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Entangled photons produced by spontaneous parametric down-conversion have been of paramount
importance for our current understanding of quantum mechanics and advances in quantum information. In
this process, the quantum correlations of the down-converted photons are governed by the optical
properties of the pump beam illuminating the nonlinear crystal. Extensively, the pump beam has been
modeled by either coherent beams or by the well-known Gaussian–Schell model, which leads to the natural
conclusion that a high degree of optical coherence is required for the generation of highly entangled states.
Here, we show that when a novel class of partially coherent Gaussian pump beams is considered, a distinct
type of quantum state can be generated for which the amount of entanglement increases inversely with the
degree of coherence of the pump beam. This leads to highly incoherent yet highly entangled multiphoton
states, which should have interesting consequences for photonic quantum information science.
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Introduction.—Quantum correlated photons generated
in the process of spontaneous parametric down-conversion
(SPDC) have played a key role in the development of
quantum information science over the last decades. Ori-
ginating from the conservation ofmomentum, there is robust
entanglement generation between the transverse spatial
variables (position and momentum) of the down-converted
photons [1], which has attracted considerable attention as it
can be used to define high-dimensional quantum systems
[2–9] as well as engineered in a number of ways [10–14].
This is due to the fact that the down-converted photons can
inherit properties of the pump laser beam [10,15], which
provides interesting relations between the classical optical
properties of the pump field and the nonclassical character-
istics of the multiphoton state. Thus, SPDC provides rich
and flexible quantum state engineering that is crucial for
many fundamental studies and applied research.
Several authors have already studied the spatial entangle-

ment of SPDC in a more generalized framework than usual,
where partially coherent pump beam illumination is con-
sidered [16–21]. In particular, Refs. [18–20] addressed the
position and wave vector quantum correlations of down-
converted photons produced by a pump beam with partial
transverse spatial coherence, described by the well-known
Gaussian–Schell model (GSM) [22]. They showed that, in
this case, highly entangled states can only be observed when
the pump beam has a large degree of spatial coherence.
However, the GSM beam is not the only example of a

partially coherent beam. In 1993, Simon and Mukunda
introduced the “twisted Gaussian Schell Model” (TGSM),

which is a more general partially coherent Gaussian beam
with rotational symmetry around the propagation axis
[23,24]. This model predicted the existence of novel
correlations between the transverse variables of Gaussian
beams, a property they dubbed the “twist phase.” However,
the twist phase is not a phase in the usual sense and in fact
vanishes in the coherent limit. These beams have been
experimentally realized [25,26], and recent studies have
shown their improved resilience against turbulence-induced
degradation effects when compared to traditional GSM
beams [27,28] with applications in imaging [29]. They also
carry orbital angular momentum and therefore can find
applications in biophysics and metrology [30,31].
Motivated by these results, we present here several

advantages of adopting TGSM beams for the process of
SPDC. In particular, we show that highly mixed, highly
entangled states can be produced by exploiting the twist
phase in TGSM beams. Counterintuitively, in this case the
entanglement actually increases with the incoherence of the
pump beam. This effect is a consequence of the infinite
dimension of the quantum states defined in terms of the
position and momentum of down-converted photons, a fact
that allows for separable and highly entangled states to be
arbitrarily close together in state space [32–34]. In addition,
we are able to connect the SPDC entanglement with the
twist phase of the TGSM pump beam, a novel optical trait
in its own right, with useful applications in optics. This
should open the way for producing highly entangled
photons in a highly mixed state, which have many potential
applications in quantum information science.
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TGSM beams.—The spatial degree of freedom of a
paraxial and monochromatic optical field with wave
number k can be described by the near-field (position)
and far-field variables (wave vector). For a paraxial
field propagating in the z direction, let us define the
position in a transverse plane as r ¼ ðrx; ryÞ ¼ ðx; yÞ,
and the transverse wave vector as q ¼ ðqx; qyÞ. Defining
a vector ξ ¼ ðx; qx; y; qyÞ, the second moments of these
variables can be written in a 4 × 4 covariance matrix (CM)
V. Optical fields with a Gaussian transverse profile are
completely and uniquely described by the CM V up to a
translation. The same can be said for Gaussian states in
quantum mechanics [35].
ATGSM beam is therefore uniquely characterized by its

CM [23,24]:

T ¼

0
BBBBB@

σ2 − kσ2
R 0 kuσ2

− kσ2
R τ2 −kuσ2 0

0 −kuσ2 σ2 − kσ2
R

kuσ2 0 − kσ2
R τ2

1
CCCCCA: ð1Þ

Here σ is the beam waist, τ2 ¼ ð1=δ2Þ þ ð1=4σ2Þ þ
k2½ðσ2=R2Þ þ u2σ2Þ� is the variance of the wave vector
distribution, δ is the transverse coherence length, and R is
the radius of curvature. The parameter u is the so-called
twist phase, here with dimension given by length−1. These
are Gaussian beams in which the position coordinates x and
y are coupled to the wave vector coordinates qy and qx,
respectively. This results in a nonzero angular momentum
hLzi ¼ 2ℏkuσ2, giving origin to the nomenclature “twist.”
As with particular cases of a TGSM beam, the well-known
(rotationally symmetric) GSM [22,36] is obtained by
setting u ¼ 0, and a spatially coherent Gaussian beam is
recovered by setting δ ¼ ∞. The positivity constraints on
the CM (1) lead to [23,24]: juj ≤ 1=kδ2. Thus, the twist
phase tends to zero for a perfectly coherent beam ðδ → ∞Þ.
We note that the twist phase appears in the variance of
the momentum coordinates τ2 through the term k2u2σ2,
which causes increased beam divergence as a function of u
[23–25]. TGSM beams have been produced and studied
experimentally, and they can be constructed as a convex
(incoherent) combination of coherent Gaussian beams with
different transverse phases [25,26], as illustrated in Fig. 1.
Partially coherent SPDC.—Consider now that a TGSM

is used to pump a nonlinear down-conversion crystal, as
shown in Fig. 1. Let us assume that the down-converted
photons (1,2) are degenerate, so that k1 ¼ k2 ¼ k=2, where
k is the wave number of the pump beam. Let us define the
global coordinates:

q� ¼ q1 � q2; r� ¼ 1

2
ðr1 � r2Þ: ð2Þ

Under appropriate conditions [37], it is well known that the
two-photon state is nearly separable in these global sum
and difference coordinates [15,18,43–45]. For example, for
a partially coherent pump beam, the two-photon Wigner
function is Wðξþ; ξ−Þ ¼ WþðξþÞW−ðξ−Þ, where ξ� ¼
ðx�; q�x; y�; q�yÞ are the global phase space coordinates
[37]. HereWþ is the Wigner function describing the spatial
properties of the pump laser, andW− is theWigner function
of the so-called phase matching function S [44,45]. Though
S is not a Gaussian function, it can be approximated using a
double-Gaussian representation [45] in which both S and
its Fourier transform S̃ are each approximated by Gaussian
functions giving the same variance. In most situations, this
is enough to describe the salient features of the two-photon
state [3,43,45].
The separable form of the two-photon state with respect

to the global coordinates allows for several immediate
conclusions. First, the purity of the two-photon state is
given by μ12 ¼ μþμ−, where μ� is the purity associated
withW� [37]. The second implication is that the 8 × 8 two-
photon CM is

G ¼
�
Vþ 0

0 V−

�
; ð3Þ

where V� is the 4 × 4 CM describing second moments
of ξ�. Thus, to study properties of the two-photon
state when the pump is a TGSM beam, we simply set
Vþ equal to the CM of Eq. (1). In this way, the purity
μþ ¼ ½4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DetðVþÞp �−1 ¼ β2, where β2 ¼ ð1þ 4σ2=δ2Þ−1
is the dimensionless normalized coherence parameter of
the pump beam [25] (0 ≤ β2 ≤ 1). For a coherent beam, we
have β2 ¼ 1 (δ2 ≫ σ2), while for a completely incoherent
beam, β2 ¼ 0 (δ2 ≪ σ2). Thus, the purity of the two-photon
state μ12 ¼ μ−β

2 is proportional to the square of the
coherence of the TGSM pump beam.
For the double-Gaussian representation of the phase

matching function, we use the diagonal CM V− ¼
diagðσ2−;Δ2

−; σ2−;Δ2
−Þ, since it is approximately separable

in the x and y spatial directions [13]. Following Schneeloch

1

2

p
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FIG. 1. A partially coherent TGSM beam incident on a non-
linear crystal producing photon pair. The small black arrows
illustrate transverse momentum.
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and Howell [45], the variances are σ2− ¼ 9L=10k and
Δ2

− ¼ 3k=2L, where L is the length of the crystal in
the longitudinal direction. We note that these are the
variances calculated from non-Gaussian S and S̃, which
are not Fourier-transform limited. Thus, the purity
½4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DetðV−Þp �−1 ¼ ð4σ2−Δ2
−Þ−1 ¼ 5=27 is less than unity,

which would be obtained from the actual Wigner function.
To write the two-photon CMG in coordinates describing

the individual photons, we define ξ12 ¼ ðξ1; ξ2Þ, with ξj ¼
ðxj; qjx; yj; qjyÞ (j ¼ 1, 2). Then, the CM can be obtained

by V12 ¼ RGRT, where R is the matrix representing the
inverse of the coordinate transformations (2). It is straight-
forward to calculate

V12 ¼
�

A C

CT B

�
; ð4Þ

where 4 × 4 matrices of type A (B) refer to photon 1 (2),
and the C matrices refer to correlations between the
photons. We have A ¼ B, with

A ¼

0
BBBBB@

σ2 þ σ2− − kσ2
2R 0 kuσ2

2

− kσ2
2R

1
4
ðτ2 þ Δ2

−Þ − kuσ2
2

0

0 − kuσ2
2

σ2 þ σ2− − kσ2
2R

kuσ2
2

0 − kσ2
2R

1
4
ðτ2 þ Δ2

−Þ

1
CCCCCA:

ð5Þ

Thus, there are cross-correlations between the near-field
(position) and far-field (momentum) coordinates of each
down-converted photon that are proportional to the twist
phase u. This results in orbital angular momentum that is
one-half that of the pump beam: hLzi ¼ ℏkuσ2, implying
that it is conserved from the pump to the down-converted
photons.
The matrices C describe correlations between photons 1

and 2. We have

C ¼

0
BBBBB@

σ2 − σ2− − kσ2
2R 0 kuσ2

2

− kσ2
2R

1
4
ðτ2 − Δ2

−Þ − kuσ2
2

0

0 − kuσ2
2

σ2 − σ2− − kσ2
2R

kuσ2
2

0 − kσ2
2R

1
4
ðτ2 − Δ2

−Þ

1
CCCCCA:

ð6Þ

The wave vector correlations diverge more rapidly due to
the presence of the twist phase in the τ2 term. We see that
hx1qy2i − hx2qy1i ¼ kuσ2. This is not an optical angular
momentum per se but rather a coupling between
perpendicular components of the position of one photon
and the wave vector of the other [14].

Twist phase and entanglement.—In typical SPDC
experiments, entanglement can be identified by observing
correlations in the near-field (position) variables and the
far-field (wave vector) variables, leading to violation of one
of two inequalities [46]:

hΔr�ihΔqr∓i ≥
1

2
; ð7Þ

where r� ¼ x�; y� and qr� ¼ qx�; qy�. Violation of the
inequalities (7) occurs when either the two-photon state is
anticorrelated in the near field and correlated in the far field
(“þ−”), or correlated in the near field and anticorrelated in
the far field (“−þ”). The latter is typically the case in
SPDC, and a number of experiments have used these or
similar inequalities to identify the entanglement of the
down-converted photons [1,7,9,19,20,47].
While the above criteria are sufficient for many experi-

ments, they fail to capture entanglement that arises from
correlations between different spatial d.o.f. A more com-
plete analysis is achieved by calculating the four symplectic
eigenvalues fλig of the CM of the partially transposed state
[35]. This allows us to investigate the so-called distillable
entanglement [48]. Partial transposition corresponds to
changing the sign of the wave vector coordinates of one
of the photons [49]. To simplify the analysis, we perform a
local scaling of the coordinates of each photon using the
transformation ξ012 ¼ Sξ12, with S ¼⊕4

k¼1 Sk and Sk ¼
diagð1= ffiffiffi

2
p

;
ffiffiffi
2

p Þ. In this case, observing λi < 1=2 implies
that the state has a negative partial transpose, which
indicates entanglement [35,49]. Furthermore, the smallest
symplectic eigenvalue can be used to quantify Gaussian
entanglement using the negativity or other quantifiers [35].
The symplectic eigenvalues of Eq. (4) are twofold degen-
erate and given by [37]

λ� ¼ 1ffiffiffi
2

p
������

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2Δ2

−σ
2
−σ

4

�
u2 þ 1

R2

�
þ a2−

svuut
������; ð8Þ

where a� ¼ τ2σ2− � Δ2
−σ

2.
We can now analyze the entanglement produced in the

SPDC process as a function of the spatial coherence of the
TGSM pump beam and its twist phase. Figure 2(a) shows a
plot of the smallest symplectic eigenvalue (red surface) as a
function of the absolute value of the twist phase juj and the
spatial coherence parameter β of the TGSM pump beam.
Here, juj is scaled by 1=kδ2, so that it varies from 0 to 1.
Two regions of entanglement are clearly visible. One
corresponds to larger coherence parameter β. This is the
usual case, where entanglement increases as a function of
the pump beam coherence [18–20]. However, we also
observe a second region where entanglement grows
inversely with the coherence and is present even though
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β nears zero. We note that this only occurs for larger values
of the twist phase.
To better visualize these results, in Fig. 2(b), we plot λ− as

a function of β for juj=kδ2 ¼ 0; 1=2; 1. In all cases we can
identify entanglement when the pump beam is more coher-
ent. Also shown is the lhs of the inequality, Eq. (7), showing
a violation for larger β. This indicates that for larger pump
coherence, the entanglement involves the same spatial d.o.f.
of the photons and can be detected using the standard
approach. Indeed, for a coherent pump beam, with R ¼ δ ¼
∞ and twist phase u ¼ 0, the symplectic eigenvalues λ�
reduce to the lhs of the entanglement criteria, Eq. (7).
Nevertheless, Fig. 2(b) shows that this “standard” entangle-
ment decreases and eventually disappears as the pump beam
becomes more incoherent, as observed in Refs. [18–20].
For the nonzero twist phase, our study reveals that a

different type of entangled quantum state can be generated
for small values of β. Here the two-photon state is highly

mixed since the purity μ12 ∝ β2. Interestingly, the entan-
glement can be larger when the pump beam is less coherent.
In this region, there is no violation of the near-field and
far-field criteria, Eq. (7). We numerically tested a wide
range of parameters σ−;Δ−; σ and observed qualitatively
similar results. To identify this entanglement, one can
measure the elements of the CM by measuring five
coincidence images in combinations of detection planes
(see [37] for detailed description) using simple lens systems
[47] and then determine the symplectic eigenvalues of the
partial transposition.
To provide an intuitive explanation for this phenomenon,

note that when u ≠ 0, the correlation matrix C contains
extra covariance terms with modulus ∝ kσ2juj, which are
upperbounded by σ2=δ2. These covariances originate from
the correlations already present in the pump beam, which
transformed into quantum correlations between the down-
converted photons. When the twist phase is appreciable, the
correlations grow at the same rate that the purity decreases
(μ12 ∝ β2 ∼ δ2=σ2). On the other hand, when u ¼ 0, these
covariances are zero, demonstrating that this is an effect
that could only be revealed while considering this general
class of TGSM beams in the SPDC process. The existence
of highly mixed yet highly entangled states is a known
phenomenon that appears for infinite dimensional systems
(for another example, see Ref. [34]) since for these systems
there is no dense region of separable states in the state space
[32,33]. Thus, there exist entangled mixed states that lie
arbitrarily close to separable mixed states. We note that
there is usually some physical (e.g., energy) constraint in
the generation of infinite dimensional systems. In our case,
the relevant physical parameter is the number of transverse
modes supported by the optical systems, providing a lower
limit to β. We note that SPDC experiments have been
realized with β ≲ 0.1 [20], indicating that experimental
observation of this phenomenon is feasible with current
technology.
Conclusions.—In this Letter, we bridge together the

more general theory of partially coherent Gaussian beams,
namely the twisted Gaussian–Schell model, and the process
of spontaneous parametric down-conversion that has been
used extensively over the last decades to produce entangled
photons. By doing so, we reveal new phenomena that allow
for the generation of a class of multiphoton states with
unique entanglement and coherence properties. Even
though similar entangled states might be created in quan-
tum optics of entangled qumodes [34,50], here we are able
to interconnect the amount of entanglement with the so-
called twist phase of the pump beam, an intriguing optical
phenomenon first introduced in 1993 [23]. We note that
twist phase is a property of incoherent Gaussian beams that
vanishes in the coherent limit. Thus, the novel entangle-
ment produced here is directly related to the incoherence of
the pump beam. We can envisage a number of potential
applications, and we expect that these highly mixed yet

FIG. 2. Smallest symplectic eigenvalue of partially transposed
state. (a) Evaluation of smallest symplectic eigenvalue λ− (red
surface) as a function of the normalized pump beam coherence β
and normalized twist phase. Entanglement is confirmed when
λ− < 1=2 (gray horizontal plane). The SPDC parameters are
R ¼ ∞, λp ¼ 400 nm, σp ¼ 50 μm, and L ¼ 1 cm. (b) Profile
plots of λ− for normalized twist phase juj=kδ2 equal to zero (black
solid line), 1 (red solid line), and 1=2 (blue dashed line). The
dotted black curve is the near-field and far-field entanglement
criteria (7).
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highly entangled states should allow for the exploitation of
highly entangled photons in quantum adaptations of
applications originally designed for incoherent beams, such
as imaging and optical communications. For example, a
very recent study has shown that partially coherent multi-
photon states are more resistant to atmospheric turbulence
[51]. Our results provide a way to increase the spatial
entanglement in this scenario.
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