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We investigate theoretically and experimentally stochastic resonance in a quantum dot coupled to
electron source and drain via time-dependent tunnel barriers. A central finding is a transition visible in the
current noise spectrum as a bifurcation of a dip originally at zero frequency. The transition occurs close to
the stochastic resonance working point and relates to quantized pumping. For the evaluation of power
spectra from measured waiting times, we generalize a result from renewal theory to the ac-driven case.
Moreover, we develop a master equation method to obtain phase-averaged current noise spectra for driven
quantum transport.
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Stochastic resonance (SR) is a counterintuitive pheno-
menon by which the output signal of a device improves due
to the action of external noise [1,2]. Typically, it emerges as
an interplay of periodic driving, nonlinearities, and noise-
induced activation. The paradigmatic example consists of
two states separated by an energetic barrier, where an
external oscillating force causes periodic transitions con-
sidered as signal. When the force is rather weak, noise may
help to cross the barrier and, thus, improves the signal. For
very strong noise, however, the output inherits too much
randomness and degrades. This reflects a prominent feature
of SR, namely an optimal working point at an intermediate
noise level. Typically SR occurs when the driving fre-
quency roughly matches one half of the intrinsic decay rate
of the system f ¼ Γ0=2 [2]. SR has been suggested as the
mechanism behind very different phenomena ranging from
the periodic recurrence of ice ages to biological signal
processing [3]. Many of these ideas have been realized
experimentally in the classical regime, while the quantum
regime has been explored mainly theoretically [4–6].
Recently in an experiment with a biased quantum dot

with time-dependent tunnel rates, SR has been extended to
the realm of quantum transport with the zero-frequency
noise of the current as a measure for the signal quality [7]. It
turned out that the current noise indeed assumes its
minimum when the driving frequency obeys the mentioned
SR condition. However, as only zero-frequency properties
of the experimental data were evaluated, the question arises
whether additional information can be extracted from the
full power spectrum of the current fluctuations.
With this Letter, we demonstrate that the current noise

spectrum provides relevant insight to SR in quantum
transport. We develop a method for computing the fre-
quency-dependent Fano factor [8–10] for ac-driven trans-
port and compare the results with experimental data from

an ac-driven quantum dot similar to Ref. [7]. For the data
analysis, we generalize the relation between waiting times
and the power spectrum of a spike train known from
renewal theory [11,12] to the ac-driven case. Finally, we
discuss possible applications for quantized charge pumping
and current standards [13–16].
Experimental setup and model.—We employ a Schottky

gate defined quantum dot based on the two-dimensional
electron gas of a GaAs=AlGaAs heterostructure at 1.5 K
shown in Fig. 1(a). The current IQPC through an adjacent
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FIG. 1. (a) Strongly biased quantum dot with periodically time-
dependent tunnel couplings. It can be charged by electrons
entering from the source (green arrow) and discharged toward
the drain (magenta). The quantum point contact measures the dot
occupation. (b) Corresponding theoretical model. (c) Time
derivative of IQPC. The sign of the spikes reflects the change
of the dot occupation.
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quantum point contact monitors the charge on the quantum
dot. Low capacitance (25 pF) coaxial lines and a high
bandwidth (100 kHz) transimpedance amplifier are used to
ensure an electronic bandwidth well above the experi-
mental timescales. By applying sufficiently negative volt-
ages to the center gates, the visible gap in the center is
electrostatically closed and the two paths are galvanically
isolated. From the upper side, the quantum dot is confined
by two tunnel barrier gates and a plunger gate, which are
used to manipulate the tunneling rates and the energy
levels.
The quantum dot is tunnel coupled to biased leads, where

gate voltages are applied such that its lowest level, hosting
up to one electron, lies in the center of the bias window.
Care has been taken to tune the dot to a symmetric coupling
to source and drain, such that without the driving, the
tunnel rates from the source and to the drain are equal. The
ac components of the gate voltages let the dot level oscillate
as sketched in Fig. 1(b), and the tunnel rates become time
dependent [7,16]. We model this system by golden-rule
rates with an exponential dependence on the oscillating
gate voltages,

ΓL=RðtÞ ¼ Γ0 exp½�αL=RA cosðΩtÞ�; ð1Þ

where driving amplitude and period are A and
T ¼ 2π=Ω≡ 1=f, respectively. The leverage factors
αL=R and the intrinsic decay rate Γ0 are adjusted such that
the ΓL=RðtÞ match the rates in the experiment. Since in our
sample αL ≠ αR, the system possess a slight asymmetry
which grows with the amplitude. Transport phenomena in
this open system can be described by a master equation of
the form _ρ ¼ LðtÞρ, where ρ is the reduced density operator
of the central conductor with the T-periodic Liouvillian
LðtÞ ¼ Lðtþ TÞ.
Current measurements are affected by displacement

currents of the fluctuating charge configuration [17,18],
in our case, of the stochastic charging and discharging of
the quantum dot. Therefore, one has to distinguish the
particle currents at the interfaces, IL and IR, from the total
(or Ramo-Shockley) current Itot ¼ −κLIL þ κRIR in the
leads [19,20]. κL and κR ¼ 1 − κL are normalized gate
capacitances which we assume time independent and
symmetric, κL ¼ κR ¼ 1=2. While this distinction is
irrelevant for the average current Ī and the zero-frequency
noise [21], it is quite important for the current noise
spectrum [9,19].
In the experiment, the charge monitor records the dot

occupation which changes by electron tunneling. For large
bias, tunneling to the dot can be assigned to the particle
current at the source IL, while discharging the dot corre-
sponds to IR. Therefore, the time derivative of the current
through the point contact shown in Fig. 1(c) is a train of
negative (positive) spikes which represent a realization of
the stochastic process underlying the particle current at the

source (drain), while both spike trains together correspond
to the total current. Thus, in contrast to traditional
measurements in the leads, the charge monitor provides
also the particle currents IL=R. Here, we focus on the total
current, because it turns out that its noise spectrum Stot is
most significantly affected by SR.
Frequency-dependent Fano factor.—We consider the

particle current as the change of the electron number n in a
region which may be a lead or the quantum dot, i.e., j ¼ _n.
Its symmetrized autocorrelation function Sðt; t0Þ ¼
1
2
h½ΔjðtÞ;Δjðt0Þ�þi in the stationary limit, must obey the

discrete time-translation invariance of the Liouvillian,
namely, Sðt; t0Þ ¼ Sðtþ T; t0 þ TÞ. By introducing the time
difference τ ¼ t − t0, one sees that Sðt; t − τÞ is invariant
under t → tþ T, i.e., for constant τ it is T periodic in t [21].
This implies that time averages over a driving period are
equivalent to averages over the phase of the driving [22].
Hence, we define the phase-averaged correlation function
S̄ðτÞ≡ Sðtþ τ; tÞt ¼ Sðt; t − τÞt, where the second equal-
ity follows readily from simultaneous translation of all
times. The corresponding phase-averaged spectral density
S̄ðωÞ is normalized to the average current Ī to yield as
dimensionless noise spectrum the frequency-dependent
Fano factor FðωÞ ¼ S̄ðωÞ=Ī, which is our main quantity
of interest.
To compute S̄ðωÞ, we establish its relation to the

conditional second moment of the electron number in
the lead as M2ðtjt0Þ ¼ hΔn2ðtÞit0 , where the subscript t0
denotes the reference time from which on we consider the
fluctuations. Owing to _nðtÞ ¼ jðtÞ, one finds

M2ðtjt0Þ ¼
Z

t

t0

dt00
Z

t

t0

dt0Sðt00; t0Þ; ð2Þ

whose time derivative is the conditional second current
cumulant c2ðtjt0Þ ¼ 2

R
t
t0
dt0Sðt; t0Þ. Via the substitution

t0 → t0 − τ, a subsequent phase average, and Fourier
transformation, we obtain the generalized MacDonald
formula [23]

S̄ðωÞ ¼ ω

Z
∞

0

dτ sinðωτÞ
Z

T

0

dt
T
c2ðtþ τjtÞ: ð3Þ

The remaining task is the computation of the time evolution
of the conditional current cumulant c2 for sufficiently many
values of t (or initial phases).
For this purpose, we employ a propagation method for

the full-counting statistics [29]. It is based on a master
equation for a reduced density operator Xðχ; tÞ augmented
by a counting variable χ such that Xð0; tÞ≡ ρðtÞ. By
construction, its trace is the cumulant generating function
[30] of the transported electrons. In particular, the first two
Taylor coefficients of ðd=dtÞXðχ; tÞ provide the current and
the second current cumulant. While the longtime dynamics
of Xðχ; tÞ yields the zero-frequency noise considered in
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Ref. [29], here we are interested in stationary correlations
which depend on transients. Therefore, the initial condition
of X deserves some attention. First, stationarity requires
that at initial time t0, transients of the density operator ρðtÞ
must have decayed. Second, the conditional cumulants are
initially zero. The choice Xðχ; t0Þ ¼ ρstatðt0Þ fulfills both
conditions. For a detailed derivation, see the Supplemental
Material [23].
Power spectrum of the measured current.—With the

experimentally determined times at which the electrons
tunnel, we perceive the total current I as well as IL and IR
as spike trains. In the absence of the driving, the power
spectrum of such spike train can be computed from the
distribution function of the waiting times between sub-
sequent events [11,12,31,32]. We generalize this relation to
the periodically time-dependent case to obtain the phase-
averaged power spectrum of an ac-driven spike train [23],

S̄ðτÞ ¼ γ̄δðτÞ þ γ̄wðjτjÞ þ φðjτjÞ; ð4Þ

where the first term is the δ-correlated shot noise for the
mean spike rate γ̄. wðτÞ ¼ P

l wlðτÞ is given by the
probability distributions of the waiting times between a
tunnel event and its (lþ 1)st successor wlðτÞ, which we
sample from experimental data. Notably, the wlðτÞ oscillate
with the driving frequency [33].
For φ we only know that it is T periodic and has zero

mean [23]. Without the driving, it vanishes such that Eq. (4)
recovers a result from renewal theory [11,12]. To determine
φ, we notice that for large time difference τ, the tunnel
events are uncorrelated and, thus, S̄ vanishes. Therefore, φ
can be identified with the longtime oscillations of wðτÞ.
Accordingly, in the frequency domain we use the fact that
finite-time Fourier transformation converts longtime oscil-
lations to poles of first order, while S̄ðωÞ is expected to be a
smooth function. Therefore, poles in the Fourier trans-
formed of wðτÞ can be attributed to φ. They can be
determined by fitting.
SR signatures in the Fano factor.—In Ref. [7], the

existence of SR in quantum transport has been demon-
strated with the zero-frequency Fano factor as a noise
measure. However, a complete picture must include its full
spectral properties. As a reference, let us mention that in the
absence of driving, the current in a symmetric quantum dot
has white noise characterized by the constant Fano factor
FðωÞ ¼ 1=2 [34–36]. Moreover, for adiabatic driving,
most of the time the symmetry gets lost such that the
zero-frequency noise is enhanced [37]. Since we are
interested in SR, we consider much larger frequencies of
the order Γ0. Figure 2(a) shows noise spectra of the total
current for various nonadiabatic driving frequencies. For
the relatively small f ¼ 0.4 kHz, the zero-frequency noise
is already below the standard value 1=2 expected for the
undriven dot. Slightly away from ω ¼ 0, however,
FðωÞ > 1=2. With increasing f, the dip in the noise

spectrum at ω ¼ 0 becomes deeper and broader. Close
to the SR condition f ≈ Γ0=2, it evolves into a double dip
located at ω ¼ �2πf, which underlines the importance of
considering the whole noise spectrum. While the zero-
frequency noise insinuates disappearance of the SR effect,
the frequency-dependent analysis reveals that the noise
suppression remains, but occurs in the spectrum at finite
frequency. In contrast, the current noise at source and drain
depends only weakly on the driving, as can be seen in
Figs. 2(b) and 2(c). Only when the driving frequency
exceeds the SR frequency, i.e., for f ≳ Γ0=2, the Fano
factor of IL=R develops small dips at ω ≈�2πf.
Interestingly, the noise of the dot current [Fig. 2(d)] and,
thus, that of the dot occupation are practically independent
of the driving. This emphasizes that for transport SR, the
noise properties are primarily manifest in the total current.
The magnitude and the position of the noise reduction

are analyzed in Fig. 3. Panels 3(a) and 3(b) show how the
minimum of FðωÞ, as observed in Fig. 2(a), changes with
the driving frequency f. The data confirm that the mini-
mum of the Fano factor in the adiabatic limit, i.e., for low
driving frequency, assumes values considerably larger than
the standard value 1=2, as discussed above. Upon increas-
ing the driving frequency, the minimum becomes lower
until at an amplitude-dependent value fmin, it starts to
increase again. Figure 3(b) shows good agreement between
theory and experiment for the development of the minimum
of the Fano factor for an amplitude A ¼ 10 meV consid-
ering a certain noise in the experimental data. In particular,
the data clearly confirm the frequency independence of the

FIG. 2. Frequency-dependent Fano factor, i.e., normalized
power spectrum of the total current (a), the current at source
(b), drain (c), and the net current to the dot (d) for driving
amplitude A ¼ 10 meV and various driving frequencies. The
colored lines mark experimental data, while the black lines are
computed with the master equation approach. The other para-
meters are αL ¼ 0.09, αR ¼ 0.065, and Γ0 ¼ 1.675 kHz.
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minimum beyond the SR point. Next, we consider the
location of the minimum in the spectrum ωmin depicted in
Fig. 3(c), where the transition from ωmin ¼ 0 to a finite
value corresponds to the splitting of the dip as observed in
Fig. 2(a). This happens at a frequency f� which increases
with increasing driving amplitude. The inset of Fig. 3(c)
depicts the dependence on the driving amplitude. The
growth of f� with the driving amplitude reminds one of
the shift of the optimal working point known from the
“usual” SR in closed systems [2].
Figure 3(d) depicts the minimum of the Fano factor as a

function of the driving amplitude for three driving frequen-
cies (beyond the SR condition). A strong reduction of the
Fano factor is clearly observed in accordance with experi-
mental data for 8 kHz [38]. At strong driving, the reduction
is enhanced for frequencies closer to the SR condition,
compare the curves for 2 and 8 kHz.
To investigate the amplitude dependence in more detail,

we present in Fig. 4(a) the frequency dependent Fano factor
at three different applied amplitudes and a driving
frequency much larger than f�. The curves exhibit the
double-dip structure discussed above. With an increasing
amplitude, the shape of the Fano factor starts to deviate
from the Lorentzian obtained for weak driving. Moreover,
for A ¼ 30 meV, we witness an impact of nonlinearities
visible as tiny additional dip at ω=2π ≈ 3f. In the

experimental data the additional dip is less clear, because
the large driving amplitude makes it increasingly difficult
to determine with sufficient precision the poles stemming
from the last term in Eq. (4). The increased broadening of
the dips with increasing amplitude is, by contrast, even
more expressed in the experimental data.
Recent interest in controlled single-electron tunneling

stems from the challenge of building current standards [15]
that transport a definite number of electrons per cycle. Let
us therefore discuss our observations in this context.
Figure 4(b) shows the average (electric) current as a
function of the driving amplitude and frequency. In the
same figure also the desired quantized current Ī ¼ ef
(black line) and the above discussed frequencies fmin
and f� are shown as a function of the driving amplitude.
For amplitudes A≲ 20 meV, the three lines more or less
overlap, i.e., there is no clear difference between fmin and
f� and they mark the quantized current. For larger
amplitudes a plateaulike structure with Ī ≈ ef is observed
[white region in Fig. 4(b)] as expected from the experi-
ments investigating single-electron pumping for current
standards [15]. The line on which Ī ¼ ef is fulfilled exactly
lies in the middle of this plateau and between f� and fmin.
With increasing amplitude, both the width of the plateau
and the difference between fmin and f� become larger.
Accordingly, for large frequencies, very low Fano factors
require larger amplitudes, see Fig. 3(d). Such a plateau
widening with increasing amplitude was also observed in
the pumping experiments investigating current standards
[13,14]. Interestingly, the two frequencies fmin and f� mark
the borders of the plateau. In this way an analysis of the
frequency dependent Fano factor can help to optimize the
pumping conditions for current standards.
Conclusions.—We have analyzed experimentally and

theoretically the frequency dependent current noise in a

FIG. 3. Analysis of the dips in the noise spectra. (a) Minimum
of the Fano factor FðωÞ for various amplitudes as function of the
driving frequency. (b) Enlargement of the shaded area in panel
(a) together with corresponding experimental data indicated by
diamonds. (c) Frequency at which the minimum is located in the
power spectrum for the data in panel (a). Inset: transition
frequency f� as function of the driving amplitude. (d) Minimum
of the Fano factor as function of the driving amplitude for various
driving frequencies. The circles mark experimental results for
f ¼ 8 kHz. All other parameters are as in Fig. 2.

FIG. 4. (a) Frequency-dependent Fano factor of the total current
for f ¼ 8 kHz and various amplitudes. All other parameters are
as in Fig. 2. The curves for 10 and 20 meV are vertically shifted
by 0.15 and 0.3, respectively. (b) Transported charge per driving
period, where the solid line highlights parameters with quantized
current Ī ¼ ef. The dashed lines mark the transition frequency f�
as a function of the amplitude [see inset of Fig. 3(c)] and the
frequency fmin at which for given A the Fano factor assumes its
minimum [cf. Fig. 3(a)].
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transport SR experiment. The most noticeable effect is
visible in the power spectrum of the total current as a
splitting of a dip at zero frequency to a double dip located at
the driving frequency. For small amplitudes, the transition
between these two qualitatively different regimes occurs
when the SR condition is met. With increasing amplitudes,
the transition frequency shifts toward larger values. Our
results show the relation between transport SR and quan-
tized electron pumping used for current standards.
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