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Spin-spin interactions generated by a detuned cavity are a standard mechanism for generating highly
entangled spin squeezed states. We show here how introducing a weak detuned parametric (two-photon)
drive on the cavity provides a powerful means for controlling the form of the induced interactions. Without
a drive, the induced interactions cannot generate Heisenberg-limited spin squeezing, but a weak optimized
drive gives rise to an ideal two-axis twist interaction and Heisenberg-limited squeezing. Parametric driving
is also advantageous in regimes limited by dissipation, and enables an alternate adiabatic scheme which can
prepare optimally squeezed, Dicke-like states. Our scheme is compatible with a number of platforms,
including solid-state systems where spin ensembles are coupled to superconducting quantum circuits or
mechanical modes.
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Introduction.—The field of quantum sensing focuses on
enhancing measurements by exploiting entanglement.
Among the most studied approaches are those based on
spin squeezing [1], where one uses an entangled state of N
spin-1=2 particles to reduce the imprecision of a Ramsey-
type phase measurement. While there are many approaches
for generating spin squeezing (see, e.g., Refs. [2–8]), new
methods are still of interest if they can transcend limitations
of standard approaches. The most widely studied deter-
ministic method is based on exploiting an all-to-all Ising
interaction, the so-called one-axis twist (OAT) Hamiltonian
[2]; this has been implemented in several groundbreaking
experiments [9–13] in atomic and trapped ion systems, and
also shows potential in solid state implementations (as has
been analyzed theoretically [5,14–17]). While conceptually
simple, this method cannot achieve fundamental 1=N
Heisenberg scaling of the squeezing. In contrast, the so-
called two-axis twist (TAT) Hamiltonian is known to
achieve Heisenberg scaling [2], but is typically difficult
to implement physically.
In this work, we show how adding a detuned parametric

drive (PD) to the standard setup of spins coupled to a cavity
(Fig. 1) can be used to exactly implement the TAT
interaction, and thus achieve Heisenberg-limited spin
squeezing. Our scheme is compatible with standard spin-
echo techniques, thus giving it robustness against the
effects of inhomogeneous broadening and low-frequency
noise; it also outperforms standard OAT in the presence of
realistic dissipation. For stronger PD strengths, one can
alternatively implement an adiabatic protocol that produces
Dicke-like states which achieve the maximum possible
level of spin squeezing (outperforming TAT by a factor of
2) [18,19]. Our approach could in principle be implemented

in a host of systems, including solid state spins coupled to
driven mechanical modes [5,20] (see Ref. [21] along with
Refs. [22–26]), driven superconducting cavities [27], or
trapped ions [13] (also see Ref. [21] and Refs. [28–30]).
Note that our protocols differ significantly from previous

ideas using a PD for spin squeezing. Reference [31]
considered how a PD could enhance OAT in a trapped
ion setup; we consider a different basic spin-boson
coupling, and demonstrate methods that go beyond OAT.
Reference [32] considered how a PD in consort with strong
cavity frequency modulation could realize dissipative spin
squeezing [6]. Our approaches in contrast require no
frequency modulation, and are based on induced coherent
interactions. Furthermore, our induced two-axis twist
(ITAT) protocol leads to more modest cooperativity
requirements.
Model.—We consider N two-level systems (splitting

frequency ωs) coupled via a standard Tavis-Cummings
interaction (strength g) to a bosonic mode subject to a
parametric (i.e., two-photon) drive at frequency 2ωp:

FIG. 1. A collective spin Ŝ comprised of N spin-1=2 particles is
coupled to a parametrically driven cavity, with drive amplitude λ
(the grey rectangle represents a nonlinear crystal, that could let
one implement such a drive in an optical cavity). The cavity has a
decay rate κ, and the single-spin dephasing rate is γϕ.
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Ĥlab ¼ ωcĉ†ĉþ ωsŜz þ
�
gĉŜþ þ λ

2
ei2ωptĉ2 þ H:c:

�
; ð1Þ

where we introduce collective spin operators Ŝ� ¼ Ŝx �
iŜy and Ŝk ¼ 1

2

P
j σ̂

k
ðjÞ for k ∈ fx; y; zg, with σ̂kðjÞ denoting

a standard Pauli operator acting on the jth spin.
The parametric drive will give us a powerful means for

controlling the form of the cavity mediated spin-spin
interactions. We next move to a rotating frame (for both
spins and cavity) in which the Hamiltonian is time
independent:

Ĥrot ¼ Δcĉ†ĉþ ΔsŜz þ
�
gĉ†Ŝ− þ 1

2
λĉ2 þ H:c:

�
: ð2Þ

Here Δc=s ≡ ωc=s − ωp are the respective detunings of the
cavity and spins from the parametric drive. Note that
parametric driving has been realized in several plat-
forms compatible with spin squeezing. Methods include
dielectrophoretic modulation of a diamond mechanical
resonator [33], flux-pumping a superconducting micro-
wave resonator that could be coupled to solid state spins
(e.g., theoretical analysis in Ref. [34]), modulating the
trapping frequency of trapped ions [29], or utilizing the
nonlinearity of atomic transitions in cavity QED platforms
[35,36]. In Ref. [21] we provide more details on potential
trapped ion implementations, as well as a comprehensive
discussion of an implementation based on a diamond
optomechanical crystal with nitrogen-vacancy (NV) center
spins.
Without loss of generality, we take the parametric drive

amplitude λ to be real and positive, and consider the regime
jΔcj ≥ λ, ensuring a stable system. We can then diagonalize
the cavity Hamiltonian in terms of a Bogoliubov mode
β̂≡ cosh rĉþ sinh rĉ†, where the parameter r satisfies
tanh 2r ¼ λ=Δc. Defining Eβ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

c − λ2
p

, this yields

Ĥsq ¼ Eββ̂
†β̂ þ ΔsŜz þ gðβ̂†Σ̂þ H:c:Þ: ð3Þ

where the spin Bogoliubov mode is defined as
Σ̂≡ cosh rŜ− − sinh rŜþ.
We next consider the case where

ffiffiffiffi
N

p
g ≪ Eβ, and where

the parametric drive is almost resonant with the spins, such
that Δs ∼ g2=Eβ ≪ Eβ. In this case, we can eliminate the
cavity-spin interaction to leading order using a standard
Schreiffer-Wolff transformation [5,37] (see Ref. [21] for
details); this is analogous to standard derivations of a
cavity-mediated OAT [5,38]. Retaining terms to order g2,
we obtain an effective interacting spin Hamiltonian:

Ĥeff ≃ Eββ̂
†β̂ þ ΔsŜz − χΣ̂†Σ̂ − 2χŜzβ̂

†β̂: ð4Þ

with χ ≡ g2=Eβ. Superficially, this is identical to the
Hamiltonian for a cavity-mediated OAT, except the spin
lowering operator has been replaced by Σ̂, the spin

Bogoliubov operator. As we now show, this has dramatic
consequences.
Induced Two-axis twist.—We first ignore the last dis-

persive coupling term in Eq. (4). In this case the spins and
cavity are decoupled, and the spin-only terms in Eq. (4)
describe an unusual kind of cavity-mediated spin-spin
interaction. Expanding these terms out, and defining
χ̃ ¼ χ cosh 2r, Δ̃ ¼ Δs − χ, we have

Ĥs ¼ Δ̃Ŝz − χ̃½ðŜ2tot − Ŝ2zÞ − tanhð2rÞðŜ2x − Ŝ2yÞ�; ð5Þ

with Ŝ2tot ¼ Ŝ2x þ Ŝ2y þ Ŝ2z . Without a parametric drive (i.e.,
r ¼ 0) we have a standard cavity-induced OAT
Hamiltonian [5,38]. For nonzero r, the new interaction
terms have the form of the TAT Hamiltonian introduced in
Ref. [2]; these terms on their own are capable of generating
spin squeezing with Heisenberg-limited scaling, something
that is impossible with an OAT Hamiltonian.
At first glance, it seems like our scheme can never realize

a pure TAT interaction, both because the OAT-like terms
will always dominate (as tanh 2r ≤ 1), and because of the
spurious linear-in-Ŝz term. This pessimism is unfounded.
First, the unwanted linear term can be eliminated by simply
tuning the spin detuning toΔs ¼ χ; this could be done, e.g.,
by just slightly shifting the parametric drive frequency.
Second, if we also tune the parametric drive amplitude so
that λ ¼ Δc=3, we have tanh 2r → tanh 2r0 ¼ 1=3, and the
resulting Hamiltonian can be written

Ĥs → −χ̃½ðŜ2tot − Ŝ2zÞ −
1

3
ðŜ2x − Ŝ2yÞ�

¼ −
2

3
χ̃½Ŝ2tot − Ŝ2z þ Ŝ2y�: ð6Þ

Since Ŝtot is a constant of motion for Ĥs, the effective
dynamics of Ĥs are equivalent to the desired two-axis twist
Hamiltonian.
Equation (6) is a central result of our work, and

represents a new mechanism for implementing the TAT
Hamiltonian. Previous proposals for realizing a TAT either
require carefully tailored bang-bang control of the spin
ensemble [39,40], multiple drive lasers, atomic levels and
cavity transitions [41–43], or very weak higher-order
interaction processes [44]. In contrast, our scheme utilizes
a standard Tavis-Cummings coupling, and does not require
an elaborate pulsed driving of the spin system. It also
requires only a modest-amplitude parametric drive (far
from any regime of instability). Note one could alterna-
tively tune λ ¼ −Δc=3; in this case an equivalent TAT
Hamiltonian in the z–x plane is generated. By tuning the
parametric drive amplitude, one can also realize other kinds
of spin-spin interactions, including an OAT Hamiltonian
along the y axis, and a “twist-and-turn” Hamiltonian
[45,46] (see Ref. [21]).
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As is standard, we quantify the amount of useful spin
squeezing using the Ramsey spin squeezing parameter
[47]:

ξ2R ≡ NhΔŜ2⊥i=h ⃗Ŝi
2
; ð7Þ

where hΔŜ2⊥i is the minimum variance in a direction
perpendicular to the direction of the mean of the collective
spin.
We now return to the issue of the dispersive interaction in

Eq. (4). In the absence of dissipation, β̂†β̂ is a conserved
quantity. Further, assuming the cavity starts in a vacuum
state, the β̂ mode starts in a squeezed state characterized by
r0, and thus has a small but nonzero population. Hence, the
small mean value hβ̂†β̂i ¼ sinh2r0 ≃ 0.03 can be easily
canceled by slightly shifting the spin-drive detuning to
Δs ¼ χð1þ 2 sinh2r0Þ. The remaining static fluctuations of
the Bogoliubov-mode number operator have a dephasing
effect, which is also insignificant due to the smallness
of the required parametric drive amplitude (i.e.,
hðβ̂†β̂Þ2i − hðβ̂†β̂Þi2 ≃ 0.06). They have a negligible effect
on the optimal squeezing (numerical simulations show that
at N ¼ 5000, the change in ξ2R is much smaller than 1 dB),
and furthermore, their effects can be completely canceled
using a dynamical decoupling protocol (which corresponds
to applying fast π pulses about, e.g., the x axis). This
highlights another key advantage of our scheme: like the
standard cavity-based OAT [5], it is fully compatible with
widely used spin-echo techniques for suppressing the
effects of inhomogeneous broadening and low-frequency
dephasing. This is of particular importance in potential
solid-state implementations.
For our induced TAT Hamiltonian, we start with an

initial product state where all spins are polarized along the x
direction. As shown in Fig. 2, if we apply a dynamical
decoupling protocol to cancel the effects of the dispersive
coupling, the induced TAT Hamiltonian (in the absence of
dissipation) generates spin squeezing at an optimal time,
that scales as ξ2R ∼ 4=N. This represents Heisenberg-limited
scaling, something that is impossible with a standard OAT
protocol (i.e., our setup with zero parametric drive), where
ξ2R ∼ 1=N2=3 at best. Figure 2 also shows that our protocol
is robust against variations in the parametric drive ampli-
tude; even when λ is far away from its optimal value of
Δc=3 the performance is superior to a OAT.
Impact of dissipation.—It is also crucial to understand

the ITAT scheme in the presence of dissipation. As
discussed, standard spin-echo pulses are compatible with
our scheme, and hence can be used to suppress the impact
of inhomogeneous broadening and low-frequency dephas-
ing noise. For the remaining dissipative processes, we
assume each spin is dephased by a Markovian bath (rate γϕ)
and that the cavity has an energy damping rate κ due to
coupling to a zero-temperature environment. The dissipa-
tive dynamics of our system is then described by

_̂ρ ¼ −i½Ĥs; ρ̂� þ ΓD½ẑðrÞ�ρ̂þ γϕ
2

XN
k¼1

D½σ̂zðkÞ�ρ̂; ð8Þ

where D½z�ρ̂ ¼ ẑ ρ̂ ẑ† − fẑ†ẑ; ρ̂g=2 is the standard Linblad
dissipative superoperator. Γ ¼ κχ=Eβ is the rate associated
with cavity-induced spin dissipation; the jump operator
describing this process is

ẑ½r� ¼ e−2rŜx − ie2rŜy: ð9Þ

For large parametric drives (e.g., as used in the scheme of
Ref. [31]), the drive causes strong amplification of the
cavity-induced dissipation, potentially nullifying any ad-
vantage. In contrast, our scheme only requires a small
parametric drive (i.e., e2r0 ¼ ffiffiffi

2
p

), leading to minimal
amplification of dissipation.
Shown in Fig. 3 are results from numerical simulations

of the full master equation [48,49], depicting optimal spin
squeezing versus N (with Eβ optimized for each N). We
pick parameters such that κ ≫ γϕ and the collective
cooperativity C≡ Ng2=ðκγϕÞ is 5 for N ¼ 1, and always
evolve starting with spins fully polarized in the x direction.
Even with dissipation, a parametric drive corresponding to
r ¼ r0 (i.e., ITAT) appreciably improves performance for
all values of N over the undriven (r ¼ 0, OAT) case. Our
results are also consistent with an approximate ξ2R ∼ 1=

ffiffiffi
C

p
scaling, as would be expected from a standard linearized
treatment of our system (see Ref. [21]). We also consider
optimizing the value of r (i.e., parametric drive strength) for

FIG. 2. Dissipation-free evolution of spin squeezing under the
spin-spin interaction in Eq. (5) for different parametric drive
amplitudes (Δ̃ ¼ 0, N ¼ 5000, spins initially polarized along x).
The solid blue (orange) curve corresponds to the OAT (TAT)
evolution with the parametric drive amplitude λ ¼ 0 (λ ¼ Δc=3).
The dotted (dashed) orange curve shows results for nonoptimal
amplitude of λ ¼ 0.02Δc (λ ¼ 0.92Δc). Even nonideal choices of
λ lead to performance that surpasses a OAT. Horizontal lines
indicate the optimal squeezing for a OAT and TAT. We assume
that a dynamical decoupling protocol is being applied to cancel
the effects of the dispersive interaction. In the absence of such a
protocol, the optimal squeezing for λ ¼ Δc=3 is degraded by less
than 1 dB.
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each N. We find that these optimized r values (orange
points in Fig. 3), are always larger than the value r0 that
would yield the TAT Hamiltonian. At a heuristic level,
increasing r increases the initial rate at which squeezing is
produced, something that is likely advantageous in the
presence of dissipation.
Adiabatic preparation of optimally squeezed states.—

While the TAT Hamiltonian is able to produce Heisenberg-
limited spin squeezing, it is well known that states exist
which are squeezed by an additional factor of 2 [18,19].
Such states are infinitesimally close to so-called “Dicke
states”: collective spin eigenstates that have a maximal Ŝ2tot
and are also annihilated by, e.g., Ŝz. As we now show, by
making our parametric drive time dependent, our setup can
also produce such states.
To see how this works, note that for even N the

spin Bogoliubov operator Σ̂½r� has a unique state in its
kernel, jψdk½r�i [3,6,50]. This state exhibits optimal spin
squeezing properties, with ξ2R → 2=N in the large-r limit.
Furthermore, it can be naturally produced by driving a spin
ensemble with squeezed light [3,50], and can also be
stabilized using dissipative protocols involving multilevel
atoms and engineered Raman processes [6].
Our setup provides an alternate, fully coherent method

for generating such states. For even N, jψdk½r�i is the
unique zero-energy ground state of the drive-modified spin-
spin interaction in Eq. (4); all other higher-lying states are
separated by a gap. As discussed in Ref. [21], by making
the complex parametric drive amplitude λ, frequency ωp,
and spin Larmor frequency ωs all time dependent,
we obtain a Hamiltonian with the same form as Eq. (4),
except with a time-dependent squeezing parameter rðtÞ.

This Hamiltonian always has an instantaneous zero-energy
eigenstate jψdk½rðtÞ�i. Our protocol thus consists of
starting with λð0Þ ¼ rð0Þ ¼ 0, with an initial state having
all of the spins polarized along the z axis (i.e.,
jψdk½r ¼ 0�i ¼ jN=2;−N=2i). We then slowly ramp up
rðtÞ from 0 to rf by appropriately varying λðtÞ, ωpðtÞ and
ωsðtÞ (see Ref. [21] and Refs. [51,52]). The adiabatic
theorem then implies that the system evolves from its initial
product form to the highly entangled state jψdk½rf�i. One
can show analytically that for large rf, jψdki exhibits spin
squeezing with ξ2R ∼ 2=N [3,50]. Adiabaticity requires a
total evolution time τprot that is much longer than the
relevant inverse gap, which in our case scales as Ng2=Eβ.
Shown in Fig. 4 are numerical results for the coherent

(no-noise) time evolution of the squeezing under this
adiabatic protocol for N ¼ 1000 and for different total
protocol times. We take the time dependence of rðtÞ to
smoothly increase from 0 to 4 during the evolution (see
Ref. [21]). Even for faster evolution times where non-
adiabatic errors are prevalent, large amounts of spin
squeezing are produced, and performance can still surpass
that of a standard OAT. In practice, the dark state jψdk½rðtÞ�i
only exists for even N. Figure 4 shows that our protocol
nonetheless produces considerable squeezing even when N
is odd. Finally, in Ref. [21] we also show numerical results
of a scenario where both cavity decay and local spin
dephasing are included. Because of the requirement for
longer evolution times, in that case, we use weaker noise
strengths, namely, κ ¼ 0.1g and γϕ ¼ 0.02g.
Conclusions.—We have explored how parametrically

driving a cavity coupled to a spin ensemble can be used
to optimize the generation of highly squeezed spin states.
An optimally detuned parametric drive allows a direct
realization of the ideal TAT spin squeezing Hamiltonian,
enabling Heisenberg-limited scaling. This protocol also
significantly improved performance over the undriven

FIG. 3. Optimized squeezing parameter ξ2R in the presence of
dissipation versus number of spins. The dots represent the
effective master equation [Eq. (8)] simulation data for OAT
(blue) corresponding to λ ¼ 0, ITAT (maroon) corresponding to
λ ¼ Δc=3, and finally a case where the drive strength λ is itself
(approximately) optimized (orange), with values λ ¼ αΔc, where
α ¼ 0.70, 0.74, 0.76, 086 for N ¼ 20, 30, 40, 100, respectively.
In all cases we take κ ¼ 10g, γϕ ¼ 0.02g and optimize over Eβ

and protocol time. The dashed lines depict corresponding
numerical fits to aC−b, with 3.2C−0.4 (blue), 3.8C−0.5 (maroon).
(Also, see Ref. [21] for a comparison with an ideal, no-noise OAT
and TAT evolution).

FIG. 4. Squeezing parameter ξ2R versus time for the adiabatic
scheme, for different protocol times: τprot ¼ 60=ðNχÞ (blue, solid
line), τprot ¼ 10=ðNχÞ (green, dash-dotted line). In both cases
N ¼ 1000. The blue dots correspond to the performance one
would obtain from an ideal dark state jψdk½rðtÞ�i. The orange
dashed curve depicts the evolution with τprot ¼ 60=ðNχÞ, but
with an odd number of spins; N ¼ 1001.
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system in regimes limited by dissipation. We also described
an alternate protocol using a time-dependent para-
metric drive, which adiabatically produced optimally
spin-squeezed states which approach Dicke states.
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Oberthaler, Nature (London) 464, 1165 (2010).

[12] O. Hosten, R. Krishnakumar, N. J. Engelsen, and M. A.
Kasevich, Science 352, 1552 (2016).

[13] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M.
Rey, M. Foss-Feig, and J. J. Bollinger, Science 352, 1297
(2016).

[14] S. Dooley, E. Yukawa, Y. Matsuzaki, G. C. Knee, W. J.
Munro, and K. Nemoto, New J. Phys. 18, 053011 (2016).

[15] Y.-L. Zhang, C.-L. Zou, X.-B. Zou, L. Jiang, and G.-C. Guo,
Phys. Rev. A 92, 013825 (2015).

[16] K. Xia, Sci. Rep. 7, 1 (2017).
[17] K. Xia and J. Twamley, Phys. Rev. B 94, 205118 (2016).
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