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Fractional charge and statistics are hallmarks of low-dimensional interacting systems such as fractional
quantum Hall (QH) systems. Integer QH systems are regarded as noninteracting, yet they can have
fractional charge excitations when they couple to another interacting system or time-dependent voltages.
Here, we notice Abelian fractional mutual statistics between such a fractional excitation and an electron,
and propose a setup for detection of the statistics in which a fractional excitation is generated at a source
and injected to a Mach-Zehnder interferometer (MZI) in the integer QH regime. In a parameter regime, the
dominant interference process involves braiding, via double exchange, between an electron excited at an
MZI beam splitter and the fractional excitation. The braiding results in the interference phase shift by the
phase angle of the mutual statistics. This proposal for directly observing the fractional mutual statistics is
within experimental reach.
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Fractional charge excitations emerge in various inter-
acting systems, including fractional quantum Hall (QH)
systems [1,2] and Luttinger liquids [3–6]. The fractional
charges have been observed [7–12].
The excitations obey fractional statistics and are called

anyons [13–15]. Upon winding of an anyon around another
or their double exchange, their state gains a fractional phase
angle in cases of Abelian anyons or evolves into another
state (sometimes orthogonal to the initial state) in non-
Abelian anyons. In fractional QH cases, it has been
proposed [16] that the statistics can be identified in an
interferometer where an anyon propagating along edge
channels winds around localized anyons in the QH bulk,
and the number of the bulk anyons is controlled. This
strategy is not applicable to detecting the fractional
statistics in one-dimensional systems, such as Luttinger
liquids [3], having no bulk anyon to braid of.
Interestingly, fractional charge excitations can also be

generated in noninteracting integer QH edge channels, by
coupling the channels to interacting systems such as a
metallic island (as shown in this Letter), a fractional QH
system [17], an interedge-interaction region [18–22], or to
voltage pulse [23,24] (see Fig. 1). They are expected to
propagate along the integer QH edge without decay.
A question is whether the fractional charges behave as
anyons, although they are not of topological order.
In this Letter, we notice that the fractional charges

generated from the sources in Fig. 1 obey fractional
statistics on integer QH edges, and propose how to detect
fractional mutual statistics between a fractional charge and
an electron, using a Mach-Zehnder interferometer (MZI)
[25,26] in the integer QH regime, which has length
difference ΔL between the two MZI arms. We consider
the regime w ≪ ΔL≲ Lβ of the spatial width w of the

fractional charge, thermal length Lβ ¼ ℏvβ=π, thermal
energy 1=β, and electron velocity v on the arms. The
dominant process of this regime consists of (i) injection of a
fractional charge from a source of Fig. 1 to the MZI, and
(ii) excitation of an electron at one (the other) MZI beam
splitter in one (the other) subprocess. The interference of
the two subprocesses involves braiding, via double
exchange, between the fractional charge and the electron.
The resulting phase shift of the interference is determined

(a) (b)

(c) (d)

FIG. 1. Sources of fractional charges on integer QH edges
(solid lines). (a)–(c) An electron wave packet (thick red peaks)
carrying charge e is generated on an edge at a quantum point
contact (QPC) by electron tunneling (dotted line) from another
edge biased by static voltage V. The electron is fractionalized into
charges e� or e − e� (thinner peaks) while scattered by an
interacting region (shade) of (a) a metallic island coupled to N
integer QH edges, (b) fractional QH filling factor ν, or (c) inter-
edge interaction g. (d) Fractional charges of period T and spatial
width w, generated by an Ohmic contact (cross) biased by
periodic voltage pulses.
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by the mutual statistics and is identified by comparing the
interference with a reference signal from the same setup.
Fractional mutual statistics.—Excitations of fractional

charge e� ¼ qe on an integer QH edge (labeled by α)
behave as “particles” as they form wave packets moving
along the chiral edge without deformation [18–23],
although they are not energy eigenstates. To see their
statistics, we identify their creation operator η†α;qðxÞ on
position x in the bosonization [27], where the Hamiltonian
Hedge;α ¼ ðℏv=4πÞ R dx½∂xϕαðxÞ�2 and electron operator
ψαðxÞ ∝ eiϕαðxÞ of the edge are represented by a bosonic
field ϕα. Since the excitation carries the charge qe, η†αðxÞ
satisfies ½ραðxÞ; η†αðx0Þ� ¼ qδðx − x0Þη†αðx0Þ, where ραðxÞ ¼∂xϕα=ð2πÞ is the electron density operator. Combining
it with the Kac-Moody algebra ½ϕαðxÞ;ϕβðx0Þ� ¼
πiδαβsgnðx − x0Þ, we identify ηα;qðxÞ ∝ eiqϕαðxÞ. We will
show that the fractional charges generated from the sources
in Fig. 1 are, indeed, described by ηα;q.
The identification, combined with the Kac-Moody alge-

bra, allows us to find that position exchange of fractional
charges qe and q0e obeys the fractional statistics

ηα;qðxÞηα;q0 ðx0Þ ¼ ηα;q0 ðx0Þηα;qðxÞe−iπqq0sgnðx−x0Þ; ð1Þ

with statistical angle πqq0. For example, a fractional charge
qe and an electron (q0 ¼ 1) satisfy the mutual statistics
ηα;qðxÞψαðx0Þ ¼ ψαðx0Þηα;qðxÞe−iπqsgnðx−x0Þ. with statistical
angle πq.
The angle πq is either quantized [Figs. 1(a) and 1(b)] or

continuously tuned [Figs. 1(c) and 1(d)], determined by
geometry, interaction strength, or voltage pulse. This is in
stark contrast to the fractional QH cases that the mutual
statistics between a fractional particle and an electron is
trivial with statistics angle π [15]. These may be due to the
fact that the fractional excitations ηα;q are not energy
eigenstates.
Fractional charge generation.—Below, we show how to

generate fractional charges using a metallic island in
Fig. 1(a) and that they are described by ηα;q. The island
is useful [28–33] for simulating Luttinger liquids and
multichannel Kondo effects.
The island couples with N integer QH edges. The

coupling region in each edge has the same length l for
simplicity. The island has the interaction ECðntot − ngÞ2 of
excess charge eðntot − ngÞ. EC is the charging energy, entot
is the total charge in the N coupling regions, and eng is
tuned by gate voltages. Combining the boson modes
ϕα¼1;2;…;N of the edges, we introduce the charge mode
ϕ̃cðxÞ ¼

P
N
α¼1 ϕαðxÞ=

ffiffiffiffi
N

p
and neutral modes ϕ̃n;j¼1;…;N−1

orthonormal to each other. Then, the HamiltonianHisland ¼
Hc þHn is decoupled into the charge part Hc ¼
ðℏv=4πÞ Rxð∂xϕ̃cÞ2 þ ECðntot − ngÞ2 and neutral part
Hn ¼ ðℏv=4πÞPN−1

j¼1

R
xð∂xϕ̃n;jÞ2. While the neutral part

is noninteracting, the charge mode feels the charging

energy. Since ntot ¼
ffiffiffiffi
N

p ½ϕ̃cðlÞ − ϕ̃cð0Þ�=ð2πÞ, where x ¼
0 (x ¼ l) is the starting (ending) coordinate of the coupling
regions, the ratio of the charging energy to kinetic energy of
the charge mode is ∼NEC; the charging energy effectively
increases with N.
For NEC ≫ ℏv=l, we find [34] charge teleportation with

fractionalization. In Fig. 1(a), an electron is injected from
an edge (different from the edges α ¼ 1; 2;…; N) biased by
voltage V to the edge α ¼ 1 via tunneling through the
quantum point contact (QPC). When the electron enters the
coupling region (x ¼ 0), a fractional charge qe ¼ e=N with
width w ¼ ℏv=ðeVÞ immediately appears at the end (x ¼ l)
of the coupling region of each edge, independently of l,

ψ†
1ðx ¼ 0; tÞ →

YN
α¼1

η†α;ð1=NÞðx ¼ l; tÞ: ð2Þ

The teleportation of the electron into the N fractional
charges happens due to the edge chirality and the large
charging energy NEC that prohibits charge modulation
inside the coupling regions. It can be seen [34] from the
equation of motion of the charge mode, ϕ̃cðx; tÞ ¼ ϕ̃ð0Þ

c ðx −
l; tÞ þ 2πng=

ffiffiffiffi
N

p
for x > l. ϕ̃ð0Þ

c denotes the charge mode of
the EC ¼ 0 case. The teleportation is accompanied [not
shown in Eq. (2)] by neutral excitations moving inside the
coupling regions. Since the neutral excitations decay out
before moving out of the coupling regions [35], the setup of
Fig. 1(a) generates fractional charges η†α;1=N , obeying
Eq. (1), on each edge. The teleportation of the N ¼ 1 case
(without the fractionalization) has been proposed [36] and
experimentally supported [31].
Similarly, the setups in Figs. 1(b) and 1(c) generate

fractional charges, described [34] by ηα;q in a stochastic
way utilizing a QPC and an interaction region. The
fraction q is governed by the filling factor or interedge
interaction.
By contrast, the setup in Fig. 1(d) generates fractional

charges on demand [23]. Here, a voltage pulse (per period)
VðtÞ of Lorentzian shape with temporal width w=v satisfy-
ing e

R
VðtÞdt ¼ 2πqℏ generates a charge qewith width w.

When q < 1, it generates a fractional charge. Although the
fractional charge is composed of many electron-hole pair
excitations [23], it is described by ηα;q and satisfies Eq. (1).
This can be seen from the time evolution operator
T e−ði=ℏÞ

R
t0 HVðt0Þ in the interaction picture under the

Hamiltonian HVðtÞ ¼ eVðtÞ R 0
−∞ ραðx0 − vtÞdx0 due to

the voltage pulse applied at, say, x < 0 on edge α, where
T is the time ordering. Since the voltage pulse is well
localized (like a delta function), the evolution operator
reduces to η†α;qðxÞ, T e−ði=ℏÞ

R
t0 HVðt0Þ → η†α;qðxÞ, on length

scales ≫ w. This generation is beneficial as one can tune q
and the number of charges (per period).
Detecting the mutual statistics.—The statistics in Eq. (1)

can be detected by injecting fractional charges to an MZI.
In Fig. 2, we illustrate the case of dilute injection, which is
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achieved by tuning the QPC or voltage pulse in Fig. 1.
The MZI is in the regime of w ≪ ΔL≲ Lβ, and its two
QPCs are in the electron-tunneling regime. The conven-
tional interference of the MZI occurs [34] as interference of
processes with and without splitting of an injected
fractional charge qe at QPC1 into e in the upper arm
and −ð1 − qÞe in the lower arm. However, this interference
is negligible since the width w of the fractional charge is
much shorter than the arm length difference ΔL. Instead,
there is a new interference process in which an electron
braids, via double exchange, with the fractional charge,
with the help of electron tunneling at the QPCs; the
splitting of the fractional charge does not happen in the
new process. This interference is visible when the thermal
length is not too short (ΔL≲ Lβ).
To illustrate the new process, first, we discuss the

corresponding process in thermal equilibrium with no
fractional charge injection. We consider an electron on
the lower edge of the MZI, located at QPC1 (whose
location is x ¼ 0 on both edges) at time t ¼ 0. In a

subprocess js1i0, this electron jumps to the upper edge
at QPC1 via tunneling at t ¼ 0. The resulting state is
js1i0 ¼ ψ†

uð0; 0Þjiuψdð0; 0Þjid, where ψ†
uðdÞðx; tÞ creates an

electron on the Fermi sea jiuðdÞ of the upper (lower) edge.
The electron arrives at QPC2 at t ¼ Lu=v. In another
subprocess js2i0 (respectively, js02i0), which interferes with
js1i0 with the largest overlap, the electron moves along the
lower edge and electron tunneling from the lower to upper
edge happens at QPC2 at t ¼ Lu=v (respectively,
t ¼ Ld=v); js2i0 ¼ ψ†

uðLu; Lu=vÞjiuψdðLd; Lu=vÞjid and
js02i0 ¼ ψ†

uðLu; Ld=vÞjiuψdðLd; Ld=vÞjid. The interference
between js1i0 and js2i0 cancels that between js1i0 and
js02i0, hs02js1i0 þ hs2js1i0 ¼ 0. This is proved [34] with the
Fermi statistics and the chirality ψðx; tÞ ¼ ψðx − vtÞ. The
full cancellation is natural in equilibrium.
The full cancellation does not happen when a fractional

charge qe is injected to the MZI. The fractional charge is
generated at x ¼ −d on the lower edge at t ¼ −d=vþ t0,
much earlier than the other events (d is assumed large).
Then, the subprocesses are modified

(a)

(c) (d)

(b)

FIG. 2. MZI for detecting the fractional mutual statistics. (a) The MZI has two (upper and lower) integer QH edge channels (the
boundaries of the shaded region, with chirality indicated by thick arrows) and two QPCs (its two beam splitters). The length Lu (Ld) of
the upper (lower) MZI arm is chosen as Ld > Lu. The source (one of Fig. 1) generates fractional charges qe on the lower edge, so the
charges are injected to the MZI. Dilute injection leading to only one or no fractional charge inside the arms at any time is considered.
Interference signals are detected at reservoir D. (b) Phase shift Δθ of the Aharonov-Bohm interference signal versus Ld − Lu. It
approaches the statistics angle �πq at large ΔL ¼ jLd − Luj, and the black dashed line as w → 0. The signals are interference
conductance (blue solid) computed with a metallic island of N ¼ 3 (q ¼ 1=3), V ¼ 40 μV (w ¼ 1.6 μm), EC → ∞ [37], and
interference current (orange dash-dotted) with voltage pulses of q ¼ 1=3, temporal width w=v ¼ 3 ps, period T ¼ 250 ps. Temperature
20 mK and v ¼ 105 m=s are chosen. Inset: The phase shift is obtained by comparing the signal (solid) with a reference (dashed). The
reference interference is obtained with turning off the fractional charge source and applying a small voltage to reservoir S0. (c)–(d)
Interference processes. In a subprocess js1i, an electron (wide blue packet) and a hole (empty) are pair excited (dashed line) at QPC1 at
time t ¼ 0, after a fractional charge (thin red) passes QPC1. In js2i (respectively, js02i), a pair excitation happens at QPC2 at t ∼ Lu=v
(respectively, t ∼ Ld=v) before (respectively, after) the fractional charge passes QPC2. The interference hs2js1i between js1i and js2i
involves a double exchange between the electron and fractional charge, while the interference hs02js1i does not (see the boxes).
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js1i ¼ ψ†
uð0; 0Þjiuψdð0; 0Þη†d;q

�
−d;−

d
v
þ t0

�
jid;

js2i ¼ ψ†
u

�
Lu;

Lu

v

�
jiuψd

�
Ld;

Lu

v

�
η†d;q

�
−d;−

d
v
þ t0

�
jid;

js02i ¼ ψ†
u

�
Lu;

Ld

v

�
jiuψd

�
Ld;

Ld

v

�
η†d;q

�
−d;−

d
v
þ t0

�
jid;

ð3Þ

such that electron tunneling happens at a QPC as in the
previous case, while the fractional charge stays on the lower
edge, passing QPC1 at time t0 ≠ 0; ðLu − LdÞ=v so that it
does not overlap with the electron. In the domain of t0
between 0 and ðLu − LdÞ=v, the fractional charge passes
QPC1 before the electron tunneling in js1i and passes
QPC2 after the electron tunneling in js2i in the setup with
Ld > Lu [Fig. 2(c)]. Hence, an exchange between the
fractional charge and electron happens in js1i in the
direction opposite to js2i. The interference between js1i
and js2i gains, in comparison with the case of no fractional
charge injection, a phase factor e−i2πq of the mutual
statistics angle due to double exchange [see Eq. (1) with
q0 ¼ 1]. In the same t0 domain of the Ld < Lu case, the
events happen in reverse time ordering, and the interference
gains ei2πq. This is shown as

hs2js1i ¼
1

2πa
hs2js1i0e∓i2πq; ð4Þ

with e−i2πq for Ld > Lu, ei2πq for Ld < Lu, and 2πa from
the short-length cutoff of ηd;q. In the other domain of t0 [but
t0 ≠ 0; ðLu − LdÞ=v], the double exchange does not hap-
pen, hs2js1i ¼ hs2js1i0=ð2πaÞ. By contrast, js02i has an ex-
change in the same direction with js1i for any t0 [Fig. 2(d)],
hence, hs02js1i¼hs02js1i0=ð2πaÞ¼−hs2js1i0=ð2πaÞ. Thus,
the two interferences cancel only partially, hs2js1i þ
hs02js1i ∝ ðe∓i2πq − 1Þhs2js1i0 in the domain of t0 between
0 and ðLu − LdÞ=v.
The partial cancellation due to the mutual statistics has

direct consequence in interference signals [differential
conductance for the sources in Figs. 1(a)–1(c) and current
for Fig. 1(d)] measured at detector D. For w ≪ ΔL, the
processes and their complex conjugate lead [34] to

Interference signal ∝
Z

dt0Re½hs2js1i þ hs02js1i�

∝
ΔL
βv

ΛβRe½�iðe∓i2πq − 1Þe−2πiðΦ=Φ0Þ�

∝
ΔL
βv

Λβ sinðπqÞ cos
�
2π

Φ
Φ0

� πq

�
;

ð5Þ

with the magnetic flux Φ enclosed by the MZI, the flux
quantum Φ0 ¼ h=e, the thermal dephasing factor

Λβ ¼ cschðΔL=LβÞ, and the sign � determined by
sgnðLd − LuÞ. The second line is obtained using Eq. (4)
and hs2js1i0 ∝ �iðΛβ=βÞe−2πiðΦ=Φ0Þ. The factor ΔL=v
comes from the t0 domain of the partial cancellation,
showing that the double exchange is more probable at
larger ΔL=w. The factor sinðπqÞ indicates full cancellation
between hs2js1i and hs02js1i when an electron, instead of a
fractional charge, is injected (q ¼ 1). Because of the
thermal dephasing, the signal is visible at ΔL≲ Lβ.
Equation (5) shows that the interference pattern is shifted
by πq due to the mutual statistics, which can be read out by
comparing the pattern with a reference [Fig. 2(b)].
The interference with the double exchange is compared

with the conventional process of the MZI. The conventional
interference occurs with t0 ¼ 0 or ðLu − LdÞ=v such that
electron tunneling happens at QPC1 or QPC2 (leaving a
fractional hole behind) when a fractional charge arrives at
the QPC [34]. This process is negligible when ΔL=w ≫ 1.
This is confirmed in the calculation [Fig. 2(b)] including all
the processes and obtained with experimentally feasible
parameters and the Keldysh Green functions. The calcu-
lation becomes identical to the result of Eq. (5) at ΔL ≫ w.
When one changes the voltage pulse shape (varying the

pulse period T or applying a group of pulses) in Fig. 1(d),
one can further control the number of injected fractional
charges inside the MZI. Then, in the interference hs2js1i,
the electron can braid more than one fractional charge, n ¼
bΔL=vTc or nþ 1 fractional charges with probability pn ¼
⌈ΔL=vT⌉ − ðΔL=vTÞ or pnþ1 ¼ 1 − pn. Here, bxc is the
largest integer ≤ x and ⌈x⌉ is the smallest integer ≥ x.
Another interference hs02js1i has no braiding. For
w ≪ ΔL≲ Lβ, the time-averaged interference current is
found [34]

IintD ∝ jfjΛβ cos

�
2π

Φ
Φ0

− arg f

�
; ð6Þ

where f ¼ �iðpne∓i2πqn þ pnþ1e∓i2πqðnþ1Þ − 1Þ corre-
sponds to the factor �iΔLðe∓i2πq − 1Þ in Eq. (5).
Equation (6) reduces to Eq. (5) for vT > ΔL.
Concluding remark.—We demonstrated that fractional

charges on integer QH edges obey the fractional mutual
statistics. Our proposal for directly detecting the statistics is
within experimental reach: The setups in Fig. 1 are
experimentally available. The MZI with long coherence
length has been realized many times. The parameters used
in Fig. 2 are realistic; in Fig. 2, the phase shift �πq is
obtained for ΔL ∼ 10 μm, with which the interference
visibility is expected larger than 0.7.
We note that environmental effects can cause the same

amount of an additional phase shift in both the interference
signal and the reference. Hence, they do not affect the
detection of the phase shift by the mutual statistics.
Moreover, the dynamical phase of injected fractional
charges does not cause a phase shift in Eq. (5), since a
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fractional charge propagates the same distance in the
interfering subprocesses. There is one obstacle to this
direction of detecting the mutual statistics, when the
MZI is realized with ν ¼ 2 QH edges. There, interedge
Coulomb interaction can result in additional unwanted
fractionalization [20–22]. One can avoid this by gapping
out the inner edge as done recently [38].
Our main process with the double exchange is nontrivial,

existing with the help of the fractional statistics. The
process has been unnoticed before, maybe because the
full cancellation between hs2js1i and hs02js1i is restored
(causing no response in observables) when fractional
charges are replaced by electrons (q ¼ 1).
The process relies on the double exchange between two

particles on QH edges rather than braiding with anyons in
QH bulk. Such a double exchange will also be useful for
detecting anyonic statistics in fractional QH interferome-
tries [39,40] or anyon collision setups [41,42].
Our work suggests exploring fractional statistics in

noninteracting systems, which will be useful for engineer-
ing anyons and for detecting, nonlocally with an MZI, the
information of the interaction regions (e.g., the interedge
interaction). It will be valuable to generalize our work to the
fractional statistics of Luttinger liquids.
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