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We consider a spin-1=2 Heisenberg chain coupled via a Kondo interaction to two-dimensional Dirac
fermions. The Kondo interaction is irrelevant at the decoupled fixed point, leading to the existence of a
Kondo-breakdown phase and a Kondo-breakdown critical point separating such a phase from a heavy
Fermi liquid. We reach this conclusion on the basis of a renormalization group analysis, large-N
calculations as well as extensive auxiliary-field quantum Monte Carlo simulations. We extract quantities
such as the zero-bias tunneling conductance which will be relevant to future experiments involving adatoms
on semimetals such as graphene.
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The antiferromagnetic Kondo coupling Jk between a spin-
1=2 degree of freedom and a Fermi sea with finite density of
states at the Fermi energy is (marginally) relevant: Jk flows
to strong coupling and the impurity is screened. If, in
contrast, the density of states shows a power-law pseudogap
behavior, the Kondo coupling is irrelevant at the decoupled
fixed point, and the spin remains unscreened at weak
coupling. Since for strong Kondo coupling screening is
present, a nontrivial Kondo-breakdown quantum critical
point emerges [1–3]. The decoupled and the Kondo-screened
phases share the same symmetry properties.
In the context of Kondo lattices, the numbers of both

conduction electrons and impurity spins scale with the
volume of the system. In the Kondo-screened paramagnetic
(i.e., heavy Fermi-liquid) phase, the volume enclosed by
the Fermi surface (i.e., Luttinger volume) counts both spins
and electrons. A Kondo-breakdown transition (equiva-
lently, an orbital-selective Mott transition [4]), which, as
above, does not involve symmetry breaking, implies that
the spins drop out from the Luttinger count. For the case of
an odd number of electrons and spins per unit cell, this
leads to a violation of the Luttinger sum rule. Oshikawa’s
flux-threading argument [5,6] shows that a specific family
of the resulting states of matter can be achieved via
topological degeneracy in the spin sector [7]. Such states,
coined fractionalized Fermi liquid (FL�) phases, have been
realized numerically [8]. Kondo breakdown has also been
proposed to understand the phenomenology of heavy-
fermion systems [7,9,10], especially in the context of
materials such as YbRh2Si2 and CeCu6−xAux [11,12].
In this Letter, we consider a situation intermediate

between Kondo impurity and Kondo lattice: a one-
dimensional (1D) Heisenberg chain which is Kondo coupled

to two-dimensional Dirac electrons. Dimensional analysis
shows that, at the decoupled fixed point, the Kondo coupling
is irrelevant, thus leading to an RG flow very similar to that
of the pseudogap Kondo effect discussed above, see Fig. 1.
The motivation to study such systems equally stems from
scanning tunneling microscopy (STM) experiments of Co
adatoms on a Cu2N=Cuð100Þ surface. Here, recent experi-
ments show an impressive ability to tune the exchange
coupling between adatoms as well as the coupling of
adatoms to the surface [13–19]. As shown in Ref. [20],
simple models amenable to negative-sign-free quantum
Monte Carlo (QMC) simulations are able to provide a
detailed account of the experiments. Another experimental
system that has qualitative resemblance with our setup is
Yb2Pt2Pb, where neutron scattering indicates the presence of
1D spinons, and an apparent absence of Kondo screening,
despite the presence of three-dimensional conduction
electrons [21–23]. In our study, we consider conduction
electrons in two dimensions with Dirac spectrum since
this choice unambiguously leads to a Kondo-breakdown
phase and phase transition, while also allowing RG and
large-N calculations and explicit comparison to QMC
numerics.
Model Hamiltionian.—We consider a spin-1=2

Heisenberg chain on a semimetallic substrate:

Jk/t=Jk/t=0

Decoupled spin chain Kondo screened

Kondo breakdown  
critical point

FIG. 1. Renormalization group flow of the Kondo coupling Jk
for a spin-1=2 chain on a semimetallic substrate.
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XL
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Here, t is the hopping parameter of the conduction
electrons, the summation

P
hi;ji runs over a square lattice

and ĉ†i ¼ ðĉ†i;↑; ĉ†i;↓Þ is a spinor where ĉ†i;↑ð↓Þ creates an

electron at site i with z component of spin 1=2 (−1=2). We
use the Landau gauge, A ¼ Bð−y; 0; 0Þ, and tune B such
that half a flux quantum (π flux) pierces each plaquette.
This gauge choice allows for translation symmetry
by one lattice site in the x direction. Jk > 0 is the anti-
ferromagnetic Kondo coupling between magnetic adatoms
and conduction electrons, Jh > 0 the Heisenberg coupling
between magnetic adatoms, L the length of the Heisenberg
chain and linear length of the square conduction electron
lattice, and Ŝl represents the spin-1=2 operators. We use an
array of adatoms at interatomic distance Δl ¼ ða; 0Þ on the
substrate and choose periodic boundary conditions.
Hereafter, we set a ¼ 1.
RG analysis.—Consider the Hamiltonian in Eq. (1) at

Jk ¼ 0. At low energies, this describes two decoupled
theories, both of which are scale invariant: the fermions are
described by the massless (2þ 1)-dimensional free Dirac
Hamiltonian, while the spin-1=2 Heisenberg chain is
described by a Luttinger liquid [24]. In a (dþ 1)-dimen-
sional free Dirac theory, the correlation functions of
operator ĉ†σĉ decay as hĉ†ðxÞσĉðxÞĉ†ð0Þσĉð0Þi ∼ 1=x2d,
therefore, the scaling dimension of this operator Δĉ†σĉ ¼ d
[25]. Similarly, for the Heisenberg chain, hŜðxÞŜð0Þi ∼ 1=x
and therefore ΔŜ ¼ 1

2
. This implies that at this decoupled

fixed point, in our case (d ¼ 2), the Kondo coupling has a
scaling dimension 2 − Δĉ†σĉ − ΔŜ ¼ 2 − d − 1

2
¼ − 1

2
and is

thereby irrelevant. Therefore, the small-Jk phase is an
instance of FL� [7]: a non-symmetry-breaking phase in
which two coexisting subsystems—a band of conduction
electrons and a fractionalized local-moment spin liquid—
are asymptotically decoupled.
On the other hand, in the limit Jk → ∞ each spin-1=2

degree of freedom binds in a singlet with a conduction
electron. This one-dimensional singlet product state,
corresponding to the strong-coupling limit of the one-
dimensional Kondo lattice model [26], decouples from the
conduction electrons, and effectively changes the boundary
condition in the y direction from periodic to open. At large
but finite Jk, we expect the system to be locally described
by a heavy Fermi liquid. Assuming these two regimes are
separated by a single phase transition motivates us to find a
suitable RG description of this transition. The approach we
follow is to consider (dþ 1)-dimensional Dirac fermions
coupled to a (1þ 1)-dimensional Heisenberg chain. By
the aforementioned power counting, the Kondo coupling

is marginal in d ¼ 3=2, which allows for an expansion
in ϵ ¼ d − 3=2, where the physical case of interest
corresponds to d ¼ 2, i.e., ϵ ¼ 1=2. Perturbing around
the Jk ¼ 0 fixed point, the RG flow of dimensionless
Kondo coupling jk ¼ JkΛϵ is given by

djk
d lnΛ

¼ ϵjk −
j2k
2
; ð2Þ

where Λ is an ultraviolet cutoff, and we have kept terms to
Oðj2kÞ (see Sec. I of Ref. [27] for details). The resulting flow
diagram is shown in Fig. 1 and the Kondo-breakdown
critical fixed point is given by jck ¼ 2ϵ, which yields the
correlation-length exponent ν ¼ 1=ϵ. Because of Lorentz
invariance, the critical theory will exhibit ω=T scaling in all
observables.
Large-N approximation.—To formulate the large-N

approximation, we use a fermion representation of
the spin degree of freedom, Ŝl ¼ 1

2
d̂†l σd̂l and impose

the constraint d̂†l d̂l ¼ 1 with d̂†l ¼ ðd̂†l;↑; d̂†l;↓Þ. The inter-
action part of the Hamiltonian can then be written as
−ðJk=4Þ

P
lðĉ†l d̂l þ H:c:Þ2 − ðJh=4Þ

P
lðd̂†l d̂lþΔl þ H:c:Þ2

þðU=2ÞPlðd̂†l d̂l − 1Þ2. Formally, the Hubbard U should
be set to infinity so as to enforce no double occupancy
on the d electrons; practically, choosing a large enough
value of βU (≳10) suffices. The mean-field variables,
V ¼ hĉ†l d̂li, χ ¼ hd̂†l d̂lþΔli, are determined self-consistently
under the constraint hd̂†l d̂li ¼ 1. Figure 2 shows the mean-
field result. The details of the calculations are presented in
Secs. II and III of Ref. [27]. Within this approximation, the
absence of Kondo screening corresponds to V ¼ 0 and
χ ≠ 0, while Kondo screening implies V ≠ 0 and χ ≠ 0. As
is apparent, for each value of Jh the mean-field solution
shows a single transition. In the limit Jh ¼ 0, the critical
value of Jk corresponds to that of the single-impurity
pseudogap Kondo problem [29]. Aside from the mean-field
order parameters, the transition can be detected by con-
sidering the spin-spin correlations along the chain. In the
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FIG. 2. The zero-temperature mean-field phase diagram in a
parameter space of Jk=t and Jh=t.
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decoupled phase spinons are confined to the chain and the
spin-spin correlations—at the mean-field level—decay as
1=r2. In the Kondo-screened phase, spins hybridize with
the Dirac electrons. Since the spin system is subextensive,
the properties of the Dirac electrons remain unchanged and
the spin-spin correlations along the chain inherit the 2D
Dirac 1=r4 decay (see Fig. S3 of Ref. [27]). Introducing
particle-hole asymmetry by adding next-nearest hopping
(while keeping a half-filled semimetallic state) was found
to lead to similar results within large N [27].
QMC simulations.—We have used the algorithms for

lattice fermions (ALF) [31] implementation of the finite-
temperature auxiliary-field QMC algorithm [32–37]. The
absence of the negative sign problem follows from the
standard antiunitary particle-hole transformation [34]. For a
given system of linear length L, the QMC simulations are
performed at an inverse temperature βtðt=kBTÞ ¼ L and at a
fixed Jh=t ¼ 1. At L ¼ 20 we checked that the choice
βt ¼ 2L shows similar results as βt ¼ L. For the considered
periodic boundary conditions, L ¼ 4nþ 2 corresponds to
open-shell configurationsandisknowntoshowless finite-size
effects than L ¼ 4nþ 4 sized systems. Finally, we have
chosenU large enough so as to guarantee that d̂†l d̂l ¼ 1within
our numerical accuracy.
QMC results.—Figure 3 plots the spin-spin correlations

CðrÞ ¼ 4hŜz0Ŝzri as a function of distance r for various
values of Jk=t. In the limit of vanishing Kondo coupling,
our results are consistent with the exact asymptotic form:
CðrÞ ∝ ð−1Þr ffiffiffiffiffiffiffi

ln r
p

=r. The 1=r decay of the spin-spin
correlations in the Heisenberg model is tied to SU(2) spin
symmetry. If the Kondo coupling is irrelevant, then we
expect the asymptotic form of the spin-spin correlations
should continue to follow a ð−1Þr=r form. Remarkably, the
data support this point of view up to Jk=t≲ 2. On the other
hand, in the Kondo-screened phase for Jk=t≳ 2, the equal-

time correlations decay with a power larger than unity. In
this phase, we expect the spin-spin correlations to inherit
the power law of the Dirac fermions hŜz;cl Ŝz;clþri ∝ 1=r4 (see,
Fig. S3 of Ref. [27]). The insets of Fig. 3 plot the static spin
structure factor SðkÞ ¼ ð1=LÞPr e

−ik·rCðrÞ as a function
of momentum k. Noticeably, both at Jk ¼ 0 and Jk=t ¼ 1.5
we observe systematic growth of SðkÞ at k ¼ π, reflecting
the ð−1Þr=r real-space decay. At Jk=t ¼ 2 we observe a
cusp feature but a saturation of Sðk ¼ πÞ with system size
thus suggesting a power law with exponent 1 < Kσ < 2.
Finally, in the Kondo-screened phase at Jk=t ¼ 3, SðkÞ
converges to a smooth function implying Kσ > 2. A
detailed overview of the QMC data is given in Sec. IV
of Ref. [27].
To confirm the above, we have computed the spin

susceptibility χðkÞ ¼ R β
0 dτSðk; τÞ with Sðk; τÞ given as

Sðk; τÞ ¼
X

r

e−ik·rhŜzðr; τÞŜzðr ¼ 0; τ ¼ 0Þi: ð3Þ

Lorentz invariance at low energies implies that the time
displaced correlation function scales as 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðvsτÞ2

p

with vs the spin velocity. Setting βt ¼ L, we hence expect
χðk ¼ πÞ to diverge as L. Figure 4(a) plots χðk ¼ πÞ at
βt ¼ L ¼ 4nþ 2. Similar data at L ¼ 4nþ 4 can be
found in Fig. S7 of Ref. [27]. For both cases we see
two phases, one in which χðk ¼ πÞ scales as L and one in
which it scales to a L-independent constant. In Fig. 4(b)
we plot ð1=LÞð∂F=∂JkÞ ¼ ð2=3LÞPL

l¼1hĉ†l σĉl · Ŝli so as
to inquire the nature of the transition. The data favor a
smooth curve, and hence a continuous quantum phase
transition.
We now consider the dynamical spin structure factor, that

relates to the imaginary-time correlation functions through
Sðk; τÞ ¼ ð1=πÞ R dω½e−τω=ð1 − e−βωÞ�χ″ðk;ωÞ. To extract
Sðk;ωÞ ¼ ½χ″ðk;ωÞ=ð1 − e−βωÞ�, we use the stochastic ana-
lytical continuation algorithm [38]. The excitation spectrum
of the isolated spin-1=2 Heisenberg chain is well understood
and consists of a two-spinon continuum bounded by
ðπ=2ÞJh sinðkÞ ≤ ωðkÞ ≤ πJh sin ðk=2Þ. Figure 5 plots the
dynamical spin spectral function for different values of Jk=t.
Remarkably, the spin dynamics of the Heisenberg chain
remains unaffected by conduction electron for Jk=t≲ 2.

FIG. 3. CðrÞ as a function of distance r along the spin chain on
a log-log scale for (a) Jk=t ¼ 0, (b) Jk=t ¼ 1.5, (c) Jk=t ¼ 2 and
(d) Jk=t ¼ 3 at Jh=t ¼ 1 and Lx ¼ Ly ¼ L ¼ βt. The gray
dashed line corresponds to 1=r decay and the insets plot the
corresponding SðkÞ.

FIG. 4. (a) χðk ¼ πÞ as a function of Jk=t for Jh=t ¼ 1 and
βt ¼ L. (b) Plots ∂F=∂Jk as a function of Jk=t.
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In the screened phase at Jk=t > 2 spinons bind and low-
energy spectral weight is depleted.
In Kondo lattices, a Kondo-breakdown transition implies

an abrupt change of the Luttinger volume. In our setup such
a notion cannot be applied since the localized spin-1=2
moments are subextensive. Nevertheless, we can consider
the spectral function of the conduction electrons that
directly couple to the localized spin-1=2 moments and
investigate how it evolves across the transition. Let
Anðk;ωÞ¼−ð1=πÞImGret

n ðk;ωÞ with Gret
n ðk;ωÞ¼−i

R∞
0 dteiωtP

σhfĉk;n;σð0Þ;ĉ†k;n;σðtÞgi. In the considered Landau gauge,
translation symmetry is present along the x direction and
ĉk;n;σ ¼ ð1= ffiffiffiffi

L
p ÞPL

m¼1 e
ikmĉi¼ðm;nÞ;σ is the partial Fourier

transform. Figure 6 plots A0ðk;ωÞ corresponding to the
conduction electrons that couple to the Heisenberg chain.
At Jk ¼ 0 the spectral function shows a dominant ϵðkÞ ¼
2t cosðkaÞ dispersion. In the Kondo-breakdown phase and
even at relatively large values of Jk=t ¼ 1.5 we observe no
signs of hybridization with the spins. In contrast in the

Kondo-screened phase Jk=t≳ 2, a clear signature of
hybridization is apparent.
STM experiments of magnetic adatoms on metallic

surfaces, separated by an insulating buffer layer shown
in Refs. [13,14], measure tunneling between tip and
substrate occurring through the localized orbitals. In our
setup we can access this quantity by carrying out a
Schrieffer-Wolff transformation of the localized elect-
ron creation operator in the realm of the Anderson
model [20,39,40]. In particular, AlðωÞ ¼ −ImGret

l ðωÞ with
Gret

l ðωÞ ¼ −i
R
∞
0 dteiωt

P
σhfc̃l;σðtÞ; c̃†l;σð0Þgi and c̃†l;σ ¼

ĉ†l;−σŜ
σ
l þ σĉ†l;σŜ

z
l . Here, σ ¼ � runs over the two

spin polarizations and Ŝ�l ¼ Ŝxl � iŜyl . To evaluate the
zero-bias tunneling signal we estimate Alðω ¼ 0Þ ≃ ð1=πÞ
βGlðτ ¼ β=2Þ. Figure 7 plots this quantity. Remarkably, in
the Kondo-breakdown phase, we are not able to distinguish
the signal from zero. This supports the notion that spins and
conduction electrons decouple at low energies. As Jk → ∞,
the spin binds in a singlet with the conduction electron and
the tunneling signal through the adatom drops. A more
detailed numerical analysis [41,42] of the STM signal
across the transition is certainly of great interest.
Conclusion.—We have shown that a one-dimensional

spin chain coupled via a Kondo interaction to 2D Dirac
fermions provides a realization of a continuous Kondo-
breakdown transition. Weak coupling Jk is irrelevant and
gapless propagating spinons exist, akin to an FL� phase.
Beyond the transition, Kondo screening appears and gap-
less spinons bind. The Kondo-screened phase is adiabati-
cally connected to the strong-coupling limit, where each
spin binds with a conduction electron into a spin singlet.
Larger systems will be needed to determine the critical
exponents such as the anomalous dimension of the local
moments. In addition, since the number of adatoms in
experiments is tunable [14–16], it will be very useful to
determine how many of them are needed to resolve Kondo
breakdown in an interacting spin chain.
The choice of Dirac fermions which only possess Fermi

points simplifies the problem and allows for an RG

FIG. 5. Sðk;ωÞ along spin chain as a function of energy (ω=t)
and momentum (k) for L ¼ βt ¼ 44 at Jh=t ¼ 1 and (a)
Jk=t ¼ 0, (b) Jk=t ¼ 1.5, (c) Jk=t ¼ 2, and (d) Jk=t ¼ 3.

FIG. 6. A0ðk;ωÞ as a function of energy (ω=t) and momentum
(k) for L ¼ βt ¼ 44 at Jh=t ¼ 1 and (a) Jk=t ¼ 1.5, (b)
Jk=t ¼ 2, (c) Jk=t ¼ 2.5, and (d) Jk=t ¼ 3. FIG. 7. Zero-bias tunneling through the magnetic adatom.
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analysis. This is in contrast to the conventional Hertz-
Millis-Moriya approach [43–45] where one integrates out
the fermions to obtain an effective nonlocal action for local
moments. Indeed, past work on Fermi surface coupled to a
spin chain employed Hertz-Millis-Moriya approach, and
concluded that the Kondo interaction is relevant (marginal)
for an XXZ (Heisenberg) chain, thus destabilizing the
Luttinger liquid for infinitesimal Kondo coupling [46]. In
our problem, the irrelevancy of the Kondo interaction at the
decoupled fixed point (Jk ¼ 0) continues to hold even for a
U(1) symmetric XXZ spin chain and we expect that the
qualitative features of our phase diagram will remain
unchanged. It will be desirable to study the problem of
a Fermi surface coupled to an XXZ chain using QMC
methods, which would also help bridge the gap with
experiments in Refs. [13–19]. In addition, other scenarios
for Kondo breakdown, such as the one discussed in
Ref. [47], can also be studied using QMC.
In summary, we studied a problem of a spin chain

coupled to Dirac fermions and established a Kondo-break-
down transition using a combination of techniques. Our
results open the window to design and inform new experi-
ments, along the lines of Refs. [14–16], where adatoms can
be suitably arranged on metal-semimetal surfaces.
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