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The rapidity anomalous dimension (RAD), or Collins-Soper kernel, defines the scaling properties of
transverse momentum dependent distributions and can be extracted from the experimental data. I derive a
self-contained nonperturbative definition that represents RAD without reference to a particular process.
This definition makes possible exploration of the properties of RAD by theoretical methods on one side,
and the properties of QCD vacuum with collider measurements on another side. To demonstrate these
possibilities, I compute the power correction to RAD, its large-b asymptotic, and compare these estimations
with recent phenomenological extractions.
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Introduction.—The nontrivial structure of the QCD
vacuum raises a lot of fundamental and yet unsolved
problems, such as mechanisms of quark confinement
and hadronization. As a matter of fact, there is a little
number of experimental observables that test properties of
the QCD vacuum. In this Letter, I demonstrate that the
evolution kernel of transverse momentum dependent
(TMD) distributions is exclusively sensitive to the structure
of QCD vacuum and thus is a valuable tool to study it.
The rapidity anomalous dimension (RAD), or Collins-

Soper kernel, was introduced in Refs. [1,2], as a part of the
factorized formula, which accumulates the double-
logarithm contributions. In later works, it has been shown
that RAD is universal for different processes and receives
nonperturbative (NP) corrections. The rigorous formulation
of the TMD factorization theorem [3–6] has identified
RAD as an independent NP function that contains the
information about soft-gluon exchanges between partons
and dictates the evolution properties of TMD distributions.
Until recently, the NP terms of TMD evolutions were not
examined individually, but as a constituent of the resum-
mation exponent or TMD distributions. Although it does
not necessarily contradict the theory, it makes it difficult to
split effects related to different sides of strong dynamics.
One of the main messages of this Letter is that RAD is an
important function with a rich physical background, and
thus must be seen as an independent distribution.
Despite the long history of RAD, very little is known

about its NP nature from the theory side. Apart from a
general identification that the NP part exists, I know only a

few works that are dedicated to this problem at least
partially [7–12]. In this Letter I would like to draw attention
to this gap in the theory. As an initial step, I provide a field-
theoretical and model-independent definition of RAD
detached from the cross-section formula. Given the defi-
nition, RAD can be used as a self-contained phenomeno-
logical function of QCD, which measures properties of
QCD vacuum. To demonstrate the power of the derived
definition, I compute the leading terms of operator
product expansion (OPE) and compute RAD within a
simplistic model.
The appearance of RAD.—The cross section for the

Drell-Yan pair production at small transverse momentum is
described by the TMD factorization formula

dσ
dqT

¼ σ0ðQ=μÞ
Z

d2be−ib·qT

×

�
Q2

ζ

�−2Dðb;μÞ
F1ðx1; b; μ; ζÞF2ðx2; b; μ; ζÞ; ð1Þ

where Q is the virtuality of a photon, and qT its transverse
momentum [Scalar products of traverse vectors in bold
font are defined as ðbqTÞ ¼ −ðbqTÞ. Consequently,
b2 ¼ −b2 > 0.]. The functions F are TMD distributions,
andD is RAD [There is no common notation for RAD. The
other popular notations are −K̃=2 [1,3,13], −Fqq̄ [4].).
Similar formulas describe the small-transverse momentum
regime of semi-inclusive deep inelastic scattering (SIDIS),
and eþe− → h1h2 þ X process. In Eq. (1) and in the
following, I omit the flavor indices for brevity, keeping
in mind that RAD depends on the color representation of
the parton.
A distinctive feature of TMD distributions is their

dependence on two scales [13,14]: the factorization scale
μ and the scale of rapidities separation ζ. The dependence
on these scales is given by a pair of equations, where the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 125, 192002 (2020)

0031-9007=20=125(19)=192002(6) 192002-1 Published by the American Physical Society

https://orcid.org/0000-0001-5449-194X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.192002&domain=pdf&date_stamp=2020-11-05
https://doi.org/10.1103/PhysRevLett.125.192002
https://doi.org/10.1103/PhysRevLett.125.192002
https://doi.org/10.1103/PhysRevLett.125.192002
https://doi.org/10.1103/PhysRevLett.125.192002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


first one is an ordinary renomalization group equation for
the scale μ and the second one is

dFðx; b; μ; ζÞ
d ln ζ

¼ −Dðb; μÞFðx; b; μ; ζÞ: ð2Þ

The integrability condition for the pair of evolution
equations gives the dependence of RAD on μ,

dDðb; μÞ
d ln μ

¼ ΓcuspðμÞ; ð3Þ

where Γcusp is the anomalous dimension for the cusp of
lightlike Wilson lines. In a conformal field theory, RAD is
equivalent to the soft anomalous dimension and entirely
perturbative [6,15]. In QCD RAD is a general NP function,
although it still inherits some properties of an anomalous
dimension, such as additive structure of renormalization
group equation, see Eq. (3).
Equation (2) essentially mixes the definitions of two NP

functions: a TMD distribution and RAD. For that reason,
the separation of these functions with the data is a nontrivial
phenomenological task. Nonetheless, it could be done
observing that RAD governs the Q behavior of the cross
section, whereas F’s govern the x behavior. Therefore,
analyzing a global set of data with a large span in x andQ, it
is possible to decorrelate these functions. Such global
studies were made recently [16–20]. The values of RAD
obtained in these works are shown in Fig. 1. Clearly,
there is no agreement between these extractions for
b > 2 GeV−1. Another observation is that extraction based
on the joined data of Drell-Yan and SIDIS cross sections
[16,19] provide a higher value of RAD at b ∼ 1 GeV−1 in
comparison to extraction based only on the Drell-Yan data
[17,20]. These contradictions could be resolved by adding
more low-qT data in the analysis, or by some alternative
approaches to access RAD. One of promising approaches is

the recently proposed method to compute RAD with lattice
QCD [21–23].
Definition of RAD.—To derive the self-contained expres-

sion for RAD, I take a step backward in the derivation of
Eq. (1) and recall the origin of scale ζ. At an intermediate
stage, the expression for the cross section has the form
dσ ∼ F̃1 × S × F̃2 [3,5], where F̃ are unsubtracted TMD
distributions, and S is the TMD soft factor. Each of these
terms contains the rapidity divergence(s) that cancel in the
product. To obtain (1), the soft factor is factorized into parts
with only rapidity divergences related to a particular
lightlike direction. Afterwards, they are combined with
F̃ into physical TMD distributions [6,24,25]. The scale ζ in
the definition of a physical TMD distribution (2) is the scale
of rapidity divergence factorization. Thus, the soft factor is
the primary object to define RAD.
The TMD soft factor is defined as

SCðb; μÞ ¼
Tr
Nc

h0jWCj0iZ2
SðμÞ; ð4Þ

where WC ¼ P expðig RC dxμAμðxÞÞ is a gauge link along
the contour C (see Fig. 2), ZS is the renormalization factor
for lightlike cusps. In Ref. [6] it has been proven that the
TMD soft factor with a properly designed regularization
has the general form

SCðb; μÞ ¼ exp ½2Dðb; μÞ lnðϱÞ þ Bðb; μÞ þ � � ��; ð5Þ

where ϱ is the Lorenz-invariant combination of parameters
of rapidity divergence regularization(ϱ → 0). The function
B is the finite part of the soft factor, and the dots denote
terms vanishing at ϱ → 0. Consequently, RAD can be
obtained from the TMD soft factor as

Dðb; μÞ ¼ 1

2
lim
ϱ→0

d ln SCðb; μÞ
d ln ϱ

: ð6Þ

The expression (5) is a general one, but it is difficult to use
outside of the perturbation theory. The main complication is
the definition of an appropriate rapidity divergence regulator.
To guarantee Eq. (5) and make use of Eq. (6), the regulator
must be given on the level of the operator, preserve the gauge
invariance, and fully regularize rapidity divergences without
generation of extra infrared divergences. None of the
commonly used regulators in perturbative calculations
(see, e.g., Refs. [3–5,26–28]) fulfill these requirements
entirely. The discussion of the drawbacks in common
regularizations can be found in Refs. [6,26,29]. All these
requirements can be fulfilled by a deformation of the contour
C such that it does not touch lightlike infinities [6]. The most
straightforward deformation is the contour CΛ shown in
Fig. 2. In this case, the parameters Λ� regularize rapidity
divergences at both infinities and ϱ ¼ ðΛþΛ−Þ−1.
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FIG. 1. Comparison of extracted values of RAD. The lines
labeled as SV19, SV17, Pavia19, and Pavia17 correspond to
Refs. [19,17,20,16].

PHYSICAL REVIEW LETTERS 125, 192002 (2020)

192002-2



The regularized soft factor SCΛ
is a function of ϱ and b2

(and μ2), because these are the only nonzero scalar products
in the task. The regularization is removed by limits
Λþ → ∞ and Λ− → ∞, but since the dependence on Λ’s
is given by a single variable ϱ, one of these limits is
obsolete. For definiteness, I fix Λ− ¼ λ−. The derivative
with respect to ϱ ¼ ðΛþλ−Þ−1 can be replaced by derivative
over λ−, and Eq. (6) turns into

Dðb; μÞ ¼ 1

2
lim

Λþ→∞

d ln SCΛ
ðb; μÞ

d ln λ−
: ð7Þ

The action of the derivative is

Dðb;μÞ¼ZDðμÞ

þ lim
Λþ→∞

λ−
ig
2

Tr
R
1
0 dβh0jFbþð−λ−nþbβÞWCΛ

j0i
Trh0jWCΛ

j0i ;

ð8Þ

where FbþðxÞ ¼ bμnνFμνðxÞ, with Fμν being a gluon-field
strength tensor, and ZDðμÞ ¼ d lnZS=d ln λ−. The contour
in the numerator starts and ends at the point ð−λ−nþ bβÞ, so
the numerator is the Wilson loop with insertion of the gluon
strength tensor. The limit Λþ → ∞ turns the contour CΛ
(with finite λ−) to the contour C0 shown in Fig. 2 in blue, and

Dðb; μÞ

¼ λ−
ig
2

Tr
R
1
0 dβh0jFbþð−λ−nþ bβÞWC0 j0i

Trh0jWC0 j0i þ ZDðμÞ:

ð9Þ

Here, the numerator and the denominator have rapidity
divergences, which cancel each other. So, to use Eq. (9)
beyond tree order, a convenient regularization for these
divergences should be introduced. The term ZDðμÞ ¼
d lnZS=d ln λ− removes the ultraviolet divergences.

Peculiarly, it is additive rather than multiplicative, which
produces the renormalization group equation of the form (3),
with

dZDðμÞ
d ln μ

¼ ΓcuspðμÞ: ð10Þ

The additional cusps present in C0 do not introduces
divergences since ðnbÞ ¼ 0 [30].
Despite that the left-hand side of Eq. (9) has an explicit

entry of λ−, the expression is independent on it. It is an
outcome of the dependence of SCΛ

on ϱ. Alternatively, the
λ− independence can be seen as a consequence of the boost
invariance. Different values of λ− can be related by a boost
in the n direction. Therefore, λ− occurs in the numerator
and the denominator of Eq. (9) only due to the rapidity
divergences and cancel in the ratio. The independence on
λ− also demonstrates the universality of RAD for Drell-Yan
and SIDIS processes, which is dictated by the sign of λ− in
the current context.
The expression (9) is the main result of this Letter. In

contrast to previous works, the definition (9) gives a direct
access to RAD. In the next paragraphs, I demonstrate
possible applications of it and make elementary checks.
OPE and perturbative computation.—RAD is very well

studied in the perturbation theory, where it has been derived
up to next-to-next-to-leading order (NNLO) [15,28]. All
previous calculations have been done by evaluation of the
TMD soft factor [26,28], or TMD distributions [13,29],
with successive identification of rapidity divergent terms.
Using Eq. (9) RAD can be computed directly.
The perturbative calculation is made in the regime

b ≪ Λ−1
QCD. In this regime, RAD can be written as

Dðb; μÞ ¼ D0ðb; μÞ þ b2D2ðbÞ þ ðb2Þ2D4ðbÞ þ � � � ; ð11Þ

where dots designate terms accompanied by a higher power
of b2. Each Dn depends on b only logarithmically, via
lnðbμÞ. Importantly, the definition (9) is made for a finite b.
The limit b → 0 does not exist due to the presence of
divergent renormalization constant ZD that is independent
on b. Indeed, already at LO D0 ∼ αsðμÞ lnðbμÞ. The terms
with n > 0 do not depend on μ explicitly, as it follows from
the independence of ZD on b.
The computation of Dn can be done, for example, by the

background field method, similarly to calculations made in
Refs. [31,32]. It is convenient to use the background field in
the Schwinger gauge with a reference point at the origin.
With this choice, Wilson lines of background gluons turn to
unities at b → 0, which crucially simplifies the calculation.
The LO contribution to term D0 is given by a one-loop

diagram. The result of computation in the dimensional
regularization (d ¼ 4 − 2ϵ with ϵ > 0, and MS-scheme)
reads

FIG. 2. Contours defining the TMD soft factor (in the Drell-Yan
kinematics) and its derivatives. Axes n and n̄ are lightlike
(n2 ¼ n̄2 ¼ 0), and the axis T is transverse. The black (blue)
solid line shows contour C (C0). The black dashed lines show the
contour CΛ. The blue dot shows the insertion of gluon strength
tensor.
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D0ðb;μÞ¼−2CFas

�
Γð−ϵÞ

�
b2μ2

4e−γE

�
ϵ

þ1

ϵ

�
þOða2sÞ; ð12Þ

where as ¼ g2=ð4πÞ2, and the value of ZS is taken from
Ref. [29]. This expression coincides with the one derived in
[26] at arbitrary ϵ, and in the limit ϵ → 0 reproduces the
well-known result [1,3–5]

D0ðb; μÞ ¼ 2CFasðμÞ ln
�

b2μ2

4e−2γE

�
þOða2sÞ: ð13Þ

Note, that there is no dependence on λ−, as expected.
In contrast to D0, power suppressed terms have tree-

order contributions, which are the coefficients of the Taylor
series at b ¼ 0. Each term introduces a new NP function
which are matrix elements of gluon strength tensors
connected by Wilson lines to the origin. The LO contri-
bution to D2 is given by

−g2λ−
Z

1

0

dβ
Z

0

−∞
dσh0jFbþð−λ−nÞ½::�Fb−ðσn̄Þj0i; ð14Þ

where Fb− ¼ bμnνFμν, and [::] stays for a gauge link (in the
adjoint representation) between F’s and the origin (see
Fig. 3). It is a particular case of the following matrix element

Φμνðx; yÞ ¼ g2xαyβh0jFμαðxÞ½x; 0�½0; y�FνβðyÞj0i: ð15Þ

The matrix element Φμν satisfies xμΦμν ¼ yνΦμν ¼ 0 and
thus can be parametrized by two independent functions

Φμνðx; yÞ ¼
�
gμν −

yμxν
ðxyÞ

�
φ1ðr2; x2; y2Þ

þ ðxμðxyÞ − yμx2ÞðyνðxyÞ − xνy2Þ
ðxyÞððxyÞ2 − x2y2Þ φ2ðr2; x2; y2Þ; ð16Þ

where r2 ¼ ðx − yÞ2. At x2 ¼ y2 ¼ 0, φ2 vanishes and only
φ1 contributes to Eq. (14), but at higher orders of perturba-
tive series both terms are present.
Using the parametrization (16) I receive

D2ðbÞ ¼
1

2

Z
∞

0

dr2
φ1ðr2; 0; 0Þ

r2
þOðasÞ: ð17Þ

For the first time, the power correction to RAD is expressed
in a model-independent way in terms of QCD vacuum
correlations. It could be compared to expressions derived in
Refs. [8,10], which involves the jet-algorithm-modified
QCD vacuum.
The function φ1 is unknown, nonetheless, its value could

be estimated. In particular, at r2 → 0 it is

lim
r2→0

φ1ðr2; x2; y2Þ
r2

¼ π2

36
G2; ð18Þ

where G2 ¼ ðg2=4π2Þh0j∶Fa
μνFa

μν∶j0i is the gluon conden-
sate [33]. At large r2, φ1 decays at least as r−2 (more
realistically, it decays exponentially). Assuming φ1 has an
effective radius ∼Λ−1

QCD, D2 can be estimated as

D2 ∼
π2

72

G2

Λ2
QCD

≃ ð1.–5.Þ × 10−2 GeV2: ð19Þ

The values of parameters are taken from the review
in Ref. [34]. The estimation (19) is notably a small
number. Nonetheless it is in agreement with recent
extractions that are collected in the following table
(see also Fig. 1).

References [16] [19] [17] [20]

D2 × 102 GeV2 2.8� 0.5 2.9� 0.6 0.7þ1.2
−0.7 0.9� 0.2

These values are obtained with LO approximation at
μ ¼ 2 GeV. Let me note that earlier considerations, which
are often used in high-energy phenomenology, such as
BLNY-fit [35,36], use significantly higher values,
D2 ∼ 0.2–0.35 GeV2.
Example of NP modeling: Stochastic vacuum model.—

One of the most promising applications of the expression
(9) is the computation of RAD with various NP models. It
would help to select appropriate phenomenological ansatz
and give an intuitive interpretation for RAD. As an
example, I evaluated D in the stochastic vacuum model
(SVM) [37]. Although this model cannot be considered
realistic, it catches some global features of QCD, such as
the area law.
In SVM one assumes that the QCD dynamics is

dominated by two-point correlators, whereas multipoint
correlators give a negligible contribution. Additionally, one
ignores the gauge links connecting fields, assuming their
unimportance at large distances. In this way, all gluonic
observables are written in terms of two functions Δ and Δ1,
defined as [37]

g2h0jFμνðxÞFαβð0Þj0i
¼ ðgμαgνβ − gμβgναÞðΔðx2Þ þ Δ1ðx2ÞÞ þ ðgμαxνxβ
− gναxμxβ − gμβxνxα þ gνβxμxαÞ

∂Δ1ðx2Þ
∂x2 : ð20Þ

FIG. 3. Structure of the operator that describes the leading
power correction to RAD. Blue lines are the gauge links, and dots
are insertions of gluon strength tensors.
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Applying the non-Abelian Stockes theorem to Eq. (9),
dropping multipoint correlators, and using Eq. (20), after
some simplification I arrive at the expression

DðbÞ ¼ b2

Z
∞

b2

dy2
�
Δðy2Þ þ Δ1ðy2Þ

2

�

þ
Z

b2

0

dy2
�
y2

2
Δ1ðy2Þ þ ð2

ffiffiffiffiffiffiffiffiffiffi
b2y2

q
− y2ÞΔðy2Þ

�
:

ð21Þ

This expression predicts the linear behavior ofD at large b,

lim
b2→∞

DðbÞ ¼
ffiffiffiffiffi
b2

p Z
∞

0

dy22
ffiffiffiffiffi
y2

q
Δðy2Þ: ð22Þ

A similar calculation but in the momentum space has been
done in Ref. [7]. Although the final results could not be
compared, some intermediate steps and Eq. (22) are in
agreement. The integral can be roughly estimated using
lattice computations [38–40] as c∞ ≃ 0.01–0.4 GeV. The
value can be compared to c∞ ¼ 0.06� 0.01 GeV extracted
in Ref. [19], which uses the model for D with the linear
asymptotic.
Considering various relations derived in SVM (in par-

ticular, the static interquark potential [41]), I found that for
the internal consistency of the model one has to demand

lim
b2→∞

DðbÞ ∼ ðb2Þ1=2−δ; δ ≥ 0: ð23Þ

It significantly restricts the shape ofD at large b. In fact, the
expression (23) disregards almost all models for RAD used
in phenomenology, since the dominant part of studies (e.g.,
Refs. [16,17,35,36]) use quadratic asymptotic D ∼ b2 or
even stronger [20]. The same or equivalent conclusion as
Eq. (23) has been also made in Refs. [7,11].
Conclusion.—The expression (9) is the main result of

this Letter. This expression is unique in several aspects. It is
a definition of a scaling kernel through the matrix elements.
It grants the opportunity to study RAD without referring to
TMD distributions. It gives a connection between the
vacuum structure and the particle scattering. Each of these
aspects is a promising direction for further studies.
To provide an elementary check and the demonstration

of definition (9) I present the LO perturbative computation
at b → 0 and recover the well-known expression. It is clear
that for perturbative computations, which are already
performed at the NNLO level [6,28], the new definition
is not more advantageous than an ordinary one. The main
power of the new definition is that it gives a direct operator
definition of RAD. It allows us to compute power correc-
tions and apply the nonperturbative modeling for RAD,
which is not possible in a standard approach.
The derived LO power correction (17) is model inde-

pendent. To my best knowledge, it is the first derivation of

this object. The expression could be systematically
improved by computing higher-order terms. The LO
computation predicts a small size of the power correction,
which is in agreement with the most recent extractions. The
model calculation, performed in SVM, put a serious
restriction on the shape of RAD at large values of b
(23). Altogether, these findings severely constrain the
evolution properties of TMD distributions and should be
accounted for in the analysis. The calculations are done for
RAD of quark TMD distributions. It could be easily
repeated for the gluon case. The only modification is the
color representation for gauge links. Consequently, all
expressions derived in the Letter are also valid for gluon
RAD after the Casimir rescaling (that is valid up to N3LO),
which consists of the multiplication by CA=CFð¼ 9=4Þ.
The possibility to investigate the QCD vacuum in high

energy collisions sounds contradictory to the intuitive
picture that the structure of accelerated particles is cleared
from low-energy effects. Indeed, the partons do not interact
with each other within a highly energetic hadron.
Nonetheless, their temperate transverse motion is sensitive
to the structure of the underlying vacuum. Therefore,
measuring the low-qT behavior of high-energy scattering
at different energies, one examines the QCD vacuum. In
fact, the measurements by LHC restricts RAD significantly,
as it is shown in Refs. [18,20,42].
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and I.Scimemi for stimulating discussions. This work was
supported by DFG (FOR 2926 “Next Generation pQCD
for Hadron Structure: Preparing for the EIC,” Project
No. 430824754).
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