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The charge-density-wave (CDW) mechanism of the 3D quantum Hall effect has been observed recently
in ZrTes [Tang et al., Nature 569, 537 (2019)]. Different from previous cases, the CDW forms on a one-
dimensional (1D) band of Landau levels, which strongly depends on the magnetic field. However, its theory
is still lacking. We develop a theory for the CDW mechanism of 3D quantum Hall effect. The theory can
capture the main features in the experiments. We find a magnetic field induced second-order phase
transition to the CDW phase. We find that electron-phonon interactions, rather than electron-electron
interactions, dominate the order parameter. We extract the electron-phonon coupling constant from the non-
Ohmic / — V relation. We point out a commensurate-incommensurate CDW crossover in the experiment.
More importantly, our theory explores a rare case, in which a magnetic field can induce an order-parameter
phase transition in one direction but a topological phase transition in other two directions, both depend on

one magnetic field.

DOI: 10.1103/PhysRevLett.125.206601

Introduction.—The quantum Hall effect is one of the
most important discoveries in physics [1-4]. It arises from
the Landau levels of two-dimensional (2D) electron gas in a
strong magnetic field (Fig. 1, left). When the Fermi energy
lies between two Landau levels, the interior of the electron
gas is insulating but the deformed Landau levels at the
edges can transport electrons dissipationlessly, leading to
the quantized Hall resistance and vanishing longitudinal
resistance of the quantum Hall effect. The quantum Hall
effect is difficult in 3D, where the Landau levels turn to a
series of 1D bands of Landau level dispersing with the
momentum along the direction of magnetic field (Fig. 1,
center). Because the Fermi energy always crosses some
Landau bands, the interior is metallic, which buries the
quantization of the edge states, so the quantum Hall effect is
usually observed in 2D systems [5]. Nevertheless, search-
ing for a 3D quantum Hall effect has been lasting for more
than 30 years [6-28]. One of the famous proposals for the
3D quantum Hall effect relies on the charge density wave
(CDW), which may gap the 1D Landau band so that the
bulk is insulating. In real space, the CDW splits the 3D
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FIG. 1. Left: in 2D, the quantum Hall effect arises when only
the edge states (blue) conduct electrons, while the interior bulk
states are insulating as the Fermi energy lies between the Landau
levels. Center: in 3D, the Landau levels turn to 1D bands of
Landau levels that disperse with the momentum (k) along the
direction of magnetic field. The quantum Hall effect is difficult in
3D because the bulk is metallic as the Fermi energy always
crosses some Landau bands. Right: the charge density wave may
gap the Landau band, so that the bulk is insulating and the
quantum Hall effect can be observed.
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electron gas into decoupled 2D quantum Hall layers to
realize a 3D quantum Hall effect (Fig. 1, right) [7]. Quite
different from the known cases [29-31], the CDW of
Landau bands depends on the magnetic field strongly
[32-40]. Recently, the CDW mechanism of the 3D
quantum Hall effect has been observed in 3D crystals of
ZrTes [41], providing a platform to study this rare phase of
matter where both order parameter and topological number
coexist.

In this Letter, we develop a theory for the CDW
mechanism of 3D quantum Hall effect. The theory captures
the main features in the experiment of ZrTes; at the
quantitative level. We find that electron-phonon inter-
actions dominate the formation of the CDW, instead of
electron-electron interactions. We extract electron-phonon
coupling constant from the non-Ohmic I — V relation. We
point out a crossover between commensurate and incom-
mensurate CDWs, tunable by the magnetic field. More
importantly, the theory addresses a rare but experiment-
accessible scenario, described by an order parameter along
one direction but a topological Chern number in other two
directions, both tunable by one magnetic field.

1D Landau band in the quantum limit.—We start with a
generic Dirac model [42]

A

H(k) = h(vk,t, ® 0, + vykyTy, @ 60+ vk, 7, ® oy)
+ [Mo + M, (viki + v3k3) + M k2], ® 00, (1)

where k,/, = —id,/y, Ty .0, and 6, , . o are Pauli matrices
and unit matrix for orbital and spin degrees of freedom, and
My, ;> vy, . are the model parameters. This model can
describe various semimetals and insulators [18,43-53]. A
uniform z-direction (crystal b direction) magnetic field
B = (0,0, B) is considered by the Landau gauge vector
potential A = (—By,0,0), which shifts k, to k, — eBy/#,
where —e is the electron charge and 7 is the reduced
Planck’s constant. The magnetic field splits the energy
spectrum into a series of 1D bands of Landau levels,
dispersing with k, [Fig. 2(a)].

We will focus on the quantum limit, in which the Fermi
energy Ep crosses only the n = 0+ Landau band [56].
At the critical magnetic field B(? when entering the
quantum limit, Ep = E,({Oi;{r = E,(::O, where the Fermi
wave vector [57]

kp = 2n*hny/eB, (2)

ng is carrier density, the energy dispersion of the n = 0+
Landau band E\" =\ /(hv_k,) 2+ (My+M [ 5+ MI2)2,
M, =Mv,v,, ‘the magnetic length is £ = \/m,
the  bottom  of the Landau  band
EV, = \/ (Mo + 3M 1 /£3) + 2v,0,82/£3. Using By =
13T in

n=1

the above equations, n, is found as

8.87 x 10'® cm™3, comparable with the experiment [41],
showing that our model and parameters can capture the
noninteracting energy spectrum. At this low carrier density,
the pocket at the M point does not contribute [41,58].

Theory of CDW for the Landau band.—We study the
CDW of the 04 Landau band by using a mean-field
approach, which can capture the physics of 1D CDWs
[29,30]. Different from previous theories (e.g., [31]), the
1D Landau band here strongly depends on the magnetic
field, e.g., the changing kr in Eq. (2), the nesting
momentum k.4, and CDW wavelength A.q,,-

As shown by the g-ology diagram in Fig. 2(b), the CDW
gap (described by the order parameter A) can be opened by
the coupling between the electrons near kr and —kp,
through either electron-electron or electron-phonon inter-
actions along the z direction. The electron-electron inter-
action reads [37,40,54,59,60]

2|APV
U(2kp)

H,. == |Al(ed] dy_ +Hc.) + (3)
k

where the order parameter is defined as A=A, =
[U(2kr)/2V] ZM&LMF&EZQ and V is the volume.
A = |Ale?, where ¢ is the phase. dj . and dj are the
creation and annihilation operators in the vicinity of F kg,
respectively, where k + =k, £ kr. As shown in Fig. 2(b),
the electron-electron potential takes the Yukawa form [61]
U(2kp) = €*/{e.€0[(2kp)* + %]}, where €, (ep) is the
relative (vacuum) dielectric constant and 1/x is the
screening length. Under the random phase approximation
[Fig. 2(b)], we have x = \/e’B/(4x’eh*vy) (BEq. (S18) in
[59]) with € = €y€,. The Hamiltonians for electron-phonon

interaction and phonons can be, respectively, written as
[29,54,62,63]

He = Z|A|(ei¢3£+3k_ +H.c.),
K

I:Iph = Zha’qﬁjlf)q’ (4)
q

where A = A,_,;, = (ag/V)((by) + (bLq)), bj and by are
the creation and annihilation operators for the phonons with
momentum q = +2kye_, the electron-phonon coupling
[54] a4 also takes the Yukawa form (Sec. SIV(B) of
[59]). Near +kp, the mean-field Hamiltonian of the 0+
Landau band can be written as (Sec. SIV of [59])

hvp(k, £ k A
H2+: ’UF(AZ* F) . ’ (5)
- UF(kz:th)

where fiv; = [0EL " Ok |, (Sec. SII of [59]). The
eigen energies of Hg* can be found as E; = Ep+
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FIG. 2. (a) The 1D energy bands of Landau levels dispersing

with the z-direction wave vector k, in a z-direction magnetic field
B = 1.6 T. The CDW opens the gap (2|A|) at the Fermi energy
Er. n marks the indices of the Landau bands. n = 0+ are the
lowest Landau bands. (b) Up: the g-ology, which is a diagram-
matic representation of the interaction and scattering processes
(arrowed +kp) involved in the charge density wave and
competing phases [30]. Down: the diagrams for the Yukawa
potential. The solid wavy line stands for interactions under the
random phase approximation [54], the dashed wavy line repre-
sents the bare Coulomb interaction, and the solid line represents
the bare electronic propagator. (c)—(e) The calculated CDW
order parameters for electron-electron (c) and electron-phonon
(d),(e) interactions, respectively. B indicates a threshold
magnetic field at which there is a second-order phase
transition as A overcomes temperature. “Incomm.” and “8a
comm.” indicate that incommensurate and commensurate
(CDW wavelength/lattice constant = 8) CDWs are assumed,
respectively. ~ The  parameters are v, =9 x 10° m/s,
vy = 1.9 x 10° m/s, v, =0.3x 10° m/s, My = —4.7 meV,
M, =150 meV -nm?, M,=0.0IM,, a=725A [41,51],
no = 8.87 x 10'® cm™3, €, = 25.3 [55], and the electron-phonon
coupling constant g, = 537.3 eV - nm~! (determined by compar-
ing with the nonlinear / — V data [41] in Fig. 4(h) ),and T = 0 K.

sen(k, F kp) \/[vph(k. F kp)]? + |A]> near +ky [green
curves in Fig. 2(a)], respectively, where sgn(x) is the sign
function.

The CDW order parameter is calculated self-consistently
from the gap equation defined by OE,/0|A| = 0, where
the ground-state energy E, = (H,,) is found as (Sec. SV
of [59])

Z . —Er)O(Er —Ep ) + |A|2V’ (6)

K 9ok

where E, includes the phonon part, ©O(x) is

the step function, H, =3, ‘i’l?‘lgj"i’k + [APV/ 9o, »
¥y = (dy,. di_)7, and H{" has been given in Eq. (5).
The coupling gy, = ¢?/{2€[(2kz)* + %]} for electron-
electron interactions and gy, = go/[(2kr)* + «*}* for
electron-phonon interactions with the coupling constant
go (Sec. SIV(B) of [59]). The second positive term is from
the mean-field phonon Hamiltonian (Eq. (S28) in [59]). As
a function of the order parameter, Eq. (6) reduces to a
minimum value (GS energy) at a finite gap as shown in
Fig. S3 of the Supplemental Material [59]. Different from
no-magnetic-field theories, here the summation ), , =

S,/ (2nt%) gives the Landau degeneracy, with the area S,
in the x—y plane, V = §,,L, and the length L, along the z
direction.

At extremely low temperatures, i.e., 7 — 0, the finite-
temperature gap equation can be expressed as (Sec. SVI(C)
of [59])

47[2h21)p

G, eB

where E;(t,A) = \/t* + |A|*, kg is the Boltzmann con-
stant, and 7 is the temperature. We use the Ginzburg
criterion [29,64—67] to justify the mean-field approxima-
tion at the experimental finite temperatures (Sec. SIV of
[59]). Also, we find that the commensurability energy from
the ionic potential of the crystal [29,68,69] can be ignored
(Sec. SVII of [59]).

Electron-electron or electron-phonon interactions ?—As
shown in Fig. 2(c), the order parameter calculated using
electron-electron interactions is sizable only beyond a
threshold magnetic B about 10 T, an order larger than
those in the experiments [Fig. 3(a)]. On the other hand, for
electron-phonon interactions with a proper coupling con-
stant (gy = 537.3 eV -nm™', determined by the non-
Ohmic I — V relation [Fig. 4(h)]), the threshold B, could
be less than 1.5 T and A could be of several to tens of meV
[Fig. 2(e)], both consistent with the experiment. Therefore,
electron-phonon interactions may be the mechanism in the
ZrTes experiment.

Commensurate-incommensurate — crossover.—In  the
experiment, the plateau of the Hall resistivity covers a
wide range from 1.7 to 2.1 T, which is surprising for the
following reason. According to Fig. 1, the Hall conduc-
tivity in units of e?/h is given by the number of the CDW
layers o, = (€?/h)/2cqy per unit length, where A, is the
CDW wavelength so the height of plateau should be p,, =
1/6,y, = (h/€*)Ay When o, = 0. It is known that the
CDW wavelength 1, is related to the Fermi wavelength as
[29] (Sec. SV of [59])

vphkp 1 dt B 7
S T e )

Acdw :AF/ZZﬂ/kF' (8)
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FIG. 3. (a) The Hall (p,,) and longitudinal (p,,) resistivities
adapted from the experiment [41]. (b) Schematic of the com-
mensurate CDWs, whose wavelengths are integer times of the
lattice constant . (c) Our understanding to p,,. B € [1.3,1.7] T,
Py 1s not quantized due to the broadening of the n = 1 Landau
band bottom [see also Fig. 4(e)]; B € [1.7,2.1] T, a commensu-
rate CDW pins A, and Ap, leading to the plateau of p,;
B € [2.1,3] T, the incommensurate CDW takes over, so Pry % B.
(d) Ground-state energies E, (per unit volume) of incommensu-
rate and commensurate (1., /a = 8) CDWs, which shows that
the commensurate (incommensurate) CDW has lower energy
when B € [1.7,2.1]([2.1, 3] T). (e) The Fermi (1) and CDW
(Aeaw) Wavelengthes.

According to Eq. (2), kr decreases with the magnetic field,
leading to a A, linearly increasing with the magnetic field
[e.g., B > 2.1 TinFig. 3(e)], so p,, should increase linearly
with B. That is why the plateau in Fig. 3(a) is surprising.

The observed p,, plateau between 1.7 and 2.1 T implies
that there is a commensurate CDW, i.e., the CDW wave-
length is pinned at integer times of the lattice constant a
[Fig. 3(b)]. According to the experiment, A, /a = 8.1 +
0.8 [41]. We compare the ground-state energies of com-
mensurate (1.4,/a = 8) and incommensurate CDWSs near
2.1 T, which can be obtained by minimizing the ground-
state energy E, in Eq. (6). As shown in Fig. 3(d), the
commensurate (incommensurate) CDW has lower energy
for Be[1.7,2.1]([2.1, 3]) T, so there is a crossover
between the commensurate and incommensurate CDWs
[B=2.1T in Fig. 3(c)]. In the range B € [1.7,2.1] T,
the fixed 4.4, means a fixed Fermi energy, i.e., the system is

a grand canonical ensemble and the number of carriers can
change. By contrast, the number of carriers in the
incommensurate CDW phase cannot change. Therefore,
the change of electrons leads to lower ground-state
energy of the commensurate CDW phase in the range
B € [1.7,2.1] T. Further increasing the magnetic field
above 2.1 T, the magnetic field will push the Fermi energy
lower (eventually to the band bottom), so there is a
crossover from commensurate to incommensurate CDW
phase as a function of the magnetic field. These are unique
properties of this magnetic field—induced CDW.

Non-Ohmic I —V relation.—An evidence of CDW is the
non-Ohmic / — V relation [70,71], because a bias voltage
has to overcome the barriers of CDW [Fig. 4(a)], which
can be used to determine A and more importantly the
electron-phonon interaction coupling constant g, by com-
paring with our theory. The tunneling current /,, is found
as [29,72]

e 0
ICdW = E |T|2 / dEDcdw(e)DN(e + eVz)

(58

x[f(e) = fle+eV)l, ©)

with the density of states [Fig. 4(b)] Deay(Ey,)/Dy(0) =

[Ex, — EplO(E. — Erl — [A)/\/(Ex. - Er = AP

(Sec. SVIII(A) of [59]), where the normal (N) density of
states Dy(0) and tunneling matrix element 7 are assumed
energy independent, and f(x) = 1/[1 + ¢*/*s7)] is the
Fermi function [73]. Figure 4(c) shows the non-Ohmic
I 4w — V, relation at different temperatures. At zero temper-
ature, there is no tunneling current below the threshold
voltage Vy, = |A|/e. Finite temperatures can lead to a small
tunneling current for |V_| < Vy,. Figure 4(d) shows the
differential conductance dI 4, /dV as a function of V at
different temperatures, where the peak near the threshold
Vg at T = 2.5 Kis due to the abrupt increase of /4, across
the threshold and is smeared at higher temperatures.
Figure 4(h) shows the differential resistance dV_/dI, in
the experiment [41]. There is a plateau below the threshold
current Iy, ~ 450 u A, besides the non-Ohmic behavior
above Iy,. This implies that besides the 0+ Landau band,
there is another Ohmic channel, likely the broadened +1
band bottom which lasts till B=1.7 T [Fig. 4(e)].
Therefore, we model the current as [, =1y + Iy
[63,74], where I, is the CDW current from the 0+ band
and the normal band is assumed to satisfy the Ohmic law
Iy = GyV,. We reproduce the Ohmic plateau and
non-Ohmic [/, —V, relation at different temperatures
[Fig. 4(g)]. Using Iy in the experiment, we find that
go=5373eV-nm~!. For T=1.5K, we assume that

=183 T +1 for 1, <1y and I, =12 (a,T) +
2)

12 for I, > Iy; for T=25K, I, =15 (aT) + 1V,

cdw
where a , describe the Joule heat from the abrupt current
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FIG. 4. (a) A bias voltage V, has to overcome the threshold

voltage V;, of CDW to yield a current, leading to the non-Ohmic
I — V relation. (b)—(d) At B = 1.6 T, CDW density of states (b),
non-Ohmic relation between the tunneling current /.4, and V,
(c), and differential conductance dl.,/dV, (d). (e) At
B =1.55 T, the Fermi energy E is assumed to cross both the
CDW-gapped n = 0+ and broadened n = 1 Landau bands. (f),
(2) Differential resistance dV,/dI, as a function of the
z-direction current at B =155 T and different temperatures,
without (f) and assuming the Joule heat (g). The para-

meters oy =7, G} =32258mQ-!, G| =16.64 mQ!,
G? =29325mQ!, and G =49.75 mQ™! at T =15K;
o =5 GY) =20412mQ", and G{ =5376 mQ~! at

T = 2.5 K. (h) Experimental data of dV_/dI, [41].

increase. Without the Joule heat, dV_/dI, shows a dip
near Iy, [Fig. 4(f)], due to the dl,/dV, peak in
Fig. 4(d).

Discussions and perspectives.—At higher magnetic
fields, signatures of fractional quantum Hall effect have
been reported [41,75], which is a promising topic. At lower
magnetic fields (B € [0.6, 1] T), the experiment also shows
some plateaulike behaviors in the Hall resistivity [41],
implying a simultaneous CDW phase of multiple bands.
The CDW mechanism of 3D quantum Hall effect could be
realized also in layered structures HfTes, TaS,, NbSe;, etc.
In Type-II Weyl semimetals [38], the overtilted pockets
may lead to a cascade of CDW and even multiple 3D Hall
plateaus for weak interactions.
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