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Electronic Raman Scattering in Twistronic Few-Layer Graphene
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We study electronic contribution to the Raman scattering signals of two-, three- and four-layer
graphene with layers at one of the interfaces twisted by a small angle with respect to each other. We
find that the Raman spectra of these systems feature two peaks produced by van Hove singularities in
moiré minibands of twistronic graphene, one related to direct hybridization of the Dirac states, and the
other resulting from band folding caused by moiré superlattice. The positions of both peaks strongly
depend on the twist angle, so that their detection can be used for noninvasive characterization of the

twist, even in hBN-encapsulated structures.
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Twisted bilayer graphene is a van der Waals hetero-
structure where the relative twist of constituent atomic
planes alters electronic properties of the material [1,2].
A small-angle twist in a bilayer produces a long-period
moiré pattern that generates minibands for electrons with
a small moiré Brillouin zone (mBZ). The minibands and
gaps between them strongly depend on twist angle 6
leading to Mott insulator states and superconductivity for
a magic angle, 6 ~ 1.1° [1-11], where the lowest mini-
band appears to be almost flat. Narrow minibands also
appear in (1 +2) [12,13] and (1 + 14 1) [14] trilayers
as well as in (24 2) tetralayers [15-21]. Theoretical
studies also predict the appearance of correlated and
topological states in various “twistronic” graphene stacks
[22-28], highlighting the need to expand the toolbox of
fast and noninvasive methods for measuring twist angles
in such structures.

Over the years, Raman spectroscopy emerged as a
powerful tool for the characterization of graphene.
Raman scattering with phonons provides information about
defects, doping, strain, and the number of layers in the film
[29]. Twist of graphene layers was found to lead to the
resonant enhancement as well as variation of the width and
position of various Raman-active phonon modes [30-37],
however, with a limited accuracy in determining the twist
angle. Here, we demonstrate that Raman spectroscopy of
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the interband electronic excitations (ERS) [38-50] can be
used to detect twist-angle-dependent features in the elec-
tronic spectrum of twistronic graphene. We study the
electronic minibands and electronic contributions to the
Raman spectra for few-layer graphene stacks with one
of the interfaces between the layers twisted by a small
angle, 0 < 2°, Fig. 1(a). We calculate ERS spectra of
twisted bilayers (1 + 1), trilayers (1 4 2), and tetralayers

FIG. 1. (a) Sketch of (1 + N) twistronic graphene. The red and
blue balls correspond to the two different sublattice sites in each
graphene layer and green ellipse represents a dimer bonding
leading to direct interlayer coupling. (b) Brillouin zones of the N-
layer stack (dashed black line) and the top graphene (dashed
purple line) with corners K (bottom layer) and K’ (top),
respectively, as well as the effective moiré Brillouin zone, shown
both centred around the valleys (solid black line) as the preferred
choice in this Letter, and with valleys in its corners (dashed gray),
centered at y. (c) Feynman diagrams for the scattering amplitudes
R contributing to the electronic Raman features discussed in
this Letter.
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[(1 4+3) and (2 + 2)] and show that these are formed by
transitions from the nth valence to the nth conduction
moiré superlattice (mSL) miniband and feature two
spectral peaks. One, at a lower Raman shift, is caused
by the resonant hybridization of electronic states of the
two few-layer graphene crystals separated by the twisted
interface forming the lowest-energy minibands [51,52].
Another higher-energy peak is due to the anticrossing of
bands, backfolded by mSL. Both peaks are related to van
Hove singularities in the mSL minibands and involve
electronic excitations different from those responsible for
the optical absorption [53,54]. We trace the peaks
positions as a function of the twist angle and estimate
their quantum efficiency, / ~ 107!, to be in the meas-
urable range [38-45].

To model twistronic graphene, we use a hybrid k- p
theory-tight-binding model, where we describe electrons’
states in each flake using the k - p expansion around +K
and +K’ Brillouin zone corners of the bottom and
anticlockwise rotated (by angle ) top crystal, respec-
tively [see Fig. 1(b)], and the interlayer hybridization
using tunneling Hamiltonian [52,55],

H, T, 0 0
i A, 7 0 0
HA: 0 7/;'(. A_ fb 0 ’
0 T A Ty
oA
o 1) H_
. 0
H, = vo; - p$§h§Ke.y . (1)

Here, 6; = (é0,.0,) and o,, o,, o, are sublattice Pauli
matrices for electrons within each monolayer, and the
vertical and horizontal lines mark the twisted interface.
Momentum p = (p,., p,) is measured from the center of
the valley K in the bottom flake (with valley index
&= +1), K = K|, e, is a unit vector along wave vector y
axis, and v is the monolayer Dirac velocity. To describe
the (MY + NX) twistronic system, where M and N are
the thicknesses of the stack above and below the twisted
interface and X and Y describe the stacking of the
corresponding crystal [X =B for Bernal and X =R
for rhombohedral trilayer, X = AB and Y =AB or Y =
BA for (2 + 2) structures], one needs to truncate H at M
blocks in the top left and N in the bottom right parts.
Coupling across the twisted interface is described by
[52,55]

T = t(To+T &0 + T ,eitGar),
A 2 2
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where G, ~[(—-1)"1,(v/3/2)]V30K and t~110 meV
[55]. Coupling T is responsible for the mSL effects
and defines the hexagonal mBZ, chosen as in Fig. 1(b).
Interlayer couplings across the nontwisted interfaces are
set using
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where y; =0.39 eV, v3%0.11v, and vy ~0.0150v [56].
For a (1 +2) trilayer, ), = T[-(6/2)]. For a (1 +3R)
stack, T, = T}y = T(—0/2). For a (1 +3B) tetralayer,
T, =1T(-0/2) and T, = T7(—60/2). For a (2AB + 2AB)
structure, T, = 7(0/2), T, =T(-0/2), while for
(2AB +2BA), T, = T(-0/2), T| = T(9/2).

In the electronic Raman scattering, photon of energy €
carrying vector potential A = \/(7/2€,Q)[le’ @)/ p, ;4
H.c. (l;q,, annihilates a photon with momentum ¢ and
polarization ), arrives at the sample (here, we assume
normal incidence of light). This photon scatters to another
one with energy Q = Q — @, momentum §, and polariza-
tion 1, leaving behind an electron-hole pair with energy w.
In contrast to classical plasmas, where the amplitude
of such process is controlled by contact interaction, in
graphene, the dominating contribution comes from a two-
step process, described by the Feynman diagrams shown in
Fig. 1(c). It corresponds to absorption (emission) of a
photon with energy Q (Q) transferring an electron with
momentum p from an occupied state in the valence band
into a virtual intermediate state (energy is not conserved at
this stage), followed by emission (absorption) of a second
photon with energy Q (Q) [38,39]. The amplitude of this
process is [45]

(env)?
=1
6092

(I x i*)ziM+N ® o, (3)

where [,y is a (M + N) x (M + N) unit matrix. The
main contribution to the Raman signal comes from
n~ — n" miniband transitions, where n® denotes the
nth miniband on the valence (s = —1) or conduction
(s = 1) side. The structure of the two-photon coupling
vertex in Eq. (3) [38] suggests that, for circularly
polarized photons, both the incoming and outgoing
light have the same polarization. In turn, for linearly
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polarized light, the incoming and outgoing light carries
perpendicular polarization (so-called linear cross polari-
zation). To compare, the phonon G-line is observed in
both parallel and perpendicular linear polarization geom-
etries whereas for circular polarization the incoming and
outgoing photons have opposite polarization [42,43,47—
49,57]. The overall line shape g(w) of inelastic photon
scattering with Raman shift @ is given by

gw(w) ., ~ 2
o) =1 [ FEEL 66 cla) s wla),

2 /
ww) =5 3 [ dolip.m’ [Rip.w)

X fp,n" (1 - fp,m:’)5(€p,mlv’ —€pns — (1)), (4)

where f, s is the occupation factor of a state |p, n*) with
momentum p and energy €, ,s in the band n*.

In Fig. 2 we present the ERS intensity map for a
(1+1) twisted bilayer graphene with 0.8° <8 < 2°,
neglecting its atomic reconstruction [58]. Two bright
features stand out in this plot, corresponding to transi-
tions between the minibands 1~ — 11 and 2= — 2", For
two selected cuts at 6 = 1.8° and 6 = 1.1°, the peaks

come from transitions indicated by arrows in the corre-
sponding miniband plots. The first peak, 1= — 1", is due
to transitions from (or to) flat regions of electronic
dispersion resulting from hybridization of the Dirac cones
of the two layers (the Dirac points can be identified in
the dispersion for ¢ = 1.8° as touching points of the
minibands shown in red), which are responsible for a van
Hove singularity (vHs) in the density of states [51,52] for
larger twist angles. Note that due to the chiral nature of
graphene electrons, the vHs is not positioned on the line
connecting the cones but is shifted off it in the opposite
directions in the conduction and valence bands (as
indicated by black arrows in Fig. 2 for 8 = 1.8°). The
inset below the & = 1.8° miniband structure highlights in
yellow parts of the mBZ that contribute to the 17~ — 1T
peak. As the twist angle is decreased, this ERS peak
moves to lower energies. The second peak, 27 — 27T, is
due to the transitions between the flat regions of the
second valence and conduction minibands, indicated by
orange arrows in the # = 1.1° miniband plot. Its intensity
comes from the mBZ section painted in yellow in the
leftmost inset below the ERS map. The other two insets
show the real-space distribution of the saddle point states
across the moiré supercell in the top and bottom
monolayers.
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FIG. 2. Left: Electronic miniband structures of twisted bilayer graphene for & = 1.8° and 6 = 1.1° across the corresponding mBZ
(solid black hexagons). The dashed lines indicate the positions of the valleys K (bottom layer) and K’ (top) within the mBZ. The pink
arrows identify the minibands and the black arrows point to saddle points which give rise to van Hove singularities (vHs). Right: ERS
intensity map for 0.8° < @ < 2°. The green solid lines show cuts for the angles = 1.8° and 6 = 1.1°, indicated with the green dashed
lines. The gray and orange peaks mark spectral features corresponding to excitations indicated with vertical arrows of the same color in
the miniband dispersions which involve dispersion saddle points. The hexagonal insets next to band structures show in yellow mBZ
regions which contribute to the 1= — 11 ERS peak for @ = 1.8°and 2~ — 2" peak for @ = 1.1°; red dots indicate positions of dispersion
saddle points on the valence side. The additional two insets for & = 1.1° depict real space distribution of the saddle points wave function
in the top or bottom layers; black solid lines mark boundaries of the moiré supercell and the letters indicate local stacking.
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FIG. 3. Top: ERS intensity map for (1 + 2) graphene. The
green dashed lines indicate twist angles 6 = 1.8° and 0 = 1.1°
and the green solid lines show the ERS spectra for these angles.
Bottom: Miniband structure for the (1 + 2) stack for 8 = 1.1°.
The top inset shows in yellow the mBZ regions which contribute
to the 27 — 2% ERS peak; red dots indicate positions of
dispersion saddle points on the valence side. The saddle points
wave function is predominantly located in the bottom layer and
its real space distribution is presented in the bottom inset; black
solid lines mark boundaries of the moiré supercell and the letters
indicate local stacking (from the bottom layer to the top).

In Fig. 3, we show the ERS intensity map for (1 + 2)
twistronic graphene and an exemplary miniband struc-
ture for 6 = 1.1°. Similarly to (1 4 1) graphene, the
dominant contributions come from the 1~ — 11 and
2~ — 2" electronic transitions. The two peaks also have
the same origins: the first one is due to direct hybridi-
zation of the monolayer and bilayer states while the
second is formed by states backfolded by moiré super-
lattice. However, for a given twist angle, the peaks
appear at lower Raman shifts than in the (1+1)
structure. This is because the unperturbed dispersion

in bilayer is flatter than in a monolayer—as a conse-
quence, the anticrossings vHs form at lower energies
than in a (1 + 1) stack.

In Figs. 4(a) and 4(b), we plot ERS maps of two
monolayer-on-trilayer structures, (1 + 3B) and (1 + 3R).
Bernal-stacked trilayer graphene hosts both a bilayer-
and monolayerlike low-energy bands [59]. Both of these
hybridize with the states of the top monolayer to form
the first miniband and contribute to the 1~ — 1t ERS
peak. The next peak, marked as (1 +2') in Fig. 4(a), is
due to the anticrossing of backfolded bilayerlike and top
monolayer bands. Another peak, (1 + 1’), is due to an
anticrossing of the backfolded top monolayer band and
monolayerlike band of the trilayer. In contrast, rhom-
bohedral trilayers only host one low-energy band, with a
flat dispersion in the vicinity of the valley center [60].
This low-energy band is localized on the top and bottom
surfaces of the crystal (representing surface states
generic for rhombohedral graphitic films [61-63]) and
is significantly affected by mSL, leading to a pair of
clear spectral features, Fig. 4(b), as in (1 + 1) and
(1 +2) twistronic graphenes (in the Supplemental
Material, we describe a simple model that can be used
to determine approximate positions of these ERS
peaks [64]).

In Figs. 4(c) and 4(d), we present ERS spectra for
two structurally inequivalent double-bilayer stacks,
(2AB +2BA) and (2AB +2AB). The details of their
lattice structure and exemplary miniband dispersions
are shown in the Supplemental Material [64]. The
miniband spectra of AB/AB and AB/BA tetralayers
are nearly identical, leading to the 1~ — 1t and
2= —» 2" ERS peaks at the same energies. However,
due to the difference in the wave functions, the inten-
sity of the 17 — 1T is much higher for (2AB + 2AB)
than for (2AB + 2BA) tetralayers (see Supplemental
Material [64]).

Overall, electronic Raman scattering spectra of twist-
ronic graphene contain characteristic features related to
the van Hove singularities of moiré superlattice mini-
bands, which depend on the twist angle between the
layers. Currently, accurate determination of the twist
angle, especially in the small-angle regime, requires
time-consuming microscopic investigations of the moiré
pattern, or magnetotransport measurements at cryogenic
temperatures. We suggest that, based on our results,
calibration of the positions of the Raman features in the
structures with known 6 would allow to identify the
orientations of the component crystals in other samples,
enabling a noninvasive method for measuring the twist
angle, even in structures encapsulated with other mate-
rials, where the graphene or graphene moiré pattern is

197401-4



PHYSICAL REVIEW LETTERS 125, 197401 (2020)

Raman shift [cm™]
500 1000

1500 2000 10

N &) ™

[;-Aew ¢, 0L] ()6

[S)

150 200 250 300 O
o [meV]

50 100

Raman shift [cm™]
500 1000 1500 2000

5
1.8 |,

Q

16 B

3=

°14 <

aa) w

2 3

1.2 <
1.0 1
080750 100 50 300 ©

150 200 2
o [meV]

b
() Raman shift [cm™]
200 1500 2000 10
18 8 8
Q
1.6 B
_ 6=
214 2
) w
; 43
1.2 _ ES
1.0 N B
089750 100 150 200 250 300 ©
w [meV]
(d) o
Raman shift [cm™']
50% 5001000 1500 2000 5
1.8 4
Q
1.6 B
_ 3=
14 2
[ ) w
2 3
1.2 <
1.0 1
0.8

0 50 100 150 200 250 300 ©
eV]

® [m

FIG. 4. Comparison of ERS intensity maps for (a) (1 4+ 3B), (b) (1 + 3R), (c) (2AB + 2BA), and (d) (2AB + 2AB) tetralayers. Green
solid lines show the Raman spectra for twist angles & = 1.8° and 0 = 1.1°.

not directly accessible for tunnelling spectroscopy stud-
ies [1,2,5,6,9-21].
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