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The mobility edges (MEs) in energy that separate extended and localized states are a central concept in
understanding the localization physics. In one-dimensional (1D) quasiperiodic systems, while MEs may
exist for certain cases, the analytic results that allow for an exact understanding are rare. Here we uncover a
class of exactly solvable 1D models with MEs in the spectra, where quasiperiodic on-site potentials are
inlaid in the lattice with equally spaced sites. The analytical solutions provide the exact results not only for
the MEs, but also for the localization and extended features of all states in the spectra, as derived through
computing the Lyapunov exponents from Avila’s global theory and also numerically verified by calculating
the fractal dimension. We further propose a novel scheme with experimental feasibility to realize our
model based on an optical Raman lattice, which paves the way for experimental exploration of the predicted
exact ME physics.
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Introduction.—Anderson localization (AL) is a funda-
mental and extensively studied quantum phenomenon, in
which the disorder induces exponentially localized elec-
tronic wave functions and results in the absence of diffusion
[1]. For the one and two dimensions, the states in the
disordered systems are all localized [2]. For a three-
dimensional (3D) system, beyond the critical disorder
strength, a mobility edge (ME), which marks a critical
energy Ec separating extended states from localized ones,
may be resulted and can lead to novel fundamental physics
[3]. For instance, varying the disorder strength or particle
number density may shift the position of ME across Fermi
energy and induce the metal-insulator transition. Moreover,
in a system with ME only the particles of a finite energy
window can flow. This can enable a strong thermoelectric
response [4–6], which is widely used in thermoelectric
devices. Nevertheless, it is hard to introduce microscopic
models to understand the physics of the ME in 3D systems
[7], so it is highly important to develop lower-dimensional
models with MEs, especially with exact MEs, which allows
for analytical studies.
When the random disorder is replaced by quasiperiodic

potential, the system may host localized and delocalized
states even in the low-dimension regime. In particular, the

extended-AL transitions and MEs have been predicted in
1D quasiperiodic systems [8–19]. The simplest nontrivial
example with 1D quasiperiodic potential is the Aubry-
André-Harper (AAH) model [20], which shows a phase
transition from a completely extended phase to a com-
pletely localized phase with increasing the strength of the
quasiperiodic potential. The AAH model exhibits a self
duality at the transition point for the transformation
between lattice and momentum spaces. Thus no ME exists
for the standard AAH model. However, by introducing a
long-range hopping term [12,21,22], or breaking the self
duality of the AAH Hamiltonian, e.g., superposing another
quasiperiodic optical lattice [14,15,23] or introducing
the spin-orbit coupling [24,25], one can obtain MEs in the
energy spectra of the system. In very few cases [12,16] the
self duality may be recovered on certain analytically
determined energy, across which the extended-localization
transition occurs, rendering the ME in the spectra, while the
whole model is not exactly solvable. That is, the extended
and localized states in the spectra cannot be analytically
obtained to rigorously illustrate how the transition between
them occurs. In consequence, to introduce and develop
more generic models with MEs, which can be exactly
solved beyond the dual transformation, is highly significant
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to further explore the rich ME physics. Moreover, it is not
clear if a single system can have multiple MEs and it is
important to know what determines the number of the MEs.
Addressing these issues with exactly solvable models is
critical to gain exact understanding of the extended-locali-
zation transition and to advance the in-depth studies of
fundamental ME physics, e.g., to possibly eliminate the
theoretical dispute that whether the many-body MEs
exist [26,27].
The quasiperiodic systems can be easily realized in

experiments in ultracold atomic gases trapped by two optical
lattices with incommensurate wavelengths [28]. This con-
figuration forms the basis of observing the AL, many-body
localization, Bose glass [28–35], and, very recently, theMEs
[36–39]. Experimental realization of MEs with analytic
functional form can help in understanding the ME physics
quantitatively and better investigate the effect of novel
interacting effects on the MEs [39].
In this Letter, we propose a class of analytically solvable

1D models in quasiperiodic mosaic lattice, which hosts
multiple MEs with the self-duality breaking. These models
are beyond the conventional ones in which only the MEs,
but not all the states of the spectra, can be precisely
determined with dual transformation and can be exactly
solved by applying Avila’s profound global theory [40],
one of his Fields Medal work, to condensed matter physics.
This theory, beyond the dual transformation, gives an
efficient way to calculate the Lyapunov exponent (LE)
of all states. We then obtain analytically not only the exact
MEs, which can be multiple here, but also the localization
and extended features of all the states in the spectra. We
further propose a novel scheme with experimental feasibil-
ity to realize and detect the exact MEs based on ultra-
cold atoms.
Model.—We consider a class of quasiperiodic mosaic

models, which can be described by

H ¼ t
X
j

ðc†jcjþ1 þ H:c:Þ þ 2
X
j

λjnj; ð1Þ

λj ¼
�
λ cos½2πðωjþ θÞ�; j ¼ mκ;

0; otherwise;
ð2Þ

where cj is the annihilation operator at site j, and nj ¼ c†jcj
is the local number operator. t, λ, and θ denote the nearest-
neighbor hopping coefficient, quasiperiodic potential
amplitude, and phase offset, respectively. ω is an irrational
number, and κ is an integer. We set the hopping strength
t ¼ 1 for convenience. Since the quasiperiodic potential
periodically occurs with interval κ, we can introduce a
quasicell with the nearest κ lattice sites. If the quasicell
number is taken as N, i.e., m ¼ 1; 2;…; N, the system size
will be L ¼ κN. The quasiperiodic mosaic model with
κ ¼ 2 and κ ¼ 3 is pictorially shown in Fig. 1, and other
cases are similar.

It is obvious that this model reduces to the Aubry-André-
Harper model when κ ¼ 1. If κ ≠ 1, the duality symmetry
of these models is broken, which motivates us to show the
existence of MEs. In this Letter, we prove that these models
with κ ≠ 1 do have energy-dependent MEs, which are
given by the following expression:

jλaκj ¼ 1; for E ¼ Ec; ð3Þ

with

aκ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

E2−4
p

��
Eþ

ffiffiffiffiffiffiffiffiffiffiffiffi
E2−4

p

2

�
κ

−
�
E−

ffiffiffiffiffiffiffiffiffiffiffiffi
E2−4

p

2

�
κ
�
: ð4Þ

In addition, all the localized and extended states can be
exactly studied. This is our central result, which we prove
by computing the LE exactly. Before showing the analytic
derivatives, we display the numerical evidence for the
κ ¼ 2 and κ ¼ 3 cases, which benefit a visual under-
standing of this condition [Eq. (3)] representing it as a
ME. Without loss of generality, we set θ¼0 and
ω¼ ½ð ffiffiffi

5
p

−1Þ=2�, which can be approached by using the
Fibonacci numbers Fn [41–43]: ω ¼ limn→∞ðFn−1=FnÞ,
where Fn is defined recursively by Fnþ1 ¼ Fn−1 þ Fn,
with F0 ¼ F1 ¼ 1. We take the system size L ¼ Fn and the
rational approximation ω ¼ Fn−1=Fn to ensure a periodic
boundary condition when numerically diagonalizing the
tight-binding model defined in Eq. (1).
The κ ¼ 2 and κ ¼ 3 cases.—For the minimal nontrivial

case with κ ¼ 2, the two MEs read [44]

Ec ¼ � 1

λ
: ð5Þ

For the κ ¼ 3 case, the four MEs are given by Ec ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1=λ
p

. The numerical results are obtained from the
inverse participation ratio (IPR) IPRðmÞ ¼ P

L
j¼1 jψm;jj4

[3], where ψm is the mth eigenstate. To characterize the
ME, we investigate the fractal dimension of the wave
function, which is given by Γ ¼ −limL→∞½lnðIPRÞ= lnL�. It
is known that Γ → 1 for extended states and Γ → 0 for
localized states. We plot energy eigenvalues and the fractal
dimension Γ of the corresponding eigenstates as a function

FIG. 1. The 1D quasiperiodic mosaic model with κ ¼ 2 and
κ ¼ 3. The red and black spheres denote the lattice sites whose
potentials are quasiperiodic and zero, respectively, as shown by
the corresponding red and black dashed lines. The blue sphere
denotes a particle, and the nearest-neighbor hopping strength is t.
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of potential strength λ in Fig. 2. The dashed lines in the
figure represent the MEs for κ ¼ 2 and κ ¼ 3, respectively.
As expected from the analytical results, Γ approximately
changes from zero to one when the energies across the
dashed lines. Further, for any κ, one can obtain 2ðκ − 1Þ
MEs well described by Eqs. (3) and (4).
The localization starts from the edges of the spectrum, as

the coupling constant λ is increased, then we haveMEs, and
for κ ¼ 2 MEs moves toward the center of the spectrum.
This behavior is similar to MEs in the 3D disordered
systems. However, the present model has a new funda-
mental feature that, in the arbitrarily strong quasiperiodic
potential regime, the MEs always take place; i.e., the
extended states always exist. This is in sharp contrast to
models with random disorder and to other quasiperiodic
models, where all the states are localized when the disorder
is large enough. In addition, we see that the critical strength
of quasiperiodic potential in extended-localization transi-
tion of the ground state is smaller than that in the standard
AAH model. This is because for the mosaic lattice the
particle tends to stay at the site with the smallest potential
and the potential difference strongly impedes the nearest-
neighbor hopping.
The ME can be further confirmed by the spatial

distributions of the wave functions, as shown in Figs. 3(a)
and 3(b). The wave functions for κ ¼ 2 are localized and
extended when their eigenvalues satisfy jEj > ð1=λÞ and
jEj < ð1=λÞ, respectively. It is interesting that two locali-
zation peaks are typically obtained for the localized states
[see, e.g., Fig. 3(a)]. This is due to the existence of twofold
degeneracy of energy levels [45], which are spatially
separated from each other, as shown in Figs. 3(c) and 3(d).
We have verified that most of the energy levels are twofold
degenerate for any κ greater than 1. This phenomenon is
related to the parent twofold degeneracy for the k and −k
states in the lattice model when there is no quasiperiodic
potential. The interesting thing is that, while the presence
of the inlaid quasiperiodic potential breaks the lattice

translational symmetry and the quasimomentum is no
longer a good quantum number, the twofold degeneracy
is inherited in the most of the localized states.
Rigorous mathematical proof.—Now we provide the

analytical derivation for the MEs by computing the LE.
Denote by TnðθÞ the transfer matrix of the Schrödinger
operator [40], then LE can be computed as

γϵðEÞ ¼ lim
n→∞

1

n

Z
ln kTnðθ þ iϵÞkdθ;

where kAk denotes the norm of the matrix A. The
complexification of the phase is important for us, since
our computation relies on Avila’s global theory of one-
frequency analytical SLð2;RÞ cocycle [40]. First note that
the transfer matrix can be written as

TκðθÞ ¼
�
E − 2λ cos 2πðθ þ κωÞ −1

1 0

��
E −1
1 0

�
κ−1

;

where

�
E −1
1 0

�
κ−1

¼
�

aκ −aκ−1
aκ−1 −aκ−2

�
;

and aκ is defined in (4). Let us then complexify the phase,
and let ϵ go to infinity, then direct computation yields

Tκðθ þ iϵÞ ¼ e2πϵei2πðθþκωÞ
�−λaκ λaκ−1

0 0

�
þ oð1Þ:

FIG. 2. Fractal dimension Γ of different eigenstates as a
function of the corresponding eigenvalues and quasiperiodic
potential strength λ for (a) κ ¼ 2 with size L ¼ F14 ¼ 610 and
(b) κ ¼ 3 with size L ¼ F15 ¼ 987. The red dashed lines
represent the MEs given in Eq. (3).
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FIG. 3. Spatial distributions of two eigenstates correspond to
(a) E ¼ −2.205ð9Þ and (b) E ¼ −1.741ð7Þ, which, respectively,
correspond to the nearest-neighbor eigenvalue below and above
the ME of the system. Eigenenergies versus the corresponding
index (c) from 67 to 72 and (d) from 73 to 79, which are,
respectively, below and above the ME (Ec ¼ −2), here the
eigenenergies in ascending order. Here we fix κ ¼ 2, λ ¼ 0.5,
and L ¼ 610.
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Thus we have κγϵðEÞ ¼ 2πϵþ log jλaκj þ oð1Þ. Avila’s
global theory [40,46] shows that, as a function of ϵ, κγϵðEÞ
is a convex, piecewise linear function, and their slopes
are integers multiply 2π. This implies that κγϵðEÞ ¼
maxfln jλaκj þ 2πϵ; κγ0ðEÞg. Moreover, by Avila’s global
theory, if the energy does not belong to the spectrum, if and
only if γ0ðEÞ > 0, and γϵðEÞ is an affine function in a
neighborhood of ϵ ¼ 0. Consequently, if the energy E lies
in the spectrum, we have κγ0ðEÞ ¼ maxfln jλaκj; 0g. When
jλaκj > 1, γ0ðEÞ ¼ ðln jλaκj=κÞ, the state with the energy E
is localized has the localization length

ξðEÞ ¼ 1

γ0
¼ κ

ln jλaκj
; ð6Þ

which is also verified by numerical results [46]. When
jλaκj < 1, the localization length ξ → ∞, and the corre-
sponding state is delocalized. Thus, the MEs are deter-
mined by jλaκj ¼ 1 [i.e., Eq. (3)]. In fact, we can further
show that the operator has a purely absolute continuous
energy spectrum (extended states) for jλaκj < 1, while it
has a pure point spectrum for jλaκj > 1 (localized states)
[50]. This proof also shows the analytic results for the
extended and localization features of all the states.
Experimental realization.—We propose the scheme of

realization based on ultracold atoms. We show that the
realization of the quasiperiodic mosaic model with κ ¼ 2 is
precisely mapped to the realization of a 1D lattice model
with spin-1=2 atoms, whose Hamiltonian reads

H¼ k2x
2m

⊗ 1þVpðxÞσzþM0σxþVsðxÞj↓ih↓j;

Vp ¼
Vp

2
cosð2kpxþϕpÞ; Vs¼

Vs

2
cosð2ksxþϕsÞ; ð7Þ

where σx;y;z are Pauli matrices, VpðxÞ is a deep spin-
dependent primary lattice with spin-conserved hopping
being negligible, M0-term couples spin-up and spin-down
states, and VsðxÞ is a secondary incommensurate potential
only for spin-down atoms. One finds that the tight-binding
model of H renders the quasiperiodic mosaic model with
κ ¼ 2 by mapping the spin-up (spin-down) lattice sites of
the former to the odd (even) sites of the latter, the spin-flip
coupling M0-term to the hopping t-term, and the potential
VsðxÞ to the incommensurate one applied only on odd sites.
This basic idea can, in principle, be generalized to realize
quasiperiodic mosaic models of larger κ with higher spin
systems.
The above Hamiltonian can be realized for ultracold

atoms based on optical Raman lattice [see Fig. 4(a)]
[51–53], as briefed below, and the details for the realization
are in the Supplemental Material [46]. To facilitate the
description, we transform the Hamiltonian H with the spin
rotation σx → σz and σz → −σx. The primary lattice then
reads −VpðxÞσx, which induces spin-flip transition in the

new bases and can be generated by a two-photon Raman
process driven by two laser beams E1;2 in the form
∝ E�

1E2 ∼ cosð2kpxÞ (see Supplemental Material [46]).
The incommensurate lattice can be similarly obtained by
a combination of two potentials ðVs=2Þσx and −ðVs=2Þ1
with VsðxÞ ¼ ðVs=2Þ sinð2ksxÞ, of which the former is a
two-photon Raman coupling potential induced by another
two standing-wave beams E3;4 in the form ∝ E�

3E4, with
ðE3;E4Þ ∼ ðcosðksxÞ; sinðksxÞÞ, while the latter is a stan-
dard spin-independent lattice. Finally, the M0-term is
directly given by the two-photon detuning (δ) of the
Raman coupling processes, taking the form ðδ=2Þσz.
After performing the inverse spin-rotation transformation
on these terms, we reach the Hamiltonian (7). More details
can be found in the Supplemental Material [46], where 40K
atoms are employed to illustrate the realization.
Finally, we estimate the parameter regimes for the

realization. In experiment, one should set a large Vp
compared with ðM0; VsÞ, such that the spin-conserved
hopping tp (mimicking the next-nearest-neighbor hopping)
is negligible. For example, whenVp¼10Er andM0¼ 1.5Er

with Er ≡ k2p=ð2mÞ, we have t ≃ 18.3tp [46]. Thus, regard-
less of the atom spin and taking into account only s bands,
this lattice Hamiltonian (7) indeed leads to the tight-binding
model described by Eq. (1) with κ ¼ 2. To further verify our
realization scheme, we calculate the fractal dimension Γ of
the lowest-band eigenstates of theHamiltonian (7) and show
the results as a function of the lattice depthVs in Fig. 4(b). It
can be seen that the distributions of localized and extended
states are very similar to the results in Fig. 2(a). We then

FIG. 4. Realization of the quasiperiodic model with κ ¼ 2 in
cold atoms. (a) Realization scheme. The spin-dependent primary
lattice VpðxÞ [−VpðxÞ] locates spin-up (-down) atoms at odd
(even) sites, with an incommensurate potential VsðxÞ being
applied only to the spin-down atoms. The primary lattice is deep
enough such that the spin-conserved hopping can be ignored. A
Raman coupling M0 is then used to induce the spin-flipped
hopping, which plays the role of nearest-neighbor tunneling.
(b) Fractal dimension Γ of the lowest-band eigenstates of the
lattice model as a function of the lattice depth Vs. The eigenvalues
E have been shifted a constant value such that the center of the
band is zero for Vs ¼ 0. Here we set Vp ¼ 10Er, M0 ¼ 1.5Er,

and ks=kp ¼ ½ð ffiffiffi
5

p
− 1Þ=2�, with Er ≡ k2p=ð2mÞ. The red dashed

curves represent the analytical MEs Ec ¼ �t2=λ, with t ≃
0.353Er and λ ≃ 0.215Vs.
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check the analytical expressions for MEs: Ec ¼ �t2=λ,
where the nearest-neighbor tunneling t and the quasiperiodic
potential strength λ ∝ Vs can be derived based on s-band
Wannier functions in the tight-binding limit [46].Weplot the
results as red dashed curves in Fig. 4(b) and find them in
good agreement with the fractal dimension calculations. In
experiment, one can determine the MEs by observing the
time evolution of an initial charge-density wave state [36],
detecting the interference pattern [29] or characterizing the
correlation length [33,54].
Conclusion.—We have proposed a class of exactly

solvable 1D mosaic models to realize MEs in energy
spectra, where quasiperiodic on-site potentials are inlaid
in the lattice with equally spaced sites, and proposed the
experimental realization. By calculating the Lyapunov
exponents, we have analytically demonstrated the existence
of MEs and obtained their expressions, which are in
excellent agreement with the numerical studies. For the
integer inlay parameter κ > 1 of our proposed models, one
obtains 2ðκ − 1Þ MEs, which are symmetrically distributed
in energy spectra and always exist even in the strong
quasiperiodic potential regime. Our work uncovers a
variety of new lattice models that host multiple exact
MEs and opens a new avenue to analytically explore novel
ME physics with experimental feasibility.
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