction is in second
order in J=U, corresponding to a Z3 analog of super-
exchange. We find the effective Hamiltonian

Heff ¼
X
j;a;b

�
Vbnj;anjþ1;aþb þ

J2

2U
c†j;acjþ1;ac

†
jþ1;bcj;b

�

þ J⊥
X
j;a

ðc†j;acj;aþ1 þ H:c:Þ; ð4Þ

valid for U ≫ jVaj; jJj; jJ⊥j.
Using the single occupation per site constraintP
a nj;a ¼ 1, we can rewrite Heff in a form where the

relation to the chiral clock model becomes manifest [51].
We map fermion bilinears to matrices c†j;acj;b → Mab

j , with
components ðMab

j Þkl ¼ δakδbl (omitting factors of identity
away from site j). We find

Heff ¼
XN
j¼1

J⊥σjþ
XN−1

j¼1

V 0eiΦ

2
τjτ

†
jþ1þ

J2

4U
Pj;jþ1þH:c:; ð5Þ

where we have used Eq. (2) and N ¼ l=a0. Here, τj and σj
are the clock variables

τj ¼

0
B@

1 0 0

0 ω 0

0 0 ω2

1
CA; σj ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA; ð6Þ

while Pj;jþ1jaijjbijþ1 ¼ jbijjaijþ1 is the swap operator
between neighboring sites. For J ¼ 0, Eq. (5) recovers
the three-state quantum clock model. It is chiral for
Φ ≠ 0 mod π=3 [1,4]. Equations (2) and (5) thus explicitly
establish the link between geometric and clock-model
chirality. For J ≠ 0, the clock model is perturbed by the

Uimin-Lai-Sutherland Hamiltonian [52–54], seen to arise
here from superexchange.
For J ¼ 0, weak J⊥, and Φ sufficiently away from 0 mod

π=3, the system supports strong zero modes with the
same properties as that of χð0Þ0;l above [1]. Our next goal
is to assess whether these strong zero modes survive
the superexchange perturbation. We expect this for
jV 0 sinð3ΦÞj ≫ jJ⊥j; J2=U: here the combination of the
spectral separation between various J ¼ J⊥ ¼ 0 domain-
wall sectors and the scale separation between the chirality-
induced intrasector splittings versus small jJ⊥j; J2=U might
offer protection also against small nonzero J thanks to the
restricted manner in which the swap operation acts on
domain-wall states [51]. To assess the presence of strong
zero modes, we first perform exact diagonalization to study
the energy spectrum in this regime [Fig. 4(a)]. The existence
of a zero mode that arranges the spectrum in Z3 triplets is
manifest, both for the three lowest-lying states whose energy
splitting decays consistently with an exponential in N, as
well as for higher energies where the much smaller triplet
splitting is almost invisible on the scale of the figure. Our
findings are further corroborated by the 5 < N < 100
excited-state spectrum in the single-domain-wall sector,
where the Z3-triplet splittings decay exponentially with N
to a value numerically indistinguishable from zero [51].
We next study dynamical consequences of these zero

modes. Their edge-mode nature and exchange properties

(a)

(b)

FIG. 4. (a) Low-lying energies of Heff , measured from the
ground state, for various system sizes N. The coloring changes
for every three consecutive levels, repeating after the sixth color.
The values of J2=2U and J⊥ (shown at the top, with Φ) are
measured in units of V 0. The lowest excited states have energy
(blue guide for the eye) consistent with ground-state-triplet
splitting decaying exponentially with N. The excited-state-triplet
splittings are barely visible on the scale of the figure. (b) The
dynamical correlator Tr½τ1ðtÞτ†1ð0Þ�. The persistence close to
the initial value for times exponentially long in N indicates
the presence of strong zero modes.
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with S ¼ Q
N
j¼1 σj suggest that they contribute significantly

to τj at the boundary (in fact, τ1;N are commuting zero
modes for J ¼ J⊥ ¼ 0 [1,4], akin to χ0;l). We compute the
infinite-temperature correlator [5,6]

Tr½τ1ðtÞτ†1ð0Þ� ¼ 3−N
X
k;j

jhkjτ1jjij2eiðEk−EjÞt; ð7Þ

where Ej is the energy of the eigenstate jji. Time-
independent contributions to the correlator come only from
jki, jji in degenerate triplets, provided hkjτ1jji ≠ 0.
(Diagonal matrix elements vanish due to τ1S ¼ ωSτ1.)
For the signal to be appreciable, hkjτ1jji ≠ 0 should hold
for many degenerate triplets. In Fig. 4(b) we show the
numerically evaluated correlator for two values of the
parameters. (The behavior is similar for other values in
the jV 0 sinð3ΦÞj ≫ jJ⊥j; J2=U regime, even for weakly
disordered systems [51].) The results are consistent with
the correlator remaining close to its initial value for times
exponentially long in system size. Such behavior indicates
exponentially decaying triplet splittings across the whole
spectrum, and thus illustrates how strong zero modes lead
to longtime coherence far from the ground state.
Conclusions.—We have shown how geometric chirality

in a Z3- and T -invariant Mott insulator can lead to chiral-
quantum-clock-model physics, including strong zero
modes. We illuminated this from two complementary
perspectives: bosonization based on general symmetry
considerations, and the analysis of the model Eq. (1) for
strong interactions U ≫ jJj. In our bosonization, after
implementing the Mott-insulating regime by gapping out
the charge degrees of freedom, we uncovered fingerprints
of the ordered and incommensurate phases of the chiral
quantum clock model, and established the presence of zero
modes in the ordered phase. This suggests that chiral
interactions provide a favorable setting for chiral-
quantum-clock-model physics to arise in Mott insulators.
Our model Eq. (1) gives concrete evidence for this:
for U ≫ jJj, we explicitly recover the chiral quantum
clock model, perturbed by the Uimin-Lai-Sutherland
Hamiltonian via superexchange. Our simulations suggest
that the strong zero modes survive the superexchange
perturbation, leading to the correlators of clock operators
at the edge to persist near their initial value for times
exponentially long in system size, even at infinite temper-
ature. Interesting directions for future research include the
study of the phase diagram and dynamics of our model with
approaches that probe the thermodynamic limit. This will,
in particular, illuminate where the zero modes we found fall
in the refined “strong” versus “almost strong” classification
of Refs. [5,6].
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