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Snap fits are versatile mechanical designs in industrial products that enable the repeated assembling and
disassembling of two solid parts. This important property is attributed to a fine balance between geometry,
friction, and bending elasticity. In this Letter, we combine theory, simulation, and experiment to reveal the
fundamental physical principles of snap-fit functions in the simplest possible setup consisting of a rigid
cylinder and a thin elastic shell. We construct a phase diagram using geometric parameters and identify four
distinct mechanical phases. We develop analytical predictions based on the linear elasticity theory
combined with the law of static friction and rationalize the numerical and experimental results. The study
reveals how an operational asymmetry of snap fits (i.e., easy to assemble but difficult to disassemble)
emerges from an exquisite combination of geometry, elasticity, and friction and suggests optimization of
the tunable functionalities for a range of mechanical designs.
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Assembling and disassembling two solid components is
a fundamental process for functional structures in natural
and manmade systems. Examples encompass different
length scales ranging from ligand-receptor interactions in
biochemistry [1] and plastic shell covers in industrial
products [2] to the docking of free-flying space vehicles
[3]. In manufacturing industries, snap fits are typically used
to join two plastic parts without gluing, constituting a
simple design with necessary resilience to allow for
repeated assembly and disassembly [4]. Today, snap fits
are found everywhere, including the cap of a marker pen,
plastic zipper bags, and toys such as Lego® blocks. The
“click” sound is a familiar snap-fit characteristic present in
our daily lives. In most snap-fit designs, assembling
requires relatively little effort whereas disassembling is
more difficult. Mechanical asymmetry is a central property
of snap fits for industrial use and emerges from an interplay
between flexibility, frictional interactions, and the geo-
metric structure of the snap-fit parts. However, despite its
familiarity and prevalent use in daily life, fundamental
aspects of snap-fit mechanics are highly unexplored, at
least from the perspective of physics.
In the Letter, we propose a model experimental system

that can illustrate snap-fit behavior. We investigate its
physical properties by combining force measurements,
numerical simulations, and theoretical analysis. We con-
sider a semicylindrical shell of radius Rs and thickness t

[Fig. 1(a)], which is pushed onto a surface of a rigid
cylinder with radius Rc [Fig. 1(b),(c)]. The shell either
clutches the cylinder via a snap fit or buckles on the
cylindrical surface depending on the geometric parameters
of the shell and the cylinder. We integrate experimental and
numerical data to construct a phase diagram in terms of the
geometric parameters and rationalize the observed phase
boundaries with an analysis based on linear elasticity theory
combined with a dry friction law [5–12]. The proposed
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FIG. 1. Schematics of a model snap fit system. (a) Definition of
geometric parameters of the shell, i.e., radius Rs and opening
angleΦ in its natural configuration. (b),(c) Sequence of snapshots
of a thin plastic shell undergoing the Type I snap-fit, (b), and Type
II snap-fit, (c), process. (d) Schematic photographic view of our
experimental system for force measurements during assembling
and disassembling processes.
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model is minimal, albeit versatile, and potentially scalable
and can be used as a building block in the design of artificial
nonreciprocal mechanical metamaterials [13–15].
The problem is essentially two-dimensional as a shell

deforms uniformly along the cylindrical axis with a length
of 20 mm. Hence, we focus on the shapes of the shell cross
section, with relevant geometric parameters corresponding
to the radius ratio α ¼ Rc=Rs and opening angle, Φ
[Fig. 1(a)]. A shell is prepared by adding a permanent
intrinsic curvature to an initially flat sheet of polystyrene
(t ¼ 0.2, 0.3, and 0.4 mm) via thermoforming with hot
water. Image analysis of the cross-sectional shape in the
resulting semicylinder confirms a sufficiently uniform
radius of curvature with a range of Rs ¼ 25.2–29.5 mm
with various angles in the range of Φ ¼ 1.8–3.0 rad. The
bending moduli of the shells B ¼ 6.7 × 10−5 − 4.3 ×
10−4 N · m2 for shell thickness t ¼ 0.2–0.4 mm are inde-
pendently measured. The shell is sufficiently stiff such that
the effects of gravity are negligible. We cover the surface of
an acrylic cylinder with radius Rc ¼ 30, 35, and 40 mm
with a thin oriented polypropylene sheet of thickness
10 μm to ensure uniform frictional interactions with the
shell. The stepping motor controls the vertical position of
the top of the shell through a force gauge, while the rigid
cylinder is fixed onto a bottom substrate [Fig. 1(d)]. During
the assembling process, the shell moves downward at a
speed of 5 mm=s until the top of the shell touches the

cylindrical surface. After a 6 s interval, the shell then moves
upward with the same speed of 5 mm=s (i.e., the dis-
assembly process). A “push-back” force F exerted by the
shell is measured via a force gauge attached to the top of the
shell. A snap instability in the assembling process implies
that a force curve crosses F ¼ 0 from positive to negative.
In the F > 0 region, the shell repels from the cylinder
without loading, whereas the shell spontaneously clutches
the cylindrical surface without any further loading in the
F < 0 region. The measured force F is displayed in units
of B=R2

s .
To complement the experimental results, we also per-

formed numerical simulations using a discrete analog of the
continuum elastica model [16]. The frictional interaction
between the shell and cylindrical surface is modeled based
on Amontons–Coulomb’s law, which states that the contact
point remains stationary if the tangential force is below the
critical value μP, where P denotes the normal reaction and
μ denotes the coefficient of static friction [17]. (Full details
of the numerical method are given in the Supplemental
Material [18].) We compare the experimental force curves
with those obtained from the simulations in Fig. 2(b)–(d),
and an excellent agreement is realized. From this, the value
of μ in the experiments is typically determined as μ ¼ 0.21.
Experimental and numerical investigations are summa-

rized in Fig. 2(a). We identify four different phases that are
broadly divided into two distinct domains: snap-on and
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FIG. 2. Classification of the phases and corresponding force curves. (a) Mechanical phase diagram in the assembling process drawn on
the ðα;ΦÞ parameter space. Open symbols denote data from experiments for different shell thickness t ¼ 0.2 mm (circle), t ¼ 0.3 mm
(triangle), and t ¼ 0.4 mm (cross). Red and orange regions denote the snap-on domain, whereas blue and green regions denote the misfit
domain, which is identified by the numerical simulations performed on regularly arranged grids on the ðα;ΦÞ plane (with the grid sizes
Δα ¼ 0.1 and ΔΦ ¼ 0.1). Dashed and dash-dotted lines represent analytical curves, as explained in the main text. (b)–(d) The rescaled
force of a shell FR2

s=B as a function of displacement rescaled by shell radius, u=Rs during the cyclic process. Open red and blue symbols
denote data from the assembly and disassembly experiments, respectively, whereas filled symbols represent corresponding simulations.
The specific values of ðα;ΦÞ for (b), (c), and (d) are indicated in (a). Shell configurations inserted in (b)–(d) are reproduced from the
simulations.
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misfit. The snap-on domain consists of two phases, referred
to as (i) Type I snap-fit and (ii) Type II snap-fit phases. The
misfit domain consists of the remaining two phases,
referred to as (iii) Type I misfit and (iv) Type II misfit.
In the two Type I phases [(i) and (iii)], a shell is only
moderately deflected. For snap-fit phase (i), the shell
exhibits a snap instability at F ¼ 0 and fits the cylinder
spontaneously. In contrast, for the misfit phase (iii), F
remains positive during the entire pushing process and the
shell makes no snap fit. In both cases, the groove of
the shell initially opens and the force rapidly increases
[Fig. 2(b),(c)].
Past the force maximum, the force decreases as the

vertical displacement u increases. For a sufficiently deep
shell of Φ > ΦsfðαÞ (explained below), the force crosses
F ¼ 0 to snap [19–23]. (See the Supplemental Material for
Video S1 [18].) ForΦ < ΦsfðαÞ, the top of the shell touches
the cylindrical surface before F corresponds to zero. If the
loading is removed, the shell either pushes back or retains
its instantaneous shape based on μ. For a detailed dis-
cussion of this, see [18]. In the Type I region, the force
discontinuously assumes a substantial negative value when
the shell is pulled out from the cylinder; this is because the
normal reaction increases discontinuously when its vertical
component changes sign as the loading switches from
pushing to pulling. The discontinuous force jump in
Fig. 2(b)–(d) manifests the critical role of static friction
on the hysteric nonreciprocal responses. The simulations
confirmed that a force response is completely reversible in
the absence of friction, μ ¼ 0 [18]. In contrast to a common
cantilever snap-fit design [4,24], purely geometry-based
asymmetry is absent. A key issue in the present study is that
the asymmetry is due to the coupling between the geometry
and the friction.
Conversely, the Type II phases [(ii) and (iv)] involve high

deflections. It is noted that the maximum assembling force
in (ii) is approximately 10 times that in (i). In (ii) and (iv), a
shell is strongly squeezed to assume an M-shaped con-
figuration with two ends rolled up. At a critical compres-
sion, the two ends suddenly jump outward such that the
shell is outstretched to create a surprisingly loud snapping
sound. (See the Supplemental Material for Video S2 [18].)
The shell eventually “snaps-on” to the cylindrical surface in
(ii), whereas the misfit is observed in (iv) as α is excessively
high and the shell bounces back (or maintains its instanta-
neous shape) if the loading is removed. It is noted that the
assembling force in (ii) significantly exceeds the disassem-
bling force, contrary to expectations in industrial designs.
However, the behavior is potentially interesting in terms of
efficient energy-absorbing devices [25]. Specifically, the
diagram is insensitive overall to the modulus B, thickness t,
and friction coefficient (if 0.2 < μ < 0.5), thereby indicat-
ing that it is highly geometrical.
To understand the qualitatively distinct behaviors, we

now develop an analytical argument. We first define a

coordinate system as shown in Fig. 1(d) and remark that an
important insight is obtained from the simulations. For
most parameter sets ðα;Φ; μÞ, a shell touches a cylinder
only at its two edges, thereby indicating that the contact
always corresponds to pointlike (or linelike in a three-
dimensional view). This might be counterintuitive because
an evidently areal contact is typically observed between the
shell and cylinder surface around snap-on configurations in
experiments. However, discrete contact is a direct conse-
quence of the moment-free boundary conditions at the
shell edges combined with the mismatch of two natural
curvatures, i.e., α ≠ 1 [26]. Given that external forces are
only applied at three discrete points on the shell, the overall
vertical force balance requires that the sum of the forces
must vanish irrespective of the shape of a shell,
0 ¼ −F þ 2P cosφþ 2Q sinφ, where P and Q denote
the normal and tangential components of the force exerted
from the surface, and the contact point of the end of the
shell has an angle φ to the vertical (y) axis. See Fig. 1(d).
In a quasistatic process, the critical condition Q ¼ μP can
hold, and this leads from the above force balance to the
following expression:

F
Fk

¼ 2ð1þ μ tanφÞ
tanφ − μ

; ð1Þ

where Fk ¼ P sinφ −Q cosφ denotes the horizontal
component of the force [27]. A similar formula is valid
for the disassembling process, with the replacement given
by μ → −μ in Eq. (1). We see from Eq. (1) that the snap-fit
point, F ¼ 0, is given by 1þ μ tanφ� ¼ 0. For snap-fit
bifurcation to occur, the (half) contour length of the shell,
RsΦ, must exceed the arc length along the cylindrical
surface, Rcφ

�, and thus we predict the following:

Φ > Φsf ≈ α

�
π − tan−1

1

μ

�
: ð2Þ

As shown in Fig. 2(a), Eq. (2) explains the phase boundary
between (i) and (iii) very well. For μ → 0, we obtain
Φsf → ðπ=2Þα. A shell snaps when it crosses the “equator”
of a cylinder, confirming our intuition.
To explain the Type I and II boundaries, we need to

develop an analysis based on the theory of elastica with
natural curvatures [10,11,28,29] and Amontons’ law and
obtain P and Q as functions of α, Φ, and F. If the edges of
the shell are pinned as soon as the shell touches the
cylindrical surface at φ ¼ arcsinðα−1 sinΦÞ, the pinned
configuration is increasingly stabilized when the shell is
compressed further and finally leads to a high amplitude
Type II snap. The linear response theory given in the
Supplemental Material [18] allows the ratio Q=P to be
independent of F; thus, the critical condition μ ¼ Q=P
leads to an analytical expression in terms of α, Φ, and μ
only. The resulting implicit expression is numerically
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solved to yield ΦI-II ¼ ΦI-IIðα; μÞ, which is in excellent
agreement with the simulation and experiment, as shown in
Fig. 2(a).
In an ideal snap-fit design, two solid parts are reasonably

easy to assemble, while disassembling the same is more
difficult, albeit not excessively so. This type of medium
asymmetry can be read in force curves in Fig. 2(b),(d) as
the criterion in which the magnitude of the maximum force
in the disassembly process, jFDj, is higher, although not
excessively higher than that in the assembly process FA.
(Note that FD < 0 for a snap-on configuration.)
In Fig. 3(a),(b), FA and jFDj obtained from the experi-

ment and simulation are plotted as functions of Φ for the
frictionless (μ ¼ 0) and frictional (μ ¼ 0.21) cases, respec-
tively. In Fig. 3(c), the data for μ ¼ 0.21 are replotted in a
form as Φ vs jFDj=FA, a metric defined as “locking ratio”
in Ref. [30]. Overall, a desirable condition jFDj=FA > 1 is
achieved for 2 < Φ < 2.6, and this highly overlaps with the
Type I snap-fit regime. The trend is valid for other typical
values of μ, thereby suggesting that a relative magnitude of
jFDj and FA can only be tuned with shell geometry Φ.
We now rationalize the above findings with the linearized

theory that we have developed above. We first present the
results for the frictionless (μ ¼ 0) case, for which a shell
deformation is dominated by the horizontal component of
the normal reaction Fk since it is applied at the free edge of
the shell [31]. Conversely, the vertical compression force F
deforms the shell much less than Fk, even though its
magnitude is not necessarily small. We can thus approx-
imately predictF by knowingFk throughEq. (1) with μ ¼ 0,
i.e., F=Fk ¼ 2= tanφ, for a given configuration of the shell
without F. This simplification allows us to obtain compact
analytical expressions for FA and FD, as shown below.
For μ ¼ 0, we consider a small deformation of a

naturally curved elastica subject to outgoing horizontal

forces Fk applied at the two edges. By expanding relevant
equations in terms of FkR2

s=B up to the first order and
imposing the inextensibility constraint, we obtain a linear
relation FkR2

s=B ¼ KðΦÞΔ=Rs, where Δ denotes the
horizontal displacement and

KðΦÞ ¼
�
1

2
Φ − cosΦ

�
3

2
sinΦ −Φ cosΦ

��
−1

ð3Þ

denotes the Φ-dependent effective spring constant. (For
details, see our Supplemental Material [18].) We combine
this with Eq. (1) to obtain an analytic expression for
F in terms of Δ, where φ is related to Δ and Φ
via α sinφ ¼ sinΦþ Δ=Rs. For μ ¼ 0, it takes a
particularly compact form given by FR2

s=B ¼
2KðΦÞ cotφðα sinφ − sinΦÞ. We maximize this with
respect to φ and obtain the following expression:

FAR2
s

B
¼ 2αKðΦÞ

�
1 −

�
sinΦ
α

�
2=3

�
3=2

; ð4Þ

which is in excellent agreement with the simulation data
[Fig. 3(a)]. The disassembling force jFDj is evaluated for a
shell that is slightly deformed from its snap-on configura-
tion, for which φ ≈Φ=α. A similar analysis to FA then
leads to

FDR2
s

B
¼ 2αKðΦÞ sinðΦ=αÞ − α−1 sinΦ

tanðΦ=αÞ : ð5Þ

Again, Eq. (5) is observed to agree well with our simulation
in Fig. 3(a).
A frictional case ðμ > 0Þ is analyzed similarly, although

it is mathematically more involved, because we need to
explicitly account for the effects of the vertical force F on
the elastica shape. The linearized theory that has been
developed to explain the Type I and II boundaries,
ΦI-IIðα;ΦÞ, is reproduced here. After some straightforward
calculations, we can obtain formulas similar to Eqs. (4)
and (5), which are given in the Supplemental Material [18].
The analytical predictions for FA and FD for μ ¼ 0.21
are compared to the numerical and experimental data in
Fig. 3(b),(c), showing a quantitative agreement for
Φ < 2π=3. The agreement is only qualitative for larger
Φ, for which the linearized theory becomes systematically
inaccurate as the deflections of the shell become larger for
the increase in Φ.
Figure 3(b) suggests that FA increases with Φ and

diverges as Φ → ΦI-II, at which the system enters the
Type II phase. Figure 3(b) also shows that the disassem-
bling force jFDj increases significantly with Φ. Such a
“locking” phenomenon occurs as the external pulling force
increases the normal reaction, increasing the tangential
component of the friction force and thus the external
force required for disassembling. The friction-mediated
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FIG. 3. Dependence of mechanical properties on geometric
parameters. (a),(b) Rescaled assembling and disassembling
forces, FAR2

s=B and jFDjR2
s=B, as a function of angle Φ for

α ¼ 1.14. (a) μ ¼ 0 and (b) μ ¼ 0.21. (c) Ratio jFDj=FA vs Φ for
μ ¼ 0.21 from the same data as shown in (b). Open and filled
symbols denote the experimental and numerical data, respec-
tively. Dotted lines denote the theoretical predictions given in the
main text.
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self-stiffening mechanism exists for structures with curved
geometry and is more prominent for a deeper shell.
Interestingly, the snap-fit behavior that is favorable for

industrial applications, i.e., the Type I snap fit, is only
achieved for a limited range of geometric designs. To
expand the design space for snap fits, this formulation
should be generalized to account for other mechanical
aspects, such as shell stretch and cylinder deformation,
which are likely to be important for thicker shells and soft
constituent materials, e.g., elastomers. In real experiments,
airflow induced effects, such as a negative pressure via the
suction of air during snapping, can alter frictional inter-
actions. Therefore, the estimated value μ ¼ 0.21 can be
interpreted as an effective value that accounts for the
aforementioned physical effects. In association with this,
the validity of Amontons’ law and the possibilities of other
friction laws may have to be examined based on the
systems under consideration.
To the best of the authors’ knowledge, this is the first

detailed study of snap-fit mechanics in the context of the
physics of thin structures [32,33]. Our study, which com-
bines experiment, numerical simulation, and linear elasticity
theory, reveals a quantitative design space for snap fits and
illustrates how an exquisite combination of geometry,
elasticity, and friction leads to an emergent mechanical
asymmetry between the assembling and disassembling
processes. The proposed model is potentially scalable,
and the clarified route for such nonreciprocal force responses
can inspire a new class of energy-absorbing metamaterials
[13–15]. The study is also potentially insightful to envision a
future snap-fit design suitable for sustainable materials,
which can ultimately contribute to reducing plastic waste.
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