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Potts spin systems play a fundamental role in statistical mechanics and quantum field theory and can be
studied within the spin, the Fortuin–Kasteleyn (FK) bond or the q-flow (loop) representation. We introduce
a Loop-Cluster (LC) joint model of bond-occupation variables interacting with q-flow variables and
formulate an LC algorithm that is found to be in the same dynamical universality as the celebrated
Swendsen–Wang algorithm. This leads to a theoretical unification for all the representations, and
numerically, one can apply the most efficient algorithm in one representation and measure physical
quantities in others. Moreover, by using the LC scheme, we construct a hierarchy of geometric objects that
contain as special cases the q-flow clusters and the backbone of FK clusters, the exact values of whose
fractal dimensions in two dimensions remain as an open question. Our work not only provides a unified
framework and an efficient algorithm for the Potts model but also brings new insights into the rich
geometric structures of the FK clusters.
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Introduction.—The understanding of critical phenomena
is strongly intertwined with the study of the rich behavior of
the q-state Potts model [1]. Aside from the historical spin
representation [2,3], two other representations of the Potts
model have played a central role: the q-flow representation
[4,5], which is a generalization of the loop description, and
the Fortuin–Kasteleyn (FK) bond representation [6,7],
which is also known as the random-cluster (RC) model.
On one hand, theoretical advances were achieved thanks
to the geometric and probabilistic interpretations these
two representations, as well as the extension to positive
real q values [8–10]. For instance, they play an important
role in conformal field theory [11] and in stochastic
Loewner evolution [12–16]. On the other hand, numerical
Monte Carlo methods, decisive in the study of not-exactly-
soluble models, have significantly benefited from these
insights. Indeed, the Metropolis [17] or heat-bath schemes
rely on single-spin moves and often suffer from severe
critical slowing-down [18,19], and the Sweeny algorithm
[20], a local-bond update scheme, has complications
from connectivity checking. Based on the coupling
between spin and FK representations [6,7,21], efficient
cluster methods, including the Swendsen–Wang (SW) and
Wolff algorithms [22,23], have been developed and widely
used. For the q-flow representation, one can apply the
Prokof’ev–Svistunov worm algorithm [24–27], which
has proven to be particularly efficient at computing the

magnetic susceptibility [28] and the spin-spin correlation
function [29].
However, despite the existence of the coupling between

spin and FK representation for decades [6,7,21], a generic
coupling between the q-flow and another representation,
which would tie the three representations together, has
remained an open question.
In this Letter, we propose a unified framework by

introducing a joint model, called the Loop-Cluster (LC)
model, of FK bond variables interacting with q-flow
variables. It includes and provides a straightforward der-
ivation of the coupling for the Ising model [30,31] and
applies to the Potts model of any integer q ≥ 1. The LC
joint model provides a setup for a new Monte Carlo
algorithm, which we call the Loop-Cluster (LC) algorithm.
By investigating the dynamical properties over the com-
plete graph and d ¼ 2, 3, 4, 5 toroidal grids, we show that
the LC and the SW schemes are in the same universality
class. As a consequence, the three representations are tied
together, and numerically, one can apply the most efficient
algorithm in one representation and measure observables in
others, as illustrated in Fig. 1.
Much insight is also gained on the geometric structures

of the Potts model from the LC scheme. The q-flow
clusters, defined by sets of vertices connected by nonzero
flow variables, can be proven to be contained in the
backbones of FK clusters. Further, we construct a hierarchy
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of random qF-flow clusters from a q-state FK configuration
with real q ≥ 0 and integer qF ≥ 2, which reduce to the
q-flow clusters for qF ¼ q and the backbones for qF → ∞.
This provides a new perspective to study the long-standing
question about the backbone dimension for percolation and
FK clusters [32–38]. In two dimensions (2D), we determine
with high precision the fractal dimension dF for various qF
and q, and conjecture an exact formula for qF ¼ 2.
However, for generic (qF; q), the exact value of dF remains
unknown, and the exploration might request progresses in
conformal field theory.
Representations of the Potts model.—We begin with the

introduction of the Potts, q-flow, and RC models. Consider
a finite graphG≡ ðV; EÞ, where V is the vertex set and E is
the edge set. Let each vertex i be occupied by a Potts spin
σi ∈ f0; 1;…; q − 1g with q > 1 an integer, the q-state
Potts model is defined by the probability distribution

dμspinðfσgÞ ¼ Z−1
spin

Y
ðijÞ

exp ½Jijðδσi;σj − 1Þ�dμ0ðfσgÞ;

where Jij > 0 is the ferromagnetic coupling for edge
ðijÞ ∈ E in the graph G, and dμ0ðfσgÞ is the counting
measure for the Potts spin configurations. The partition
sum Zspin acts as a normalization factor. Introducing the
edge probability pij ≡ 1 − expð−JijÞ, the Potts distribution
can be rewritten as

dμspinðfσgÞ ¼ Z−1
spin

Y
ðijÞ

½pijδσi;σj þ ð1 − pijÞ�dμ0ðfσgÞ: ð1Þ

Now, we can assign to each edge ðijÞ ∈ E a random
bond variable bij ∈ f0; 1g and define the subgraph
Gb ≡ ðV; EbÞ ⊆ G, with Eb consisting of the edges ðijÞ
with occupied bond bij ¼ 1. Let a cluster be a set of
vertices connected via occupied bonds, the constraint δσi;σj
requires that all the Potts spins in the same cluster take the
same value, while the spin values in different clusters are
independent from each other. After summing out the spin
degree of freedom, one obtains a FK bond configuration,
fbg, in which each cluster has a statistical weight of q.

The corresponding RC model with parameter q is then
defined by the probability distribution

dμFKðfbgÞ ¼ Z−1
FKq

k
Y

ðijÞ∈Eb

pij

Y
ðijÞ=∈Eb

ð1 − pijÞdμ0ðfbgÞ;

ð2Þ
where k≡ kðGbÞ is the number of clusters in Gb, including
single-vertex clusters.
We can also add to each edge of G a q-flow variable

fij ∈ f0; 1;…; q − 1g and denote by Gf ≡ ðV; EfÞ ⊆ G
the subgraph of edges ðijÞ with nonzero flows fij > 0.
Further, we introduce the symbol ∂G to represent the set of
vertices that do not satisfy the condition given by the q-
modular Kirchhoff conservation law as

X
j∶ðijÞ∈E

sgnði → jÞfij ¼ 0 mod q; for any i ∈ V; ð3Þ

where sgnði → jÞ ¼ −sgnðj → iÞ ∈ f�1g accounts for the
edge orientation. The q-flow model is described by the
probability distribution

dμqFlowðffgÞ ¼Z−1
qFlowδ∂G¼⊘

×
Y

ðijÞ∈Ef

pij

q

Y
ðijÞ=∈Ef

�
1−

q− 1

q
pij

�
dμ0ðffgÞ;

ð4Þ
where δ∂G¼⊘ means an empty set for ∂G, i.e., no vertex
breaks the conservation law. The edge orientations play no
physical role and can be randomly chosen, as reversing an
edge ðijÞ orientation can be counterbalanced by mapping
the flow variable fij to q − fij mod q.
Using high-temperature expansion [4–7,39], duality

relations [1,40], or low-temperature expansion for 2d-
planar graphs, it is known that Zspin ¼ ZFK ¼ qjVjZqFlow

and, thus, apart from an unimportant constant qjVj, the
Potts, RC and q-flow models are equivalent to each other.
Joint models.—In 1988, Edwards and Sokal defined a

joint model [21] having the q-state Potts spin σi at the
vertices and occupation variable bij on the edges with
probability distribution

dμjSWðfσg;fbgÞ¼Z−1
jSW

Y
ðijÞ

½pijδbij;1δσi;σj

þð1−pijÞδbij;0�dμ0ðfσgÞdμ0ðfbgÞ: ð5Þ

On this basis, the SW cluster algorithm can be easily
understood as passing back and forth between the spin and
FK representations via the joint model, Eq. (5). Given a
spin configuration, a random FK configuration is generated
as follows: independently for each edge ðijÞ, one sets bij ¼
0 for σi ≠ σj and sets bij ¼ 1 (resp. 0) with probability pij

FIG. 1. Representations and algorithms for the Potts model.
The spin, q-flow, and FK representations are coupled by the
combination of the Swendsen–Wang and the Loop-Cluster
algorithm.
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[resp. ð1 − pijÞ], for σi ¼ σj. The reverse process starts
with a FK bond configuration. One picks equiprobably a σi
variable from the set f0; 1;…; q − 1g for each connected
cluster and assigns the σi value to all the spins in this
cluster.
We shall formulate a joint model between the FK bond

and the q-flow configurations and the corresponding
algorithm that passes back and forth. We first remark that,
using the Euler formula kðGbÞ ¼ jVj − jEbj þ cðGbÞ, we
can underline the cycle structure in the RC model by
rewriting it as

dμFKðfbgÞ ¼ Z−1
FKq

jVjþc
Y

ðijÞ∈Eb

pij

q

Y
ðijÞ=∈Eb

ð1 − pijÞdμ0ðfbgÞ;

ð6Þ

where c≡ cðGbÞ is the number of independent loops
(cycles) in Gb. Further, a simple decomposition in the q-
flow model, Eq. (4), leads to

dμqFlowðffgÞ¼Z−1
qFlowδ∂G¼⊘

×
Y

ðijÞ∈Ef

pij

q

Y
ðijÞ=∈Ef

�
pij

q
þ1−pij

�
dμ0ðffgÞ;

ð7Þ

since zero-valued flows correspond to modulo q either 0 or
q (resp. 1 − pij and pij=q contributions). Analogously to
[21], we define a joint model having the bond variable bij
and the flow variable fij on each edge with the probability
distribution

dμjLCðffg; fbgÞ ¼ Z−1
jLCδ∂G¼⊘

Y
ðijÞ

�
pij

q
δfij≠0δbij;1

þ pij

q
δfij¼0δbij;1 þ ð1 − pijÞδfij¼0δbij;0

�

× dμ0ðffgÞdμ0ðfbgÞ: ð8Þ

We call this model the Loop-Cluster (LC) joint model. As
the edge state ðfij ≠ 0; bij ¼ 0Þ is forbidden, i.e., has zero
probability, it yields Gf ⊆ Gb ⊆ G. By explicitly perform-
ing the summation over either the fbg or the ffg variables,
it is easy to verify the following facts about the LC joint
model, Eq. (8):
(i) The marginal probability of the flow variables ffg is

precisely the q-flow model, Eq. (7), since, after summation
over the bond states bij ¼ 0, 1, an edge with the flow state
fij ≠ 0 has the statistical weightpij=q, and onewith fij ¼ 0

a statistical weight of ð1 − pijÞ þ pij=q, as in Eq. (7).
(ii) The marginal probability of the bond variables fbg is

precisely the RC model, Eq. (6). The summation over the
flow variables ffg involves the number of choices of

assigning the flow variables under the constraints that
∂G ¼ ⊘ and the state ðfij ≠ 0; bij ¼ 0Þ is forbidden.
This number identifies with the number of possible flow
configurations on the subgraph of occupied bonds, i.e., the
flow configurations satisfying ∂Gb ¼ ⊘. This number
amounts to qcðGbÞ by considering the decomposition of
the Kirchhoff law, Eq. (3), into the loop flows on the graph
Gb. Indeed, once the flow variable of an unshared edge of a
loop is determined among the q possible values, it must be
propagated along the loop, defining the loop flow. The final
flow for a given edge is the sum modulo q of the loop flows
in which it is contained. Thus, any bridge edge, i.e., not
contained in any loop and whose removal would increase
the number of clusters, is assigned a flow zero.
(iii) Given the flow variables ffg, the bond variables fbg

are all independent and set by the conditional distribution
pðbij ¼ 1jfij > 0Þ ¼ 1 for any edge ði; jÞ with a nonzero
flow, pðbij¼ 1jfij¼ 0Þ¼ fpij=½pijþqð1−pijÞ�g≡ tij and
otherwise.
(iv) Given the bond variables fbg, the subset of flow

variables ffgb on a clusterGb is independent from the others
and set by pðffgbjGbÞ ¼ q−cðGbÞδ∂Gb¼⊘ and pðfij ¼
0jbij ¼ 0Þ ¼ 1 for all edges ðijÞ with unoccupied bonds.
(v) The joint model, Eq. (8), highlights the fundamental

relationship between the FK and q-flow representations as
both can be understood as the result of a high-temperature
expansion over pij=ð1 − pijÞ and tij, respectively,
revealing either the connected cluster or flow structure.
Furthermore tij identifies with the thermal transmissivity
arising in the renormalization group [5,41].
Loop-Cluster algorithm.—We are now ready to formu-

late an LC Monte Carlo method that simulates the joint
model, Eq. (8). To be specific, we alternatively generate new
bond variables, independent of the old ones, given the flows
following (iii), and new flow variables, independent of the
old ones, given the bonds following (iv). The marginal
distribution dμFK in Eq. (6) [dμqFlow in Eq. (7)] from the joint
model, Eq. (8), is then simply obtained by erasing the flow
variables ffg (bond variables fbg), as stated in (i,)(ii). This
sampling procedure is a generalization of the mapping
method proposed in [30,31] for the Ising case.
(A) Given a q-flow configuration, generating a random

FK bond configuration is a straightforward local process
given in (iii): for each nonzero flow fij ≠ 0, one sets
bij ¼ 1; for each edge with empty flow fij ¼ 0, one
independently sets bij ¼ 1 with probability tij, and
bij ¼ 0, otherwise. The number of operations in this step
equals the number of edges of the original graph, jEj.
(B) Given a FK bond configuration, generating a q-flow

configuration follows from (iv) and depends on the sub-
graph-Gb topology: For all the nonoccupied edges bij ¼ 0,
one sets fij ¼ 0; the edges in Eb are assigned flow
variables ffg as described in (ii), once a set of independent
loops have been defined.
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In more detail, we first construct a spanning tree for each
connected cluster by a rooted procedure, either the breadth-
first or the depth-first search. Any occupied edge of the
graph Gb missing from the tree defines a loop by the tree
paths from the pair of ending vertices of the missing edge to
the root vertex. Each of these occupied bonds is uniformly
assigned a flow variable fij ∈ f0; 1;…; q − 1g. Then, we
backtrack the tree and calculate the flow variables for all its
edges by applying the q-modular Kirchhoff conservation
law to each vertex. The number of operations is twice the
number of edges in the original graph, 2jEj. Figure 2
illustrates an example of “constructing-tree” and “back-
tracking” processes for q ¼ 3. The number of operations is
3jEj for the LC scheme, slightly larger than 2jEj for the SW
algorithm.
For q ¼ 1, the set of flow variables f0;…; q − 1g

reduces to f0g, and the LC algorithm becomes the conven-
tional strategy for bond percolation.
The LC algorithm can be extended to sample from the

RC model of real value q ≥ 1 via the induced-subgraph
decomposition [9]. Further, a single-cluster version can be

formulated to sample from the q-flow model. See the
Supplemental Material [47] for details.
Dynamical behavior.—We study numerically the

dynamics of the LC algorithm and compare it to the SW
scheme for both “energylike” and “susceptibilitylike”
quantities in the FK representation at criticality over the
complete graph and d ¼ 2, 3, 4, 5 toroidal grids, where
the critical coupling strengths are taken from Refs. [1,2,
42–45]. By comparing the integrated autocorrelation times,
as calculated by a windowing method [46], we obtain clear
evidence that both the SW and LC schemes belong to the
same dynamical class (even displaying similar decorrela-
tion performance for q ¼ 2 in 2D), as well as the Wolff and
the single-cluster LC variant. Further details are given in
the Supplemental Material [47].
New family of fractal objects.—The FK bond represen-

tation provides a platform to study rich geometric structures
for any real q ≥ 0. A variety of fractal dimensions are used
to characterize the sizes of FK clusters, the hulls, the
external perimeters, the backbones, and the shortest paths,
etc., [48,49], and a set of exponents is defined to account
for correlation functions that two far-away regions are
connected by a number of monochromatic or polychromatic
paths [50–52]. In 2D, thanks to Coulomb-gas arguments,
conformal field theory, and stochastic Loewner evolution
theory, the exact values of most of these exponents are
available. For instance, one has the fractal dimensionDFK ¼
ðgþ 2Þðgþ 6Þ=8g for the FK clusters and the correlation
exponent X2 ¼ 1–2=g for two polychromatic paths, where
the Coulomb-gas coupling g ∈ ½2; 4� relates to q as q ¼
2þ 2 cosðgπ=2Þ [53–55]. Nevertheless, exact values still
remain unknown for a few exponents, including the back-
bone dimension Dbb. For percolation (q ¼ 1), while the
proximity of the numerical estimates for Dbb to the fraction
DFK − X2 ¼ 79=48 ≈ 1.645833 has been noticed [32,56],
this value seems ruled out by a high-precision study Dbb ¼
1.64336ð10Þ [37].
As in the FK representation, clusters can be defined as

sets of vertices connected via edges of nonzero flows in a
q-flow configuration, which have so far received little
attention. From the LC joint model, Eq. (8), it is seen that a

FIG. 2. Illustration of a cluster-to-loop update for q ¼ 3, with an up and right orientation, as shown in (d). From an FK bond
configuration (a), a spanning tree is constructed from a root vertex, as marked by the green color (b). Each occupied edge missing from
the tree defines an independent cycle and is assigned a random flow variable f ∈ f0; 1;…; q − 1g (c). Finally, the q-flow variables for
all the other edges are obtained by backtracking vertices and applying the q-modular Kirchhoff conservation law for each vertex,
yielding a q-flow configuration (d).
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FK cluster may contain more than one q-flow cluster while
the reverse cannot occur. Actually, since any bridge edge
has a zero flow, the q-flow clusters must live on top of
the backbones of the FK cluster sets of vertices connected
via nonbridge edges. In practice, since any loop has a flow
zero with probability 1=q, q-flow clusters are generally
smaller than the backbone clusters and, therefore, one
has DqF ≤ Dbb ≤ DFK.
Further, given a q-state FK bond configuration, we

can introduce an integer parameter qF ≥ 2 such that, in
Step B of the LC scheme for assigning flow variables,
each loop has a flow zero with probability 1=qF and the
qF-modular conservation law applies to each vertex. This
leads to a hierarchy of qF-flow clusters, reducing to the
q-flow clusters for qF ¼ q. Note that Step A can no longer
be applied if qF ≠ q, and the FK configuration has to be
updated by other means like the cluster or Sweeny
algorithms [20,22,23].
We carry out extensive simulation for (q ¼ 1;

2; 3; 2þ ffiffiffi
3

p
; qF ¼ 2) and (q ¼ 1; qF ¼ 2; 3; 4; 5; 7; 10;

20; 100; 1000) on the 2D toroidal grid with linear size
L ∈ ½6; 4096�. From finite-size scaling analysis, we deter-
mine the fractal dimensionDqF for the qF-flow clusters. For
qF ¼ 2, the results areDqF¼ 1.3333ð2Þ≈4=3, 1.3754ð12Þ≈
11=8, 1.417ð2Þ ≈ 17=12, and 1.464ð6Þ ≈ 35=24 for
q ¼ 1; 2; 3; 2þ ffiffiffi

3
p

, respectively. These are well consistent
with the external-perimeter fractal dimension DEP ¼ 1þ
g=8 [54], and, thus, we conjecture DqFðqF ¼ 2Þ ¼ DEP.
For percolation (q ¼ 1), we obtain DqF ¼ 1.4716ð2Þ,

1.5261(2), 1.5547(2), 1.5842(2), 1.6036(2), 1.6247(2),
1.6398(2), and 1.6429(2) for qF ¼ 3, 4, 5, 7, 10, 20,
100, 1000, respectively. As qF increases, DqF converges to
the backbone dimension asymptotically as 1=ðqF − q0Þ as
shown in Fig. 3. A least-squares fit with qF ≥ 4 yields q0 ¼
0.94ð4Þ and DqFðqF → ∞Þ ¼ 1.6434ð2Þ, which agrees
well with Dbb ¼ 1.64336ð10Þ [37].
Conclusion.—We introduce the LC joint model of the FK

bond and q-flow representations of the Pottsmodel, unifying
its three standard representations. A straightforward appli-
cation is the design of LC algorithms. While in the same
dynamical class as the SW and Wolff methods, the LC
algorithms lift the limitation of performing both simulations
and measurements in a given representation. More impor-
tantly, the LC coupling sheds much new light on the
geometric properties of FK and q-flow clusters. It is proved
that the q-flow clusters have a fractal dimension not larger
than the backbone one of the FKclusters. Further, a hierarchy
of qF-flow clusters is constructed with integer qF ≥ 2,
enriching the characterization of fractal structures of the
FK clusters. In two dimensions, from our high-precision
results, we conjectureDqFðqF ¼ 2Þ ¼ DEP ¼ 1þ g=8; oth-
erwise, the exact values of DqF are not available for generic
ðq; qFÞ. Futureworks shall focus on an extensive study in the
ðq; qFÞ diagram and seek for the exact formula ofDqF in two
dimensions.

This work was supported by the Ministry of Science and
Technology of China for Grant No. 2018YFA0306501 and
the National Natural Science Foundation of China for Grant
No. 11625522. M.M. is grateful for the support of the PHC
program Xu Guangqi (Grant No. 41291UF) and of the
project Susa of the French National Research Agency
(ANR). We thank Shanglun Feng and Ziming Cheng for
their early involvements in the work.

*Corresponding author.
manon.michel@uca.fr

†Corresponding author.
elci@posteo.de

‡Corresponding author.
yjdeng@ustc.edu.cn

[1] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
[2] R. J. Baxter, Exactly Solved Models in Statistical Mechanics

(Elsevier, New York, 1989).
[3] B. Nienhuis, J. Stat. Phys. 34, 731 (1984).
[4] J. Essam and C. Tsallis, J. Phys. A 19, 409 (1986).
[5] F. Y. Wu, J. Stat. Phys. 52, 99 (1988).
[6] P. Kasteleyn and C. Fortuin, J. Phys. Soc. Jpn. Suppl. 26, 11

(1969).
[7] C. M. Fortuin and P.W. Kasteleyn, Physica (Amsterdam)

57, 536 (1972).
[8] L. Chayes and J. Machta, Physica (Amsterdam) 254A, 477

(1998).
[9] Y. Deng, T. M. Garoni, W. Guo, H. W. Blöte, and A. D.

Sokal, Phys. Rev. Lett. 98, 120601 (2007).
[10] Y. Deng, T. M. Garoni, J. Machta, G. Ossola, M. Polin, and

A. D. Sokal, Phys. Rev. Lett. 99, 055701 (2007).
[11] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal

Field Theory (Springer, New York, 1997).
[12] O. Schramm, Isr. J. Math. 118, 221 (2000).
[13] S. Rohde and O. Schramm, Ann. Math. 161, 883 (2005).
[14] G. F. Lawler, Conformally Invariant Processes in the Plane,

114 (American Mathematical Soc., Providence, 2005).
[15] W. Kager and B. Nienhuis, J. Stat. Phys. 115, 1149 (2004).
[16] J. Cardy, Ann. Phys. (Amsterdam) 318, 81 (2005).
[17] N. Metropolis, A.W. Rosenbluth, M. N. Rosenbluth, A. H.

Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
[18] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49,

435 (1977).
[19] A. Sokal, Monte Carlo methods in statistical mechanics:

Foundations and new algorithms, in Functional Integration:
Basics and Applications, edited by C. DeWitt-Morette, P.
Cartier, and A. Folacci (Springer US, Boston, MA, 1997),
pp. 131–192.

[20] M. Sweeny, Phys. Rev. B 27, 4445 (1983).
[21] R. G. Edwards and A. D. Sokal, Phys. Rev. D 38, 2009

(1988).
[22] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86

(1987).
[23] U. Wolff, Phys. Rev. Lett. 62, 361 (1989).
[24] N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 87, 160601

(2001).
[25] N. Prokof’ev, B. Svistunov, and I. Tupitsyn, Phys. Lett. A

238, 253 (1998).

PHYSICAL REVIEW LETTERS 125, 200603 (2020)

200603-5

https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1007/BF01009437
https://doi.org/10.1088/0305-4470/19/3/022
https://doi.org/10.1007/BF01016406
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1016/S0378-4371(97)00637-7
https://doi.org/10.1016/S0378-4371(97)00637-7
https://doi.org/10.1103/PhysRevLett.98.120601
https://doi.org/10.1103/PhysRevLett.99.055701
https://doi.org/10.1007/BF02803524
https://doi.org/10.4007/annals.2005.161.883
https://doi.org/10.1023/B:JOSS.0000028058.87266.be
https://doi.org/10.1016/j.aop.2005.04.001
https://doi.org/10.1063/1.1699114
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/PhysRevB.27.4445
https://doi.org/10.1103/PhysRevD.38.2009
https://doi.org/10.1103/PhysRevD.38.2009
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.87.160601
https://doi.org/10.1103/PhysRevLett.87.160601
https://doi.org/10.1016/S0375-9601(97)00957-2
https://doi.org/10.1016/S0375-9601(97)00957-2


[26] Y. D. Mercado, H. G. Evertz, and C. Gattringer, Comput.
Phys. Commun. 183, 1920 (2012).

[27] E. M. Elçi, J. Grimm, L. Ding, A. Nasrawi, T. M. Garoni,
and Y. Deng, Phys. Rev. E 97, 042126 (2018).

[28] Y. Deng, T. M. Garoni, and A. D. Sokal, Phys. Rev. Lett. 99,
110601 (2007).

[29] U. Wolff, Nucl. Phys. B810, 491 (2009).
[30] G. Grimmett and S. Janson, Electron. J. Comb. 16, R46

(2009).
[31] H. Evertz, H. Erkinger, andW. Von der Linden, in Computer

Simulation Studies in Condensed Matter Physics XIV
(Springer, New York, 2002), pp. 123–123.

[32] P. Grassberger, Physica (Amsterdam) 262A, 251 (1999).
[33] S. Smirnov, C. R. Acad. Sci. Paris Sér. I Math. 333, 239

(2001).
[34] J. L. Jacobsen and P. Zinn-Justin, J. Phys. A 35, 2131

(2002).
[35] J. L. Jacobsen and P. Zinn-Justin, Phys. Rev. E 66, 055102

(2002).
[36] Y. Deng, H. W. J. Blöte, and B. Nienhuis, Phys. Rev. E 69,

026114 (2004).
[37] X. Xu, J. Wang, Z. Zhou, T. M. Garoni, and Y. Deng, Phys.

Rev. E 89, 012120 (2014).
[38] E. M. Elçi, M. Weigel, and N. G. Fytas, Nucl. Phys. B903,

19 (2016).
[39] C. Domb, J. Phys. A 7, 1335 (1974).
[40] S. Caracciolo and A. Sportiello, J. Phys. A 37, 7407 (2004).
[41] C. Tsallis and S. V. F. Levy, Phys. Rev. Lett. 47, 950 (1981).

[42] A. M. Ferrenberg, J. Xu, and D. P. Landau, Phys. Rev. E 97,
043301 (2018).

[43] P. Hou, S. Fang, J. Wang, H. Hu, and Y. Deng, Phys. Rev. E
99, 042150 (2019).

[44] P. H. Lundow and K. Markström, Phys. Rev. E 80, 031104
(2009).

[45] P. H. Lundow and K. Markström, Nucl. Phys. B889, 249
(2014).

[46] N. Madras and A. D. Sokal, J. Stat. Phys. 50, 109 (1988).
[47] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.125.200603 for the for-
mulation of the loop-cluster algorithm for real value of q and
a single-cluster version, and presents numerical study of the
dynamical behavior for the loop-cluster algorithm..

[48] D. Stauffer and A. Aharony, Introduction to Percolation
Theory (CRC Press, London, 2018).

[49] Percolation Theory and Ergodic Theory of Infinite Particle
Systems, edited by H. Kesten (Springer-Verlag, New York,
1987).

[50] S. Smirnov and W. Werner, Math. Res. Lett. 8, 729 (2001).
[51] V. Beffara and P. Nolin, Ann. Probab. 39, 1286 (2011).
[52] M. Aizenman, B. Duplantier, and A. Aharony, Phys. Rev.

Lett. 83, 1359 (1999).
[53] T. Grossman and A. Aharony, J. Phys. A 20, L1193 (1987).
[54] H. Saleur and B. Duplantier, Phys. Rev. Lett. 58, 2325

(1987).
[55] A. Coniglio, Phys. Rev. Lett. 62, 3054 (1989).
[56] G. Huber (to be published).

PHYSICAL REVIEW LETTERS 125, 200603 (2020)

200603-6

https://doi.org/10.1016/j.cpc.2012.04.014
https://doi.org/10.1016/j.cpc.2012.04.014
https://doi.org/10.1103/PhysRevE.97.042126
https://doi.org/10.1103/PhysRevLett.99.110601
https://doi.org/10.1103/PhysRevLett.99.110601
https://doi.org/10.1016/j.nuclphysb.2008.09.033
https://doi.org/10.37236/135
https://doi.org/10.37236/135
https://doi.org/10.1016/S0378-4371(98)00435-X
https://doi.org/10.1016/S0764-4442(01)01991-7
https://doi.org/10.1016/S0764-4442(01)01991-7
https://doi.org/10.1016/S0764-4442(01)01991-7
https://doi.org/10.1088/0305-4470/35/9/304
https://doi.org/10.1088/0305-4470/35/9/304
https://doi.org/10.1103/PhysRevE.66.055102
https://doi.org/10.1103/PhysRevE.66.055102
https://doi.org/10.1103/PhysRevE.69.026114
https://doi.org/10.1103/PhysRevE.69.026114
https://doi.org/10.1103/PhysRevE.89.012120
https://doi.org/10.1103/PhysRevE.89.012120
https://doi.org/10.1016/j.nuclphysb.2015.12.001
https://doi.org/10.1016/j.nuclphysb.2015.12.001
https://doi.org/10.1088/0305-4470/7/11/013
https://doi.org/10.1088/0305-4470/37/30/002
https://doi.org/10.1103/PhysRevLett.47.950
https://doi.org/10.1103/PhysRevE.97.043301
https://doi.org/10.1103/PhysRevE.97.043301
https://doi.org/10.1103/PhysRevE.99.042150
https://doi.org/10.1103/PhysRevE.99.042150
https://doi.org/10.1103/PhysRevE.80.031104
https://doi.org/10.1103/PhysRevE.80.031104
https://doi.org/10.1016/j.nuclphysb.2014.10.011
https://doi.org/10.1016/j.nuclphysb.2014.10.011
https://doi.org/10.1007/BF01022990
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.200603
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.200603
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.200603
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.200603
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.200603
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.200603
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.200603
https://doi.org/10.4310/MRL.2001.v8.n6.a4
https://doi.org/10.1214/10-AOP581
https://doi.org/10.1103/PhysRevLett.83.1359
https://doi.org/10.1103/PhysRevLett.83.1359
https://doi.org/10.1088/0305-4470/20/17/011
https://doi.org/10.1103/PhysRevLett.58.2325
https://doi.org/10.1103/PhysRevLett.58.2325
https://doi.org/10.1103/PhysRevLett.62.3054

