
 

Spin-Nematic Vortex States in Cold Atoms

Li Chen ,1,2 Yunbo Zhang,3,* and Han Pu4,†
1Institute of Theoretical Physics and State Key Laboratory of Quantum Optics and Quantum Optics Devices,

Shanxi University, Taiyuan 030006, China
2Institute for Advanced Study, Tsinghua University, Beijing 100084, China

3Key Laboratory of Optical Field Manipulation of Zhejiang Province
and Physics Department of Zhejiang Sci-Tech University, Hangzhou 310018, China

4Department of Physics and Astronomy, and Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA

(Received 17 November 2019; accepted 9 October 2020; published 3 November 2020)

The (pseudo)spin degrees of freedom greatly enriches the physics of cold atoms. This is particularly so
for systems with high spins (i.e., spin quantum number larger than 1=2). For example, one can construct not
only the rank-1 spin vector, but also the rank-2 spin tensor in high spin systems. Here we propose a simple
scheme to couple the spin tensor and the center-of-mass orbital angular momentum in a spin-1 cold atom
system and show that this leads to a new quantum phase of the matter: the spin-nematic vortex state that
features vorticity in an SU(2) spin-nematic tensor subspace. Under proper conditions, such states are
characterized by quantized topological numbers. Our work opens up new avenues of research in
topological quantum matter with high spins.
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Introduction.—Cold atoms are well known to provide an
ideal platform for quantum simulation [1]. As a quantum
simulator, cold atoms can not only simulate important toy
models arising from other subfields of physics, but also
offer opportunities to construct new models that take
advantages of their unique properties. One particular
example is synthetic spin-orbit coupling (SOC) generated
either by Raman laser coupling [2–5] or by periodic
modulation [6–8]; due to the flexibility of tailoring laser
configuration or Floquet engineering, novel types of SOC
not naturally occur in other systems can be realized.
Another unique property of the atom is that the number
of internal states (i.e., the spin) involved can be tuned to
some extent, which makes possible the exploration of
intriguing physics of high spins [9].
Combining SOC and high spin, SOC in cold atoms with

high spins has received much attention in recent years.
Raman laser induced SOC in spin-1 condensate [10] was
realized by Spielman and co-workers [11], where various
phase transitions and the associated quantum tricritical point
have been identified. Very recently, interesting phenomena
have been explored in a novel type of coupling between the
center-of-mass orbital angular momentum (OAM) and the
spin vector in spin-1 condensates [12–14] where topological
spin vortices, as well as the Hess-Fairback effect, have been
observed.
Nevertheless, previous works, including the studies

mentioned above, predominantly focus on the textures of
the spin operators but few on those of the nematic tensors
[9,15,16]. The nematicities, which serve as fundamental
quantities in high spin quantum systems, have proved to be

of wide usage in distinguishing different phases [9,16] or
generating topological structures [9,17,18]. In the current
work, we propose to synthesize the coupling between the
OAM and the spin-nematic tensor in a spin-1 condensate
and show that this coupling leads to a novel vortex state in a
special SU(2) subspace spanned by a combination of spin
and nematic operators. We call such states, which have
never been studied before, the spin-nematic vortex state.
Spin nematic and OAM coupling.—Our proposal builds

uponprevious studies on coupling spin andOAM[12] andon
coupling spin tensor and linear momentum [19] in cold
atoms. Specifically, we consider a spin-1 Bose-Einstein
condensate (BEC) confined in a three-dimensional harmonic
trap with cylindrical symmetry, as is schematically shown in
Fig. 1, where the three spin states with magnetic quantum

FIG. 1. (a) Schematic of the system. The three laser beams
create a pair of Raman transitions that couple the atomic spin
nematic tensor and its OAM. (b) Atomic level structure.
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number mF ¼ 1, 0, and −1 are Raman coupled by three
copropagating Laguerre-Gaussian beams along the z axis.
Two of the laser beams carry OAM Lz ¼ ℏ and the third
beam has Lz ¼ −ℏ. The single-particle Hamiltonian can be
written in the cylindrical coordinates ðr;ϕ; zÞ as (taking ℏ ¼
m ¼ ω ¼ 1withm the atomicmass andω the transverse trap
frequency) [20]

H0 ¼ −
1

2
∇2 þ 1

2
r2 þ 1

2
γ2z2 þ δSz þ qS2z

þ i
ffiffiffi
2

p
ΩRðrÞðe2iϕjzihyj − e−2iϕjyihzjÞ; ð1Þ

where S ¼ fSx; Sy; Szg are the spin operators, γ ¼ ωz=ω the
aspect ratio between the longitudinal and the transverse
confinement, δ the two-photon Raman detuning which we
take to be zero corresponding to the case of two-photon
resonance, q the effective quadratic Zeeman energy,
ΩRðrÞ ¼ 2Ω0ðr=wÞ2e−2r2=w2

the r-dependent Raman cou-
pling strength with Ω0 characterizing the Raman beam
intensity, and w the beam width. In Eq. (1), instead of the
bare spin states jmF ¼ þ1i, j0i, and j − 1i, we have used the
Cartesian polar states jμi with μ ¼ x, y, and z, which are
defined as the eigenstates to spin operator Sμ with zero
eigenvalue, i.e., Sμjμi ¼ 0. In terms of the bare spin states

(i.e., eigenstates of Sz), we have jxi ¼ 1=
ffiffiffi
2

p ðj − 1i − j1iÞ,
jyi ¼ i=

ffiffiffi
2

p ðj − 1i þ j1iÞ, and jzi ¼ j0i [26]. Furthermore,
since the Raman induced coupling [last term in Eq. (1)] is
only in the transverse r-ϕ plane, we can take our computation
in the transverse plane [20]. This effective reduction of spatial
dimension allows us to significantly increase our computa-
tion efficiency without losing any essential physics.
The coupling between nematic tensor andOAM inH0 can

be more clearly seen when we carry out a gauge rotation
U ¼ expð2iϕS2zÞ. The new single-particle Hamiltonian
H̃0 ¼ UH0U† in the rotating frame is given by

H̃0 ¼
ði∇ −AÞ2

2
þ r2

2
þ qS2z þ

ffiffiffi
2

p
ΩRSx

¼ −
∇2

2
−
2ðLz − S2zÞS2z

r2
þ r2

2
þ qS2z þ

ffiffiffi
2

p
ΩRSx; ð2Þ

whereA ¼ −iU†∇U ¼ 2S2z êϕ=r is the synthetic gauge field
on the azimuthal direction êϕ. In Eq. (2), one can clearly see
the spin-nematic-OAM coupling term ∼LzS2z which couples
the atomic quasi-OAM Lz ¼ −i∂ϕ with one of the irreduc-
ible nematic tensors Nzz ¼ S2z − 2=3. It will play a crucial
role in inducing various spin-nematic vortex states.
Single-particle properties.—We investigate the spectrum

and the eigenstates of H̃0. First, we realize that Lz is
conserved as ½Lz; H̃0� ¼ 0. Furthermore, both Lz and H̃0

commute with the spin-parity operator,

P ¼ j þ 1ih−1j þ j − 1ihþ1j þ j0ih0j; ð3Þ

which satisfies P2 ¼ 1. P carries a pair of eigenvalues P ¼
�1 distinguishing spin parity of the eigenstates. In par-
ticular, the states with even parity (P ¼ þ) possess the
same phase on the�1 spin components, whereas those with
odd parity (P ¼ −) have a phase difference of π on the �1
components. It is straightforward to see that the Cartesian
state jxi has odd spin parity, while jyi and jzi possess even
spin parity. The conservation of Lz ensures the quasi-OAM
lz to be a good quantum number in the rotating frame, and
hence the energy eigenstates can be labeled using P and lz
as Ψ̃P¼�;lz ¼ eilzϕξ�ðrÞ ¼ eilzϕ½ξ1ðrÞ; ξ0ðrÞ; ξ−1ðrÞ�T . The
spinor wave function ξ�ðrÞ can be expanded in the
Cartesian basis as

ξþ ¼
ffiffiffiffiffiffiffiffiffi
ρðrÞ

p
½i cosΘðrÞjyi þ sinΘðrÞjzi�;

ξ− ¼
ffiffiffiffiffiffiffiffiffi
ρðrÞ

p
jxi; ð4Þ

where ρðrÞ ¼ jΨ̃ðrÞj2 is the total particle density and ΘðrÞ
characterizes the r-dependent superposition weight.
We numerically solve the Schrödinger equation to obtain

the energy spectrum and the eigenstates. Figure 2(a)
displays the single-particle ground-state phase diagram
in the parameter space spanned by Ω0 and q. Three phases,
I, II, and III, can be identified. The ground states in all three
phases have even spin parity, while their quasi-OAM
quantum numbers lz are 0, 1, and 2, respectively. All the
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FIG. 2. (a) Single-particle phase diagram with solid lines
indicating first-order phase transitions. Insets: Typical dispersion
spectra at ðΩ0 ¼ 4; q ¼ 0.5Þ, (10,0), and ð4;−0.5Þ in three
parametric regimes I, II, and III. Solid dots and hollow circles
denote the states with even and odd parity, respectively. (b) Spinor
wave functions of typical lower-lying eigenstates Ψ̃P¼þ;lz¼0;1;2

and Ψ̃P¼−;lz¼2. Red numbers display the mechanical OAM on
each spin component in the lab frame. (c) Typical spin-nematic
textures for phase I, II and III (from left to right). Arrows
represent the spin-nematic vector Q ¼ fSx; 2N yz;Dyzg, and the
arrow color indicates the strength of Dyz.
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phase transitions in the diagram Fig. 2(a) are of first order
since, across the phase boundary, the first-order derivative
of the ground-state energy with respect to Ω0 or q exhibits
discontinuity [20]. In each phase, we show typical energy
spectrum as the inset in Fig. 2(a), where the solid dots and
hollow circles distinguish the even and odd spin-parity
states. In Fig. 2(b), we plot the magnitude of the wave
function for each bare spin component jξ0;�1j. The first
three columns represent the ground state in each phase, and
the last column corresponds to an odd spin-parity state Ψ̃−;2
in phase III that lies very close to the ground state. This
state will be important in our later discussion on the many-
body effects in a weakly interacting condensate.
The case with vanishing quadratic Zeeman term (i.e.,

q ¼ 0) deserves some special attention. Under this situa-
tion, the single-particle spectrum of the even-parity states is
symmetric about lz ¼ 1 [20]. For Ω0 smaller than a critical
value Ωc ≈ 7, the line q ¼ 0 represents the boundary
between phases I and III [see Fig. 2(a)], on which the
states Ψ̃þ;lz with lz ¼ 0 and 2 are degenerate. When
Ω0 > Ωc, we enter into phase II with lz ¼ 1. Since the
term ðLz − S2zÞS2z in Hamiltonian (2) vanishes for lz ¼ 1

due to S2z ¼ S4z , Sx is now a conserved quantity. As a result,
the spinor wave function ξþ becomes an eigenstate of Sx
featuring Θ ¼ π=4.
Spin-nematic vortices.—In the lab frame, different spin

components of the single-particle states carry different
mechanical OAM as is indicated by the numbers in the
subplots of Fig. 2(b). For the spin-0 component, this is
simply the quasi-OAM quantum number lz, whereas for the
spin-(�1) component, it is lz − 2. The transformation
between the wave function in the lab frame Ψ and that
in the rotating frame Ψ̃ is given by Ψ ¼ U†Ψ̃, which
explicitly leads to

Ψþ;lz ¼
ffiffiffiffiffiffiffiffiffi
ρðrÞ

p
eilzϕ½ie−2iϕ cosΘðrÞjyi þ sinΘðrÞjzi�;

Ψ−;lz ¼
ffiffiffiffiffiffiffiffiffi
ρðrÞ

p
eiðlz−2Þϕjxi: ð5Þ

Clearly, the ground state of phase II, represented by
Ψþ;lz¼1, is a singular vortex as each of its bare spin
components carry a finite vorticity and hence the total
density vanishes at r ¼ 0, while those in phases I and III,
represented by Ψþ;lz¼0;2, are coreless vortices that contain
at least one spin component with no vorticity with finite
density at r ¼ 0.
We investigate the spin and nematic textures by calcu-

lating the normalized spin density,

Sμ ¼
Ψ†SμΨ
ρðrÞ ; ð6Þ

and the normalized nematic density,

N μν ¼
Ψ†NμνΨ
ρðrÞ ; ð7Þ

where Nμν ¼ 1
2
ðSμSν þ SνSμÞ − 2

3
δμν are the symmetrized

SU(3) nematic tensors with nine components by taking
μ; ν ¼ x, y, z [9,15,16]. Diagonalizing the nematic density
matrix N results in three eigenvalues λ1;2;3 characterizing
the alignment axis of nematic orders. A uniaxial nematic
state is characterized by λ1 ≠ λ2 ¼ λ3, while for a biaxial
nematic state, none of these eigenvalues are equal. We
remark that the Cartesian states are closely related to the SU
(3) operators, which greatly facilitates the calculation of S
and N [20].
Now we discuss the four low-energy states Ψþ;lz¼0;1;2

and Ψ−;lz¼2 represented in Fig. 2(b). The odd-parity state
Ψ−;2 is topologically trivial, since it is simply a polar state
with vanishing spin density, and a fixed uniaxial direction
along Nxx. For the even-parity states Ψþ;lz¼0;1;2 which
represent the ground state in the three phases, we have

S¼f−cosð2ϕÞsinð2ΘÞ;0;0g;

N ¼

2
664

1
3

0 0

0 −1
6
ð1þ3cos2ΘÞ −1

2
sinð2ΘÞsinð2ϕÞ

0 −1
2
sinð2ΘÞsinð2ϕÞ −1

6
ð1−3cos2ΘÞ

3
775; ð8Þ

where the spin vector S is polarized along Sx. The
eigenvalues of the nematic matrix N can be obtained
as λ1 ¼ 1=3, λ2;3 ¼ −1=6½1� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ð2ΘÞ cos2ð2ϕÞ

p
�,

indicating that all three states are biaxial nematic states.
Furthermore, the spin and nematic densities in Eq. (8) are
not independent, and satisfy [15]

1

2
jS2j þ Tr½N 2� ¼ 2

3
: ð9Þ

Substituting Eq. (8) into Eq. (9), one immediately obtains a
relation

S2
x þD2

yz þ ð2N yzÞ2 ¼ 1; ð10Þ

where Dyz ¼ N yy −N zz ¼ − cosð2ΘÞ. This relation moti-
vates the construction of the following spin-nematic vector,

Q ¼ fSx; 2N yz;Dyzg; ð11Þ

which forms vector space lying on a unit Bloch sphere. In
fact, the vector Q is defined on an SU(2) group generated
by Q ¼ fSx; 2Nyz; Dyz ¼ Nyy − Nzzg. Mathematically, the
group Q is a type-2 subgroup of the SU(3) Lie group with
the structure constant being equal to 2 [20,27], i.e.,
½2Nyz; Sx� ¼ 2iDyz.
In Fig. 2(c), we display the textures of the spin-nematic

vector Q for the ground states of the three phases
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Ψþ;lz¼0;1;2. One can clearly see that the transverse compo-
nents of Q for all three states form a vortex pattern, hence
the name spin-nematic vortex states.
We now investigate the topological properties of the spin-

nematic vortex states. Let us first focus on the q ¼ 0 case.
The ground state in phase II is a singular vortex stateΨþ;lz¼1

satisfying Θ ¼ π=4, as mentioned before. Hence Q is a
planar vector that lies on the equator of theBloch sphere since
its z component vanishes, i.e., Dyz ¼ − cosð2ΘÞ ¼ 0. This
allows us to depict the singular vortexΨþ;lz¼1 by thewinding
number, which counts the winding times ofQ as one walks
along a closed loop in the x-y plane. Apparently, thewinding
number of the singular vortexΨþ;lz¼1 equals to−2 if the loop
encloses thevortex core (at the origin x ¼ y ¼ 0), and equals
to 0 otherwise. For the two coreless statesΨþ;lz¼0;2 of phases
I and III, the spin-nematic vectorQ is defined on the whole
Bloch sphere. However, we have the boundary condition
Θðr → ∞Þ ¼ π=4, which can be clearly observed as the
contribution of term ðLz − S2zÞS2z=r2 in Hamiltonian (2)
diminishes as r → ∞. Consequently, each state (Ψþ;lz¼0

or Ψþ;lz¼2) covers one half of the Bloch sphere, and their
topological number can thus be characterized by the sky-
rmion number [28] defined as

W ¼ 1

4π

ZZ
d2rQ · ð∂xQ × ∂yQÞ; ð12Þ

which turns out to be ∓ 1 for states Ψþ;lz¼0;2, respectively
[29]. Note that the coreless spin-nematic vortices defined in
the type-2 subspace Q here are analogous to the Mermin-
Ho vortex [30–32] defined in the type-1 subspace
S ¼ fSx; Sy; Szg. However, the two are not mathematically
equivalent since the subspacesS andQ cannot be transformed
into each other by SU(3) rotations [27]. We also note that
these topological numbers are not well defined at finite q. For
example, at finite q, the singular vortex can no longer be
described by the winding number since Q is no longer
restricted in the Sx − 2Nyz plane, and the skyrmion numbers
of the other two coreless vortices are also in general not
quantized to be integers.
Many-body effects.—Next, we consider a weakly inter-

acting condensate and discuss the effects of the interactions
under the framework of the mean-field theory. In the lab
frame, the interacting Hamiltonian of the spin-1 condensate
is in the well-known form of [9,33]

Hint ¼
1

2

Z
d2rρ2ðrÞ½c0 þ c2S2ðrÞ�; ð13Þ

where c0 and c2 denote the strength of the density-density
and the spin-exchange interactions, respectively. We imple-
ment two different methods to obtain the mean-field ground
states—the variational method and the numerical method
by solving 3D Gross-Pitaevskii equations [20], and the

results turn out to be in excellent agreement. For the
variational method, we assume the condensate wave
function is a linear combination of the four lower-lying
single-particle states shown in Fig. 2(b):

Ψ̃ ¼ D0Ψ̃þ;0 þD1Ψ̃þ;1 þDþΨ̃þ;2 þD−Ψ̃−;2; ð14Þ

where Dj¼0;1;þ;− ¼ jDjjeiθj are variational amplitudes sat-
isfying

P
j jDjj2 ¼ 1, with θj being the phase angle of Dj.

We obtain the ground states by minimizing the total energy
functional with respect to Dj. Here, we consider a weak
ferromagnetic spin-exchange interaction by taking c0 ¼ 1
and c2 ¼ −0.1c0, and then map out the ground-state phase
diagram as is displayed in Fig. 3(a).
The main structures of the many-body phase diagram

Fig. 3(a) are consistent with that of the single-particle phase
diagram Fig. 2(a). In Fig. 3(a), the three phases I, II, and III
are very similar to the corresponding single-particle ones in
diagram Fig. 2(a) with jDj¼0;1;þj ¼ 1 in ansatz (14),
respectively, and the phase transitions among them are
all of first order (solid lines). There are, however, two new
many-body phases labeled as IV and V that have no
counterparts in the single-particle phase diagram, and the
phase transitions related to them can be either first (solid
lines) or second order (dashed lines), as determined by
whether the first- or second-order derivatives of the ground
state energy with respect to the parameters (Ω or q) exhibit
discontinuity or not [20].
These two new phases, IV and V, spontaneously break

the spin parity and the rotation symmetry, respectively.
Specifically, the wave function of phase IV is a super-
position of states Ψ̃�;2 with variational amplitudes satisfy-
ing jD�j ≠ 0 and θþ − θ− ¼ 0 or π (mod[2π]). Thus, it
keeps the rotational symmetry but breaks the spin-parity
symmetry. Interestingly, this state exhibits vorticity in both

0 3-3
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FIG. 3. (a) Many-body phase diagram, where the solid and the
dashed lines indicate the first- and the second-order phase
transitions, respectively. Insets: Total density profile ρðrÞ of
phase V. Panels (b1) and (b2) display the typical spin texture
S ¼ fSx;Sy;Szg and spin-nematic texture Q ¼
fSx; 2N yz;Dyzg of phase IV, respectively. The arrow color in
(b1) and (b2) indicates the z components of the spin density S
and spin-nematic density Q, respectively.
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the spin and the spin-nematic subspaces S and Q simulta-
neously, as are shown in Figs. 3(b1) and 3(b2) respectively.
The breaking of the spin-parity symmetry is manifested in
the fact that Sz is finite, i.e., unequal occupation on the bare
spin-(�1) components.
The wave function of phase V is a superposition of states

Ψ̃þ;0 and Ψ̃þ;2 with jD0;þj ≠ 0. Thus, this state maintains
the spin-parity symmetry, but breaks the rotational sym-
metry, which leads to an interesting angular striped phase
[34,35]. We show the total density profile ρðrÞ of phase V
as an inset in Fig. 3(a), where the lack of the rotational
symmetry is obvious.
Experimental observation.—Finally, let us briefly dis-

cuss the experimental detection of the spin-nematic vortex
states, which can be performed either directly or indirectly.
The indirect observation is to detect such features of the
wave functions Ψþ;lz¼0;1;2 [presented in Fig. 2(b)] as the
core structures or the mechanical-OAM numbers.
Specifically, the core structure can be obtained by the
spin-selected absorption imaging; the mechanical-OAM
quantum numbers can be deduced from the interference
pattern after different spin components are mixed with each
other by a radio frequency π=2 pulse [13,14]. In contrast,
the direct observation is to detect the spin-nematic textures
Q directly. Since the direct observation of the spin texture
S was realized via spin-sensitive dispersive imaging a few
years ago [36,37], this technique can be easily generalized
to measure Q as the nematic operators 2Nyz and Dyz are
rotated into the measurable direction Sx. Practically, this
rotation can be achieved by pulsing a quadratic Zeeman
magnetic field which lets Q evolve under the government
of ∼S2z [38], or more feasibly, introducing an additional far
off-resonant microwave on certain Zeeman level [39].
Summary.—We have proposed a scheme to couple the

atomic OAM and the nematic tensor in a spin-1 cold atomic
system. The ground state exhibits vorticity in a special
spin-nematic subspace. Under zero quadratic field, the
spin-nematic vortices can be characterized by quantized
topological numbers. These features survive in the presence
of weak interaction. However, the interaction may induce
spontaneous symmetry breakings, and leads to a rich many-
body phase diagram. Considering the spin-OAM coupling
has been realized by two experimental groups very recently
[13,14,40], we expect this work to stimulate more inves-
tigations on the spin-OAM coupled quantum gases with
higher spins and nematic orders.
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