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Poisson-Lie duality is a generalization of Abelian and non-Abelian T duality, and it can be viewed as a
map between solutions of the low-energy effective equations of string theory, i.e., at the (super) gravity
level. We show that this fact extends to the next order in α0 (two loops in σ-model perturbation theory)
provided that the map is corrected. The α0 correction to the map is induced by the anomalous Lorentz
transformations of the fields that are necessary to go from a doubled OðD;DÞ-covariant formulation to the
usual (super)gravity description.
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Introduction.—The notion of T duality [1,2] is central in
string theory. It says that a closed string on a background
with Abelian isometries has another description as a string
on a dual background. In the simplest case of T duality on a
circle, the duality acts by inverting the radius of the circle.
More generally, backgrounds may have non-Abelian isom-
etry groups, and at least at the classical level there is indeed
a generalization to a non-Abelian version of T duality [3].
Unlike in the Abelian case, non-Abelian T duality (NATD)
does not generically preserve the isometries of the back-
ground, and it is therefore not obvious how to invert the
transformation. This problem was overcome by Klimčík
and Ševera in [4,5]. They realized that the map can be made
invertible by relaxing the notion of isometry. One requires
the background to have instead so-called Poisson-Lie (PL)
symmetry, namely to possess vector fields vi, with
½vi; vj� ¼ −fijkvk, under which the metric and B field of
the σ-model transform as

LviMmn ¼ −f̃jkivjpvkqMmpMqn; ð1Þ

where Mmn ¼ Gmn − Bmn and f̃jki are structure constants
of a dual Lie algebra. This more general notion of
symmetry allows to define a dual background (see below).
This construction became known as “Poisson-Lie T dual-
ity” since the group structure underlying it is that of a PL
group. The σ models on the original and dual backgrounds
are classically equivalent being related by a canonical

transformation [6]. When the dual structure constants f̃
vanish, vi generate standard isometries, and one recovers
(N)ATD.
At the world sheet quantum level, i.e., including string α0

corrections, things are more subtle. While Abelian T
duality remains a symmetry of the world sheet conformal
field theory to all orders in α0, it was quickly realized that
NATD cannot be a symmetry at the quantum level [7]. At
best it can map one world sheet conformal field theory to
another—inequivalent—one. It can therefore be used to
generate new string backgrounds from old ones. Except for
an anomaly when dualizing nonunimodular groups [8,9],
this has been shown to work to zeroth order in α0, i.e., at the
low-energy (supergravity) level of the string effective
equations, which corresponds to one loop order in σ-model
perturbation theory. Similar results are known for PL
duality, see, e.g., [10,11]. It has been a long-standing
problem whether PL and NATD can be extended beyond
this lowest order.
Here, we show that PL duality can be extended to order

α0, i.e., two loops in the σ-model perturbation theory,
provided that the map is corrected. A special case of our
results gives the corrections to NATD. When specifying to
the Abelian case we recover the results of [12].
To find this correction we exploit a powerful formulation

of the string effective equations inspired from double field
theory (DFT). It has long been known that the bosonic
string compactified on a d torus has an Oðd; dÞ T duality
symmetry [13]. DFT is a field theory where this symmetry
is made manifest form the start [14–18] and is therefore
well suited to working with T duality. This is achieved by
doubling the dimension of the physical manifold, and by
imposing a “section condition” which effectively elimi-
nates the dependence on half of the coordinates, giving the
correct dimension in the end (D ¼ 26 for the bosonic string

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 125, 201603 (2020)

0031-9007=20=125(20)=201603(6) 201603-1 Published by the American Physical Society

https://orcid.org/0000-0002-0156-441X
https://orcid.org/0000-0002-9168-3470
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.201603&domain=pdf&date_stamp=2020-11-13
https://doi.org/10.1103/PhysRevLett.125.201603
https://doi.org/10.1103/PhysRevLett.125.201603
https://doi.org/10.1103/PhysRevLett.125.201603
https://doi.org/10.1103/PhysRevLett.125.201603
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


and D ¼ 10 for the superstring). Here, we always work
with the standard choice of section, so that the background
depends only on the physical coordinates. In this formu-
lation it is rather the dimension of the tangent space that is
doubled, and we have two copies of the Lorentz group
instead of one [19]. The standard Lorentz group is the
diagonal of the doubled one, and under this breaking the
equations of DFT reduce to the standard string effective
equations, at lowest order in α0. A crucial point is that at the
quantum level it is impossible to preserve both theOðD;DÞ
and the Lorentz covariance of the fields [20–23]. If we
insist on fields which transform nicely under T duality and
OðD;DÞ, they must transform noncovariantly under
Lorentz transformations [24] (see [25] for another mani-
festation of this fact). The fact that the Lorentz trans-
formation of the fields receives corrections at order α0
makes the discussion of the Lorentz invariance of the
theory nontrivial. But this can be turned into a virtue rather
than a shortcoming. In fact the α0 correction to the Lorentz
transformation fixes the correction to the DFT action [24].
Remarkably, this α0-corrected OðD;DÞ-covariant action
correctly reproduces the α0 corrections to the bosonic
and heterotic string effective actions [24].
Our strategy is to use the rewriting of PL duality in the

doubled language, where it takes a natural form, see, e.g.,
[26–30]. The basic fields of the formulation we use, the
“generalized fluxes,” turn out to be invariant under PL
duality. Since the string effective equations, including the
first α0 correction, can be written in terms of the generalized
fluxes [24,31], at least to this order PL duality maps
solutions of the doubled equations to solutions. At the
standard (super)gravity level there are in fact explicit
corrections to the PL duality rules. They arise from the
noncovariance of the doubled fields under the double
Lorentz transformation needed to gauge fix down to the
diagonal subgroup and to go to the standard (nondoubled)
description. See Fig. 1 for a summary. This strategy was
used in [32] to find the α0 correction to the “homogeneous
Yang-Baxter deformations” (related to NATD [33,34]) and

it works for any OðD;DÞ transformation leaving the
generalized fluxes invariant.
Poisson-Lie duality.—In PL duality, fijk and f̃ijk are

interpreted as structure constants of Lie groups denoted by
G and G̃. These are combined into a “Drinfel’d double” D
whose Lie algebra is generated by TI ¼ ðTi; T̃iÞ, where Ti
are generators of LieðGÞ, and T̃i of LieðG̃Þ. Obviously
LieðGÞ and LieðG̃Þ are subalgebras of D but there are also
mixed commutation relations

½Ti; Tj� ¼ fijkTk; ½T̃i; T̃j� ¼ f̃ijkT̃k;

½Ti; T̃j� ¼ f̃jkiTk − fikjT̃k: ð2Þ

Importantly, D is endowed with the invariant symmetric
bilinear form hTI; TJi defined by

hTi; Tji ¼ hT̃i; T̃ji ¼ 0; hTi; T̃ji ¼ δji : ð3Þ

Having introduced D we can now present PL duality as
an invertible map between an “original” background
(specified by a metric Gmn, a Kalb-Ramond field Bmn,
and a dilaton Φ) and another “dual” background (with
fields G̃mn; B̃mn, and Φ̃). We split the coordinates of the
original background as xm ¼ ðyσ; xμÞ, where yσ are coor-
dinates on the group G to be dualized, and xμ are
coordinates that play the role of spectators under the
dualization. Similarly, for the dual background we have
x̃m ¼ ðỹσ; xμÞ with ỹσ coordinates on G̃. The y and ỹ
dependence is in fact encoded in the group elements gðyÞ ∈
G and g̃ðỹÞ ∈ G̃ featuring below. To present the map
between the original and dual backgrounds we first need
the fact that the condition (1) implies that Mmn ≡ Gmn −
Bmn is of the form

M ¼ U _Mð1þ Π _MÞ−1UT; ð4Þ

where we suppressed matrix indices for readability. The
matrix Um

r depends only on y and it is of block form with
nonvanishing components Uμ

ν ¼ δμ
ν and Uσ

i ¼ uσ i, the
latter being the components of the Maurer-Cartan form u ¼
g−1vg ¼ g−1dg ¼ dyσuσ iTi [35]. The matrix Πrs depends
only on y and its only nontrivial components are

Πij ¼ hAd−1g ∘P∘AdgT̃i; T̃ji; ð5Þ

where AdgX ¼ gXg−1 and P is the projector on LieðGÞ.
Notice that in general Π ≠ 0 thanks to the mixed commu-
tation relation of D if f̃ijk ≠ 0. The map between Mmn and
M̃mn is achieved by relating both of them to _Mrs, a matrix
depending only on spectators xμ and on which no other
condition is imposed [36]. The dual background M̃mn is
obtained by [37]

M̃ ¼ Ũ½ð _M þ Π̃ÞPþ P̄�−1ð _M P̄þPÞŨT; ð6Þ

FIG. 1. Starting with the PL duality map for the doubled fields
ðE; dÞ, the map for the standard (super)gravity fields ðG;B;ΦÞ is
obtained after a double Lorentz transformation ðΛðþÞ;Λð−ÞÞ ¼
ðΛ; 1Þ to set eðþÞ ¼ eð−Þ, thus breaking the double Lorentz group
down to its diagonal subgroup. The α0 corrections to the PL
duality map follow from the anomalous Lorentz transformations
of the fields.
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where Ũμ
ν ¼ δμ

ν, Ũσ
i ¼ ũσjδji and P, P̄ project on indices

i, j and μ, ν, respectively. As previously ũ ¼ g̃−1dg̃ ¼
dỹσũσiT̃i is a Maurer-Cartan form, and now Π̃ij ¼
hAd−1g̃ ∘P̃∘Adg̃Ti; Tji, where P̃ projects on LieðG̃Þ.
Finally, the dilatons of the two backgrounds are related
by [38]

expð−2ΦÞ ðdetGÞ
1=2

det u
¼ expð−2Φ̃Þ ðdet G̃Þ

1=2

det ũ
: ð7Þ

Taking G̃ Abelian (f̃ijk ¼ 0) implies Π ¼ 0 and Eq. (4)
simplifies to M ¼ U _MUT , encoding the usual conse-
quences of having isometries for M. Then parametrizing
the Abelian group as g̃ ¼ expðỹiT̃iÞ with ỹi ¼ ỹσδσi it
follows that ũσi ¼ δσi, Π̃ij ¼ ỹkfijk, and from (6) and (7)
we recover the rules of NATD in the presence of spectators
[39]. Even simpler is the case when also G is Abelian
(fijk ¼ 0) so that M is invariant under dim(G) Uð1Þ
isometries. Then also Π̃ ¼ 0 and Eq. (6) implements dim
(G) factorized T dualities, reducing to the celebrated
Buscher rules when only one isometry is dualized.
Double formulation.—The nonlinear maps in (4) and (6)

admit a much simpler and linear formulation in the doubled
language, where one works with matrices OM

N of dimen-
sion 2D × 2D. These are elements of the group OðD;DÞ,
meaning that OM

PON
QηPQ ¼ ηMN where

ηMN ¼
�

0 δmn

δm
n 0

�
: ð8Þ

In fact let us construct the (inverse) “generalized vielbein”
which we parametrize as

EA
M ¼ 1ffiffiffi

2
p
 

eðþÞanMnm eðþÞam

−eð−Þna Mnm eð−Þma

!
; ð9Þ

where A is a flat index and M curved. We use similar
parametrizations for ẼA

M and _EA
R, adding tildes and dots.

Above, eð�Þ are two possible vielbeins for the metric Gmn.
They are not necessarily equal and in general they are
related by a nontrivial Lorentz transformation. Each of
them transform under only one of the two copies of the
Lorentz group [distinguished by the (þ) and (−)] arising in
the doubled formulation. The generalized vielbein is one of
the main ingredients of the “framelike formulation” of
DFT, and it will be important for our derivation of the
“unimodularity condition” (18) and the α0 corrections to PL
duality. It is straightforward to check that the relations (4)
and (6) are equivalent to the relations

E ¼ _Eð1þ ΠÞU; Ẽ ¼ _Eð1þ Π̃ÞŨ; ð10Þ

where we suppressed indices. In our notation all dotted
quantities only depend on xμ. The nonvanishing

components of ΠR
S and Π̃R

S are again only Πij and Π̃ij
and the antisymmetry properties Πij ¼ −Πji and Π̃ij ¼
−Π̃ji imply that ð1þ ΠÞ; ð1þ Π̃Þ are elements ofOðD;DÞ.
The matrices U; Ũ are also elements of OðD;DÞ with
U i

σ ¼ uiσ, U i
σ ¼ uσ i, Ũ

iσ ¼ ũiσ , Ũ iσ ¼ ũσi, Uμ
ν ¼ Uμ

ν ¼
Ũμ

ν ¼ Ũμ
ν ¼ δμ

ν. We are using a notation so that uσi and
ũiσ are the inverses of uσ i and ũσi, respectively. To match
(4) and (6) with (10) one finds that the (þ) and (−)
vielbeins must transform differently

eð�Þm
a ¼ _eð�Þs

a Oð�ÞsrðU−1Þrm;
ẽð�Þm
a ¼ _eð�Þs

a Õð�ÞsrðŨ−1Þrm; ð11Þ

where

OðþÞ ¼ 1þ _MΠ; ÕðþÞ ¼ P̄þ ðΠ̃þ _MÞP;
Oð−Þ ¼ 1 − _MTΠ; Õð−Þ ¼ P̄þ ðΠ̃ − _MTÞP: ð12Þ

In both cases the (þ) and (−) vielbeins are then related by
Lorentz transformations as eð−Þma ¼ Λa

beðþÞm
b and ẽð−Þma ¼

Λ̃a
bẽðþÞm

b where

Λ ¼ _e−1Oð−ÞO−1
ðþÞ _e; Λ̃ ¼ _e−1Õð−ÞÕ−1

ðþÞ _e; ð13Þ

if we fix _e ¼ _eðþÞ ¼ _eð−Þ. Finally, the transformation (7) is
translated into

dþ 1

2
log det u ¼ _d ¼ d̃þ 1

2
log det ũ; ð14Þ

where d; _d; d̃ are called “generalized dilatons” and are
parametrized as in d ¼ Φ − 1

4
log detG [41].

PL duality as a map between string backgrounds.—The
double formulation is very useful because in this language
it is very simple to prove that the PL duality trans-
formation is a solution generating technique in string
theory, at least to leading and subleading order in the α0
expansion. From EA

M and d one can construct the
generalized fluxes

FABC ¼ 3E½AM∂MEB
NEC�N;

FA ¼ EBM∂MEB
NEAN þ 2EA

M∂Md; ð15Þ

that are the dynamical fields of the framelike formulation
of DFT. In fact the DFTequations of motion can be written
only in terms of the above fluxes and their flat derivatives
∂AF ¼ EA

M∂MF , both at leading and subleading order in
the α0 expansion [31]. Under the transformation (10) we
have

FABC ¼ 3 _E½A
½A∂μ

_EB
N _EC�N

þ 3 _E½A
i _EB

j _EC�kfijk þ 3 _E½A
i _EBj

_EC�kf̃jki; ð16Þ
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FA ¼ _EBμ∂μ
_EB

N _EAN þ 2 _EA
μ∂μ

_d

þ _EA
ifijj − _EAiðf̃ijj þ fjkiΠjkÞ: ð17Þ

For the reader’s convenience we give the details of the
computation in the Supplemental Material [37]. The
results for the dual background are analogous upon
exchanging tilded and untilded quantities, and appropri-
ately raising or lowering i, j, k indices. Because of the
symmetry of (16) under this transformation, it immedi-
ately follows that FABC ¼ F̃ABC. Equation (17) instead is
not symmetric under this transformation, but it becomes
symmetric if we impose the tracelessness of the structure
constants

fijj ¼ 0; f̃ijj ¼ 0; ð18Þ

as detailed in the Supplemental Material. When this
“unimodularity condition” holds we have simply

FA ¼ _EBμ∂μ
_EB

N _EAN þ 2 _EA
μ∂μ

_d; ð19Þ

and FA ¼ F̃A immediately follows. Notice that not
only both fluxes but also their flat derivatives are
invariant under the PL transformation. In fact, since
they only depend on spectators xμ it follows
that EA

M∂MF ¼ EA
μ∂μF ¼ ẼA

μ∂μF̃ ¼ ẼA
M∂̃MF̃ .

If we start from a string background, or in other words
given a model with EA

M and d of the PL form (10) and (14)
that satisfies the doubled equations of motion to zeroth and
first order in α0, we conclude that the dual model given by
ẼA

M and d̃ also satisfies the same equations, at least when
(18) holds. This observation extends to higher orders under
the assumption that there exists a formulation of the string
effective action in terms of the generalized fluxes and their
flat derivatives [31] also at higher orders in α0. This in turn
should be true as long as it is possible to make diffeo-
morphisms, B-field gauge transformations, and OðD;DÞ
symmetry manifest.
This is a proof that PL duality is a solution generating

technique in string theory at least when both structure
constants are traceless, as found already to lowest order in
[42]. When G̃ is Abelian this condition reduces to the
unimodularity condition for NATD [8,9].
α0 corrections.—So far, we have shown that in the

doubled formulation the PL duality transformation works
and remains uncorrected at least to order α0. Note that the
assumption is that the DFT equations are satisfied without
the need of correcting the OðD;DÞ form (10) of the PL
transformation, and therefore only _M and _d in (10) and (14)
can depend on α0.
The description of the two models in terms of standard

(i.e., nondoubled) fields ðG;B;ΦÞ and ðG̃; B̃; Φ̃Þ is differ-
ent, and the PL duality transformation between these does
receive α0 corrections. The reason is that when going from a

doubled to a standard (super)gravity formulation we must
first perform a double Lorentz transformation to set the two
vielbeins eðþÞ and eð−Þ equal [24]. At order α0 the fields of
the doubled formulation transform noncovariantly under
local Lorentz transformations, and this induces extra α0
corrections also for the standard fields. The situation is
illustrated in Fig. 1. Because of the noncovariance even
under the diagonal of the double Lorentz group, we say that
the reduction from the doubled to the standard formulation
picks a specific noncovariant “scheme,” which we call the
scheme of DFT. To translate our results into the covariant
schemes of [43–46] one must implement α0-dependent field
redefinitions. We provide a dictionary [47] in the
Supplemental Material [37].
The first α0 correction to Mmn induced by the compen-

sating double Lorentz transformation with ΛðþÞ and Λð−Þ
is [48]

aΔð−Þ
Λð−ÞM

ðDFTÞ
nm þ bΔðþÞ

ΛðþÞM
ðDFTÞ
mn ; ð20Þ

where a ¼ b ¼ −α0 for the bosonic string and a ¼ −α, b ¼
0 for the heterotic string (and a ¼ b ¼ 0 for type II). The
finite form of the anomalous transformations is [37]

Δð�Þ
Λ MðDFTÞ

mn ¼ 1

2
trð∂mΛΛ−1ωð�Þ

n Þ − BWZW;ðΛÞ
mn

þ 1

4
trð∂mΛΛ−1∂nΛΛ−1Þ; ð21Þ

where ωð�Þb
ma ¼ ωma

b � 1
2
Hma

b and ω is the spin connection
for the vielbein e after the diagonal gauge fixing. The
WZW-like contribution to B is defined by

dBWZW;ðΛÞ ¼ −
1

12
trðdΛΛ−1dΛΛ−1dΛΛ−1Þ: ð22Þ

The α0 corrections to the original model can be obtained,
for example, after choosing e ¼ eð−Þ and doing the double
Lorentz transformation on eð�Þ to achieve the diagonal
gauge with ðΛðþÞ;Λð−ÞÞ ¼ ðΛ; 1Þ and Λ given in (13) [49].
Then the correction is

ΔMðDFTÞ ¼ bΔðþÞ
Λ MðDFTÞ

þ α0Uð1þ _MΠÞ−1Δ _Mð1þ Π _MÞ−1UT; ð23Þ

where the second term comes when expanding (4) with the
α0 corrections _M → _M þ α0Δ _M. Notice that for the heter-
otic string (b ¼ 0) the PL map is uncorrected in the DFT
scheme in the gauge e ¼ eð−Þ [50]. For the dual background
the same reasoning applies, and choosing ẽ ¼ ẽð−Þ
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ΔM̃ðDFTÞ ¼ bΔðþÞ
Λ̃ M̃ðDFTÞ

þα0Ũð _MPþ Π̃þ P̄Þ−1Δ _Mð−PŨ−1M̃þ P̄ŨTÞ:
ð24Þ

The transformation of the dilatons follows from the fact
that the generalized dilaton (14) is not anomalous under
Lorentz [24] and that the parametrization in terms of
standard metric and dilaton holds to α0 order. Then

ΔΦðDFTÞ ¼ α0Δ _dþ 1

4
GmnΔGðDFTÞ

mn ;

ΔΦ̃ðDFTÞ ¼ α0Δ _dþ 1

4
G̃mnΔG̃ðDFTÞ

mn ; ð25Þ

where we allowed an α0 correction _d → _dþ α0Δ _d.
We refer to the Supplemental Material for an example of

a computation of such α0 corrections, and for Refs. [51,52].
When specifying the map to a single Uð1Þ T duality,
Eqs. (24) and (25) reproduce the rules written in [12] by
Kaloper and Meissner, as proved in [32].
Conclusions.—In this Letter, we employed the framelike

formulation of DFT to show that [when the conditions in
(18) hold] PL duality is a map between solutions of the low-
energy effective string equations at least to first order in α0
and quite possibly to all orders. We did this for a two-
parameter family of theories interpolating between the
bosonic and the heterotic string (when the gauge fields
and fermions of the latter are set to zero). It would be
interesting to generalize these results to the case in which
G, for example, is replaced by the coset G=H.
The importance of Eqs. (23), (24), and (25) is twofold.

First, they provide the necessary quantum corrections to the
PL duality transformation rules in order to extend the map
to order α0. Second, they imply that the form of the α0
corrections of backgrounds admitting PL symmetry is
strongly constrained by the PL symmetry itself [53]. In
particular, Eqs. (23) and (25) can be interpreted as an
efficient way to compute α0 corrections for PL symmetric
backgrounds, since the only unknowns are Δ _M and Δ _d,
and they can be found by imposing the order α0 equations of
motion. This is much simpler than trying to compute the
corrections directly for M and Φ. It would be interesting to
see if, when considering nonconformal σ models, the α0
corrections that we find preserve the form of the β
functions.
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