
 

Anomalous Spin-Charge Separation in a Driven Hubbard System
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Spin-charge separation (SCS) is a striking manifestation of strong correlations in low-dimensional
quantum systems, whereby a fermion splits into separate spin and charge excitations that travel at different
speeds. Here, we demonstrate that periodic driving enables control over SCS in a Hubbard system near half
filling. In one dimension, we predict analytically an exotic regime where charge travels slower than spin
and can even become “frozen,” in agreement with numerical calculations. In two dimensions, the driving
slows both charge and spin and leads to complex interferences between single-particle and pair-hopping
processes.
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Introduction.—Strongly correlated quantum systems
exhibit a plethora of interesting phenomena, such as
high-Tc superconductivity [1] or the fractional quantum
Hall effect [2], underpinned by a competition between
different interactions and orderings of different degrees of
freedom [3]. An example of this is the delicate interplay
between magnetic and charge correlations in the ground
state of lightly doped high-Tc superconductors [4–7] that
appears very sensitive to coherent processes beyond nearest
neighbors [8–14]. A striking manifestation of strong
fermionic correlations is spin-charge separation (SCS)
[15–18], where the elementary excitations of the system
are solitonlike spin and charge (or density) excitations, of
which the physical fermion appears as a composite
[19–22]. In one-dimensional (1D) systems, SCS is pre-
dicted to occur at low energies in Luttinger liquids [15].
Numerical simulations of the 1D Hubbard model also
demonstrated SCS [23] in a regime beyond low energy that
is relevant to cold-atom implementations of the model [24].
More recently, Ref. [25] studied the charge and spin
transport properties of the 1D Hubbard model at finite
temperature using a hydrodynamic approach. A typical
signature of the distinct nature of spin and charge excita-
tions in these systems is their very different propagation
velocities. For instance, in the t-J model, spin excitations
travel through the lattice at speed us ∼ Ja, while the charge
excitations move at speed uc ∼ ta [26]; here a is the lattice
constant, t is the hopping energy, and J ≪ t is the second-
order exchange energy [see Eq. (1) below]. A recent cold-
atom experiment confirmed these by tracking the real-time
dynamics [27]. SCS has also been observed in condensed-
matter setups through measurements of the dispersions of
the excitations [16–18].
In contrast to the situation in 1D, the existence of SCS in

the two-dimensional (2D) Hubbard and t-J models is an
open question, owing partly to the lack of 2D analytical

methods and partly to the limitations of current numerical
methods [19–21,28–30]. There is evidence that the t-J
model at low fermion density is consistent with the
description of a Fermi liquid [31], whereas at higher
fillings it shows SCS with a speed of charge excitations
larger than that of spin excitations [19].
In this Letter, we demonstrate control over SCS via

periodic driving of a strongly repulsive Hubbard model
near half filling in 1D and 2D. It is known that such a
system is well described by a static t-J-α model [32–37],
where double occupancies are forbidden by the strong on-
site repulsion in the underlying Hubbard system. Compared
to the standard t-J model, the t-J-α model also includes
three-site processes that play, as we show here, an impor-
tant role in the dynamics. In 1D, we use matrix product
state methods to look at the evolution of small localized
spin and charge excitations of the effective t-J-α chain from
its ground state. We identify an exotic regime, where the
spin excitation speed exceeds that of the charge excitation.
Interestingly, for some driving strengths before the occur-
rence of phase separation [38,39], we observe a ballistic
propagation of spin excitations accompanied by “freezing”
of charge excitations, a phenomenon that cannot be
explained by dynamic localization [40] or self-localization
by the phase-string effect [41]. Moreover, the novel
freezing behavior is not seen in the standard t-J chain,
where the charge excitations remain mobile until phase
separation occurs. In 2D, we perform exact diagonalization
calculations on a square lattice with a spin-dependent
checkerboard potential, which creates initially imbalanced
density and spin profiles from the ground state. After
removing the potential, these imbalances oscillate in time,
with different characteristic frequencies, which we show
can be controlled by the driving. These predictions can be
readily tested with available experimental techniques in the
field of ultracold atoms [42–49], which will provide novel
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information on the interplay between density and spin
degrees of freedom in strongly interacting Hubbard systems
[8–14] and could assist investigations on SCS in hitherto
poorly understood regimes, such as in 2D models and high-
energy excitations of 1D strongly interacting systems.
The t-J-α model.—We consider a system of strongly

repulsive spin-1=2 fermions on a lattice. We describe
this system with a Hubbard model ĤHub ¼ Ĥhopðt0Þþ
U
P

i n̂i↑n̂i↓. Here Ĥhopðt0Þ ¼ −t0
P

hijiσ ðĉ†iσ ĉjσ þ H:c:Þ
describes the hopping between nearest-neighbor (NN) sites
hiji of a spin-σ fermion (σ ¼ ↑;↓), created at site i by ĉ†iσ;
t0 is the fermion hopping amplitude between NN sites, and
n̂iσ ¼ ĉ†iσ ĉiσ is the density at site i of spin-σ fermions.
Finally, the on-site repulsion energyU ≫ t prevents double
occupation of a single site. We subject the system to a
periodic driving of the form ĤdriveðτÞ ¼
cos ðΩτÞPi V · rin̂i, with frequency Ω and amplitude in
the x − y lattice plane V ¼ ðVx; VyÞ; n̂i ¼ n̂i↑ þ n̂i↓.
Under the condition t0 ≪ fU;Ω; jU þmΩj ∀ m ∈ Zg,

i.e., the driving is off resonant and fast compared to
hopping, the dynamics of the driven system is described
by an effective static t-J-α model (see Fig. 1)

ĤtJα ¼ P0fĤhopðtÞ þ ĤexðJÞ þ ĤpairðfαijkgÞgP0; ð1Þ

with its parameters dependent on Ω and V. The effective
model (1) can be derived using a generalized Schrieffer-
Wolff transformation [32,33] or a perturbative expansion in
the Floquet basis [34–37]; see details in the Supplemental
Material [50]. Here, the operator P0 ¼

Q
ið1 − n̂i↑n̂i↓Þ

projects out states with double occupancies, ĤexðJÞ ¼
−J

P
hiji b̂

†
ijb̂ij is the superexchange contribution, by which

NN opposite spins switch their positions, b̂†ij ¼ ðĉ†i↑ĉ†j↓ −
ĉ†i↓ĉ

†
j↑Þ=

ffiffiffi
2

p
creates a spin-singlet pair straddling NN sites

i and j, and ĤpairðfαijkgÞ ¼ −
Pi≠k

hijki αijkb̂
†
ijb̂jk þ H:c:

describes processes by which a singlet pair hops between
nearby lattice bonds hjki → hiji, see Fig. 1.
Anomalous SCS in one dimension.—We consider first

the case of a 1D chain with open boundary conditions,
shaken with dimensionless amplitude K ¼ jVj=Ω along its
length L. Equations (4) and (5) below provide the
parameters of the corresponding effective t-J-α model:
t ¼ t0J 0ðKÞ, J ¼ 4t20

P
m J 2

mðKÞ=ðU þmΩÞ, and α ¼
2t20

P
m J mðKÞJ −mðKÞ=ðU þmΩÞ. Here J mðKÞ is the

mth-order Bessel function of the first kind. In the limit
U ≫ Ω, these expressions reduce to J ≈ J0 ≡ 4t20=U
and α ≈ J0J 0ð2KÞ=2.
To study the dynamics of spin and charge degrees of

freedom in this system, following Ref. [23] we add a weak
spin-dependent potential, V̂1D¼−E↑

P
jexp½−ðj−L=2Þ2=

2s2�n̂j;↑, in order to create a localized spin-polarized
density excitation in the center of the lattice, see
Fig. 1(a). We then analyze the dynamics of the spin and
density degrees of freedom upon removal of V̂1D, looking
for signatures of SCS.
To start, we compute the ground state of the t-J-α model

corresponding to the Hubbard model with given driving
strength K, frequency Ω, and spin-dependent potential
strength E↑ using the density matrix renormalization group
(DMRG) algorithm [56,57]. At time τ ¼ 0, the spin-
dependent potential is switched off (while still undergoing
periodic driving) and we compute the system’s evolution
under the effective t-J-α model using the time evolving
block decimation (TEBD) algorithm [57,58]. Note that all
our simulations are performed with the t-J-α model, rather
than the driven Hubbard model. The validity of the t-J-α
model as a description of the Hubbard model driven with
Ĥdrive is established in Ref. [37]. Reference [36] presents
further evidence that driving-induced Floquet heating in
these models remains low for driving durations ≲100=t0.
For both DMRG and TEBD calculations, we employ the
Tensor Network Theory library [59].
Our numerical results are summarized in Fig. 2, which

shows the time evolution of the local spin szj ¼ hŝzji and
density nj ¼ hn̂ji, with hÔi ¼ hψðτÞjÔjψðτÞi, jψðτÞi being
the state of the system at time τ. The leftmost column shows
the undriven system, K ¼ 0. The initial spin-polarized
charge excitation is localized in the center of the lattice.
After V̂1D is removed at τ ¼ 0, the excitation separates into

(a)

(b)

FIG. 1. (a) One-dimensional t-J-α chain. Spin-1=2 fermions
(arrows) can hop between neighboring sites (circles) with
hopping amplitude t. Nearest-neighbor singlet pairs (blue ellipse)
are bound by a superexchange energy J and can hop from one
bond to a neighboring bond with pair-hopping amplitude α. The
bottom blue line illustrates the spin-dependent potential V̂1D, felt
only by the ↑ species. (b) Two-dimensional t-J-α model.
Generally, the single fermion (tx;y), and singlet-pair-hopping
(αx;y;�) amplitudes are anisotropic. The background shading
indicates a staggered spin-dependent potential superimposed
on the lattice.
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a spin excitation that propagates at a speed us ≈ Ja and a
charge excitation that propagates at a higher speed uc ≈ ta.
As the driving strength increases, Eqs. (4) and (5) predict
that t is suppressed while J remains approximately con-
stant. In agreement with this prediction, our numerics
shows that spin dynamics remain relatively unchanged,
while the density dynamics changes drastically. For K ≳ 2
(third and fourth columns in Fig. 2), we reach an exotic
regime where spin excitations travel faster than charge
excitations. This inversion of the usual SCS scenario
appears in its extreme version for K ≳ 2.1, when the charge
excitation remains stationary (“freezes”) at the lattice
center, despite the fact that t ≠ 0 (in fact, t ≈ J). This
anomalous SCS is a robust phenomenon, as the inversion of
the relative velocities of charge and spin occurs for a broad
range of parameters (t0; J0;Ω;…).
The fact that the freezing happens before t ¼ 0 (which

occurs at K ≈ 2.404) distinguishes this phenomenon from
dynamic localization [40]. We also checked that it is not
related to phase separation [38,39] by computing the
inverse compressibility, which is nonvanishing for
2.1≲ K ≲ 2.2. Charge in t-J models has also been shown
to localize due to the phase-string effect [41], however, this
effect only occurs in spatial dimensions higher than 1,
which excludes self-localization as an explanation for the
freezing observed here. Instead, we rationalize that it stems
from the interplay between the direct (t) and spin-correlated
(α) hopping of fermions. This is supported by the fact that,
if α ¼ 0, the charge dynamics is frozen only at stronger
driving, K ≳ 2.3, when phase separation occurs [39].
We compare the numerical results with analytical cal-

culations using a mean-field spin-charge separation
(MF-SCS) theory based on Ref. [51]. We find that pair-
hopping (α) processes affect the charge uc and spin us

excitation velocities already at this mean-field (MF) level.
Specifically, we find

uc ¼ ut−Jc þ 4αnχ2 sin ½2πð1 − nÞ�; ð2Þ

us ¼ ut−Js þ 4αnϕχ; ð3Þ

where ut−Jc ¼ −4tχ sin ½πð1 − nÞ� and ut−Js ¼ Jðn2 −
ϕ2Þð1 − 2χÞ − 4tϕ are, respectively, the MF charge and
spin velocities of the t-J model [51], n is the filling fraction
(n ¼ 1 for half filling), and χðϕÞ is the MF value of the
fermions describing neighboring-site spin (charge) coher-
ence; see Eqs. (S.20) and (S.21) in the Supplemental
Material [50]. At weak driving, jαj ≪ t, and uc is close
to that for the standard t-J model [51]. At larger drivings
(K > 1.2), the pair-hopping (α) terms gain in importance
and affect the dispersions of separated spin and charge
degrees of freedom [see Eqs. (S.26) and (S.27) in [50] ],
such that uc is lower than in the t-J model [see Fig. S.2 in
[50] ]. These predictions are in good agreement with our
numerics, as shown by the solid lines in the lower panels of
Fig. 2. We note that our MF-SCS theory predicts freezing of
charge excitations even though at a larger value of K than
the numerics (see Fig. 2, bottom right panel).
Regarding the spin excitation velocity us, our MF-SCS

theory predicts with accuracy its value at half filling [50].
For the t-J model, it is known from exact calculations that
us depends very weakly on n near half filling [26]. We thus
follow Ref. [51] and compare our MF-SCS prediction for
us at half filling with our numerical results at n ¼ 7=9 in the
top panels of Fig. 2. We observe a fair agreement given the
considerable assumptions of the MF treatment. We note
that, similar to what happens in the t-J model, a fully self-
consistent MF treatment overestimates the contribution of

FIG. 2. Dynamics of local spin, hŝzji (top row), and density, hn̂ji (bottom row), for the 1D t-J-αmodel as a function of position, j, and
time, τ, after the removal of the spin-dependent potential. From left to right, the driving strengths used are K ¼ 0, 1.5, 2.0, and 2.1,
respectively. Note the different colorbar scales for each panel. The straight red lines are ballistic propagation velocity predictions from
mean-field spin-charge separation (MF-SCS) theory (Supplemental Material [50]). Simulation parameters are: U ¼ 21t0 (such that
J0 ¼ 0.19t0), Ω ¼ 6t0, E↑ ¼ 0.5 × maxfjtj; J; jαjg and s ¼ 2. The lattice contains L ¼ 36 sites, of which the central 26 are shown. The
total number of fermions is 28 (14 spin-↑þ 14 spin-↓), resulting in an average filling of n ¼ 7=9.
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single-particle hopping to us away from half filling, leading
to a strong n dependence; see Fig. S.1 in the Supplemental
Material [50].
Anisotropic transport and SCS in two dimensions.—

We consider next the SCS scenario on a square lattice under
sinusoidal time-periodic driving. For this case, the effective
single-particle hopping amplitudes between NN sites hiji
separated along the η ¼ fx; yg directions are

tη ¼ t0J 0ðKηÞ; ð4Þ
where Kη ¼ jVηj=Ω. Superexchange processes have
parameters Jη ¼ 4t20

P
m J 2

mðKηÞ=ðU þmΩÞ for NN sites
separated along η ¼ fx; yg. Finally, pair-hopping ampli-
tudes αijk become anisotropic as well, with generally four
different values, namely,

αη ¼ 2t20
X

m

J mðKηÞJ −mðKηÞ
U þmΩ

; ri − rk ∝ η ¼ x; y;

α� ¼ 2t20
X

m

J mðKxÞJ �mðKyÞ
U þmΩ

; ri − rk ∝ e�; ð5Þ

where e� ¼ ðx� yÞ= ffiffiffi
2

p
.

We study the system driven with dimensionless ampli-
tudes Kx ¼ −Ky ¼ K, i.e., V ∝ e−. In this case, the single-
particle hopping amplitudes along the x and y directions are
suppressed equally, tx ¼ ty ≡ t ¼ t0J 0ðKÞ [Eq. (4)], while
the superexchange parameter is equal across all NN bonds,
Jx ¼ Jx ≡ J. According to Eq. (5), the singlet-pair-hop-
ping amplitudes are anisotropic and larger along eþ:
αx ¼ αy ¼ α− ≠ αþ. For instance, in the limit U ≫ Ω,
one has α− ≈ JJ 0ð2KÞ=2 and αþ ≈ J=2 > jα−j. This
anisotropy arises because, under the driving, a singlet
pair’s potential energy changes by the same amount after
hopping along the x=y=e− direction, but it does not change
for hopping along eþ.
To analyze the dynamics of this system with reduced

finite-size and boundary effects on our results from a
potentially fast-spreading localized perturbation, we
impose periodic boundary conditions and set up the initial
state as the ground state of the t-J-α model in a weak spin-
dependent potential with a checkerboard pattern,
V̂2D ¼ −E2D

↑

P
jx;jyð−1Þjxþjynj↑, where j ¼ ðjx; jyÞ labels

the rows and columns of the 2D lattice and E2D
↑ is the

strength of the potential. We remove V̂2D at time τ ¼ 0, and
we use exact diagonalization to fully describe the quick
growth of entanglement in the quenched system [57]. To
monitor the spin and density dynamics, we compute
density and spin imbalances defined as [60–63]

IOðτÞ ¼
X

jx;jy

ð−1ÞjxþjyhÔjðτÞi; O ¼ n; s: ð6Þ

We see in Fig. 3 that both In and Is show persistent
oscillations, corresponding to spin and charge excitations

moving coherently between neighboring sites. Similar to
the 1D case, for weak driving, K ≲ 1 (top two panels in
Fig. 3), the density dynamics is significantly faster than the
spin dynamics. Strong driving K > 2 slows down the
density dynamics much more compared to spin dynamics
(lower panels in Fig. 3). In our simulations, E2D

↑ is kept as a
constant fraction of the dominant energy scale of the t-J-α
model. Thus, the reduction in the amplitude of In oscil-
lations with increasing K is due to the t-J-α model
becoming “stiffer” to the perturbation potential. On the
other hand, the oscillation frequencies are practically
unaffected by E2D

↑ and depend only on K [50]. This
suggests that the changes in the spin and charge oscillation
frequencies observed in Fig. 3 stem from the changing
character of the excitations of the t-J-α model itself as its
parameters are tuned with K.
While strong driving K > 2 leads to a slowing down of

density dynamics, unlike the situation in 1D, we do not
observe the density excitations becoming slower than the
spin excitations, i.e., an inversion of the usual SCS relative
speeds. In particular, it is not possible to reach the freezing
limit in 2D. This appears to be due to an interplay between
direct and spin-correlated hoppings. This interplay
underpins, e.g., the complex In evolution observed for
K ¼ 2.2 in Fig. 3. To understand this, we note that αþðKÞ ≈
tðKÞ [37] for K ≈ 2.2, which leads to an interference
between hopping events to first and second neighbors

FIG. 3. Density (blue solid line, left axis) and spin (red dashed
line, right axis) imbalance as a function of time for different
driving strengths as indicated. The system is a diagonal stripe
covering 12 sites of a square lattice perpendicular to the driving
direction, with five spin-↑ and five spin-↓ fermions (Supple-
mental Material [50]). Simulation parameters are U ¼ 50t0 (such
that J0 ¼ 0.08t0), Ω ¼ 14t0, and E2D

↑ ≈ 0.05maxfjtj; J; jα�jg.
Note the change of left y-axis limits in the lower two panels.
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(Supplemental Material [50]). Numerical simulations of
high-energy excitations in a lattice at low filling [37], where
the dynamics is effectively described in terms of singlet
pairs, also support the importance of pair-hopping terms in
retaining a nonzero particle transport in 2D systems when
jtðKÞj < JðKÞ. These observations are in line with recent
numerical findings pointing to the relevance of next-to-
nearest-neighbor hopping amplitudes (t0) to establish the
ground-state charge and spin orderings of the Hubbard
model near half filling [8–14].
Finally, it is worth noting the relevance of the driving

directionality: had we chosen to drive along the x axis as in
Ref. [64], tx would be renormalized but ty ¼ t0 ≫
fJ; jαx;y;�jg, and single-particle hopping would dominate
the dynamics, as shown in Ref. [37].
In summary, we have demonstrated that periodic driving

allows one to control density (or charge) transport in low-
dimensional strongly correlated quantum systems and to
enhance the competition between direct particle transport
and spin-correlated pair-hopping processes. In particular,
we showed that, in the 1D t-J-α model, the relative
propagation speeds of the spin and charge excitations
can be reversed into an exotic regime in which spin
excitations travel faster than charge excitations.
Moreover, we observed a regime of density freezing for
moderately strong driving strengths, accessible by quasia-
diabatic ramping of the driving [37]. In a 2D lattice, we
established that driving can lead to a severe reduction in the
propagation frequencies of both spin and charge excita-
tions, reaching a regime where coherent processes involv-
ing next-to-nearest neighbors have an enhanced impact on
single-particle transport. We expect these findings will
open new routes to exploring unusual regimes of particle
and spin transport and the interplay between magnetic and
superconducting correlations, in equilibrium [8–14,65,66]
and out-of-equilibrium [36,39,67–74] strongly correlated
systems.
Our ideas can be implemented with existing cold-atom

experimental technology [42–49]. This brings in the
interesting possibility of tuning the effective dimensionality
of the system, thus enabling one to explore in a controlled
manner the role of dimensionality and anisotropy in charge
and spin transport in Hubbard systems.
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