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We determine a previously unknown universal quantity, the location of the Yang-Lee edge singularity for
the O(N) theories in a wide range of N and various dimensions. At large N, we reproduce the N — oo
analytical result on the location of the singularity and, additionally, we obtain the mean-field result for the
location in d =4 dimensions. In order to capture the nonperturbative physics for arbitrary N, d and
complex-valued external fields, we use the functional renormalization group approach.
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Introduction.—The divergence of the correlation length
in the vicinity of a second order phase transition implies
that the physical properties of the system are completely
determined by long-range excitations. As a result, micro-
scopic details become irrelevant and vastly different sys-
tems exhibit the same critical behavior. This enables us to
group them into universality classes, which are typically
defined by the symmetry and the dimensionality. This
reduction instructs that by studying the simplest system
within a universality class one can infer a wealth of physics
describing all other members of the same class, regardless
of their microscopic complexity.

Perhaps the most ubiquitous universality classes are
critical O(N) theories, as they describe crucial aspects of
a variety of phenomena, ranging from the liquid-vapor
transition of water and Curie points of magnets, to the
phase diagram of QCD [1]. A given universality class is
characterized by only a few universal quantities, and
decades of theoretical and experimental research made
almost all universal quantities of the relevant O(N) theories
known to a high precision. In the following, we argue that
there is one notable exception: the location of the Yang-Lee
edge singularity, a universal quantity relevant for the
thermodynamic properties of the system, has not been
determined so far outside of mean-field theory and the large
N limit. This will be remedied here.

Near the critical point, due to the absence of a character-
istic length scale, the free energy is a homogeneous
function of the relevant thermodynamic parameters, the
reduced temperature, ¢t o« (T —T.), and the symmetry-
breaking external field, /4. The critical properties of the
system are then quantified by a universal function of one
variable: the magnetic equation of state M = h'/%f(z),
where 7 is the scaling variable z = th™'/2 with A = 5.
and & are universal critical exponents and f;(z) is the
universal scaling function characterizing all systems within
the same universality class.
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Yang and Lee have shown that the phase structure of the
system is determined by the analytical structure of the
equation of state for complex values of the thermodynamic
parameters [2,3]. Specifically, the Lee-Yang theorem states
that the equation of state of O(N)-symmetric ¢* theories
has a branch cut at purely imaginary values of 4. A second-
order (first-order) phase transition occurs when the cut
pinches (crosses) the real A axis. In the symmetric phase
above the critical temperature, T > T, the cuts terminate at
complex-conjugate branch points +ih.(T), known as the
Yang-Lee edge singularities. Remarkably, the edge singu-
larities are critical points themselves, characterized by a ¢*
theory with purely imaginary coupling, independent of the
number of field components N [4]. Near /., the magneti-
zation behaves as M ~ M. + (h*> — h2)°v, with the edge
critical exponent oy = 0.085(1) [5-7].

The scaling function naturally incorporates the edge
singularities. The Lee-Yang theorem fixes the argument
of the scaling variable at the edge singularity z. =
|z.| exp(iz/2A). But while the critical exponents have been
studied extensively, the location of the edge singularity, i.e.,
the absolute value |z.|, has never been found for 1 < d < 4
outside of the mean-field approximation or the large N limit.
The importance of finding the location is difficult to overstate,
as being the closest to the real axis, this singularity determines
the behavior of the equation of state for real values of the
thermodynamic parameters. The high-order coefficients of a
Taylor expansion of the free energy around any finite value of
z are defined by z. and ov; . This is of particular interest, e.g.,
for the determination of the QCD equation of state at finite
density on the lattice, where a sign problem hinders direct
simulations. A common strategy is to use extrapolations
based on the expansion of the free energy about vanishing
chemical potential [8,9]. The edge singularity determines the
radius of convergence of this expansion [10—12].

Why then was the location of the edge singularity not
found before? Two of the most commonly applied methods
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for studying critical phenomena, the e expansion and lattice
simulations, are incapable of probing the Yang-Lee edge
singularity. On one hand, the e expansion applied to ¢*
theories near four dimensions is not suitable for determin-
ing the location of the edge singularity since the critical ¢3
theory in its vicinity has an upper critical dimension of six.
This manifests itself in the appearance of nonperturbative
terms [13] when one attempts to extract the location of the
edge singularity [14]. On the other hand, powerful, non-
perturbative lattice simulations are hindered by a sign
problem, as in order to extract the location of the singularity
one has to perform them at imaginary values of & or
complex values of the temperature.

In this Letter, for the first time, we determine the
previously unknown location of the Yang-Lee edge singu-
larity for O(N) symmetric ¢p* theories for a wide range of N
in various dimensions. Additionally, we obtain the known
analytic result in the large N limit and, by varying the
number of dimensions, reproduce the mean-field approxi-
mation. This is facilitated by using a systematic approxi-
mation of the nonperturbative functional renormalization
group which enables us to determine the location z,. from
first principles.

FRG approach to scaling for complex external fields.—
To capture the inherently nonperturbative physics in the
vicinity of a second order phase transition, we use the
functional renormalization group (FRG) [18-22]. It
describes the RG flow of the scale-dependent effective
action, I, as a function of a momentum scale parameter, &,

2 -1
AN %Tr{akRk <55;f3[$] + Rk) } (1)

where R, is the infrared regulator function which deter-
mines how the low momentum modes are screened at scale
k. The flow equation, Eq. (1), prescribes the behavior of T’
between the classical action at an initial scale k = A in the
ultraviolet, I',_, = S, and the desired full quantum action
at k =0, I',—y = I'. The FRG provides a versatile realiza-
tion of the Wilsonian RG and is as such well-suited to study
critical physics. Both the scaling function and the critical
exponents have been computed in great detail for O(N)
theories for real external fields with the FRG, see, e.g.,
Refs. [23-41].

As we alluded to above, a defining characteristic of
universality is that the system is completely determined by
the long-range physics of the slow critical modes. Hence,
the effective action is dominated by small-momentum
modes in the vicinity of a second-order phase transition.
In fact, I', can be expanded systematically in powers of
momentum p”/k?, which is known as the derivative
expansion [25,42]; and this expansion has been shown
to be rapidly convergent within the nonperturbative regu-
larization scheme of the FRG [43]. Hence, the FRG with
the derivative expansion is an exact, first-principles method

to address the Yang-Lee edge singularity of O(N) critical
theories. In this Letter, we use the first order derivative
expansion of the scale-dependent effective action in
Euclidean space,

= [ @ 320)0,02 + Vi) - a ) @)

where d is the number of spatial dimensions, the field p is
defined as p = ¢*/2 = (6* + 7%)/2, Ui(p) is the scale
dependent potential, and % is the external field explicitly
breaking the O(N) symmetry. o denotes the radial excitation,
and 7 the Goldstone modes. The extension to finite temper-
ature is done by using the standard Matsubara formalism
[(dpo/27) - T, and py — 2naT. Accordingly, we use
the optimized regulator function R, for the spatial momen-
tum modes, R (p) = Z;(k* — p*)O(k*> — p?), put forward
in Refs. [44,45] and refer to Refs. [46-50] for detailed
discussions regarding the regularization scheme. Here we
comment that the commonly applied local potential approxi-
mation (LPA) which neglects the scale dependence of the
wave function renormalization, Z,,(p) = 1, giving zero
anomalous dimension #, is not appropriate to study the
location of the edge singularity since 7 is expected to be of
order one in its vicinity. This necessitates the inclusion of
scale-dependent wave function renormalization, which we
assume to be field independent, Z,(p) = Z,. This approxi-
mation is referred to as LPA’. The anomalous dimension is
related to the wave function renormalization via 0,Z; =
—niZy, where we introduced the RG time ¢ = In(k/A).

To describe critical phenomena, it is helpful to look at the
renormalization flow of dimensionless observables rather
than the dimensionful counterparts as their magnitudes can
vary wildly. The flow for the dimensionless effective
potential, U,(p) = k='U,(p) where p = Z;k'~?p is the
dimensionless renormalized field, can be obtained by
evaluating Eq. (1) on uniform field configurations at fixed
p which yields [51,52]

0,Ux(p) = —(d+ 1)Uy + (d = 1 +m)pU,

v 1 N -1
* g (=) [ 2
1
+ \/T—ﬁ/l%_(l + 27’16):| s (3)

where Vg = Sd—l/d with Sd—l = 2ﬂd/2/r(d/2), Negr =
n, (T, k) are the standard Bose-Einstein distribution func-
tions, and the primes denote derivatives with respect to p.
The dimensionless renormalized masses, 7, ,, are given by
m2 = U" and m2 = U + 2pU".

In order to numerically solve Eq. (3) we consider a sixth
order Taylor expansion of the dimensionless effective
potential about the scale dependent minimum p:
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U =58 y(air/i")(p — pox)’. We explicitly checked that
the expansion is converged at this order.

To extract the anomalous dimension, one uses the
projection

0? [Ml&z(atrk) ] ’ ()

Npx = — =5 lim—
M 22, p~00p |5mi(p)mi(~p)
where the choice of i is arbitrary. The result is

41}d -
— = U// - \2
Mk (27[)[1,00 (Po)
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The above sum is evaluated to a closed form in practice,
though its form its not insightful [53]. It is also important to
note the occurrences of N and the dimension d in Egs. (3) and
(5). Clearly, one can easily change N with no other consid-
erations as long as N > 1. As for the dimension d, we can
safely analytically continue d to any noninteger value.

To extract the scaling function f;(z) for a given N and d,
we first compute the universal critical exponents f and o
along with the nonuniversal critical amplitudes Ty and H,,.
The amplitudes are defined via the replacements t — /T,
and h — h/H, so as to reproduce the scaling forms ¢ =
(=t)? and 6 = h'/? at h = 0 and t = 0, respectively. With
these conditions the magnetic equation of state satisfies the
following normalization conditions f;(z=0) =1 and
fo(z = —o00) = (=z)”. In terms of the FRG variables [54]

folz = th™"/%) = k=10l \ /250 k=1 Z. (6)

In contrast to lattice Monte Carlo calculations, FRG does
not have a sign problem; this enables us to evaluate f(z)
for any complex z. In practice, we fix a real value of ¢ and
numerically find f(z) at a complex value & = h(z).
Additional care needs to be taken when approaching the
edge singularity using FRG with the Taylor expansion
method. This is due to the locality of the expansion and its
failure to capture first-order phase transitions. Furthermore,
the edge occurs at purely imaginary values of the external
field, another case for which the FRG equations become
numerically challenging. To circumvent this issue, we note
that the edge can be treated as an ordinary second-order
phase transition, and we can determine its location by
studying the peak of the magnetic susceptibility,
Yo & 1/m2, at a complex external field with just a small
real part. Given that near the edge the order parameter o
behaves as ¢ — . ~ (h* — h2)°% [4], the susceptibility for
the sigma field behaves as y, ~ 2hoyy (h* — h2)°~!. From
this form, we see that for any sufficiently small Re(h), |y,|
will have a peak at some Im(/) = /ey Moreover, Apeyy is

a quadratic function of Re(h) for sufficiently small values
of Re(h). Thus, we can scan the complex % plane at fixed
reduced temperature ¢ along lines in the first quadrant
parallel to the imaginary axis. Then /. can be determined
by incrementally decreasing Re(/), determining /ey for
each increment, performing a quadratic fit to the data, and
extrapolating to purely imaginary external fields. From this,

we find the location of the edge as z, = th;l/ A,

There are several sources of error in this work, presum-
ably the largest being the systematic error which results
from working in LPA’. One manifestation of the systematic
error can be the violation of the hyperscaling relation
between the exponents: 2 —n = d(6 —1)/(6 + 1). For our
work, we find this violation to be at the sub-per-mille level.
Regarding the critical exponents themselves, e.g., ford = 3
and N = 1(2), the disagreement with well-known results
from Ref. [56] for A is about 0.9% (1.9%). We note that a
potentially large anomalous dimension close to the edge
singularity indicates nontrivial momentum dependencies in
the system. These can be captured by higher orders in the
derivative expansion. A systematic improvement of our
truncation in this direction, which will significantly reduce
the systematic error, is deferred to future work [57].

Other error sources are the implementation of a finite
infrared scale &, at which the RG flows are terminated and
the fits to obtain the exponents and the value of /... One can
choose a kg such that the continued running of the flows
below this value contributes negligibly to the error. For this
work, we chose a common k for all N and d such that the
error is negligibly small. The error from the fits for the
exponents and extrapolation to purely imaginary values of
h are much smaller than the truncation error and we do not
report them here. The error bars seen in Figs. 1 and 2 are
then given by the truncation error, which we measure as the
difference between the result at fifth and sixth order Taylor
expansions of the effective potential.

Results and discussions.—Our results for the location of
the Yang-Lee edge singularity, z.., are shown in Fig. 1 for
d = 3 and numerous N, and in Fig. 2 for N =1, 2, 4, 100
and various d. Analytically, z. is only known in two
limiting cases: N — oo and the mean-field approximation.
For both, the magnetic equation of state can be written in
the following form (see, e.g., Refs. [58-60]):

fe@z+ feR)) =1, (7)

where y =1 (y =2/(d —2)) for mean-field (large N in
d < 4 dimensions). Because of its nature as a branch point,
the location of the Yang-Lee edge singularity can be found
from the condition that the derivative of the inverse
function is zero, z'(fs) = 0. This leads to

lze|= Q@r+1)(2y) /O, Argz, =22y +1)7". (8)

191602-3



PHYSICAL REVIEW LETTERS 125, 191602 (2020)

2.50 1 5 — N > o
2o § LpA
.40 T
2900 x
1.75 - =
- Y L ——
[ )
N e ¢
1.50 =t —rr ——rr ——rr
109 10! 102 103
N

FIG. 1. The magnitude of the location of the Yang-Lee edge
singularity |z.| as a function of N in three dimensions. The large
N result is indicated by the solid line. There is a nonmonotonous
behavior in the approach to large N limit.

Thus in mean-field approximation (in the large N limit,
d = 3) one gets |zMF| ~ 1.8899 (|z2°| ~ 1.6494).

The fact that our numerical calculations reproduce the
analytical results for |z.| is highly nontrivial in that it
provides a direct test of our FRG approach and the method
of extracting the location of the singularity. Figure 1
demonstrates the converge of |z.| to the large N value.
We note that |z.| displays some nonmonotonous behavior
as it dips below its large N value before approaching the
limit from below. For the convergence of |z.| to its mean
field result, see Fig. 2. We also see here nonmonotonous
behavior as the dimension is varied. Our numerical calcu-
lation for N = 100 faithfully reproduces the infinite N
result in arbitrary number of dimensions 3 <d < 4. In
three dimensions, the values of |z.| are 2.452 + 0.025,

2.0324+0.021 and 1.665+£1073 for N=1, 2, 4
correspondingly.
25 5
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FIG. 2. The magnitude of the location of the Yang-Lee edge
singularity |z.| for N = 1, 2, 4, 100 as a function of the number of
dimensions d. The solid line demonstrates the mean-field
value. The dashed lines display a fit motivated by the para-
metrization of the equation of state for O(1) |z.| = |ZMF|{1+
(4 —d)*[p; In(4 — d) + p,]}, see Ref. [13]. Note that the para-
meter p, is nonperturbative and cannot be found using the €
expansion. The dash-dotted line shows the analytical N — oo
result of Eq. (8) with y =2/(d —2).

To give an explicit example for importance of the edge
singularity, we determine the asymptotic form of the
coefficients of the Taylor expansion of f;(z). This can
be done solely based on its analytic structure in the
complex plane. For the sake of simplicity, we consider
the expansion near the origin. In this case, the theorem of
Darboux states (see, e.g., Ref. [61]) that the nth expansion
coefficient for sufficiently large n is

oyL—1

o™ (075) O

where B, and fj, are defined as the value of the analytic part
of the magnetization at the singularity Bgexp(iffy) =
limz—mg (1 - Z/Zc)_UYL[ G(Z) - fG(Zc)]' This explicitly
demonstrates that the expansion coefficients are uniquely
defined by |z.|, A and oy

Another immediate application of our results is to lattice
QCD calculations [11]. As we alluded to before, due to the
sign problem, lattice calculations can not be effectively
performed at nonzero baryon chemical potential u # 0.
Nevertheless, extrapolations to finite 4 based on a Taylor
series expansion of, e.g., the pressure about 4 = 0 are used.
In the crossover region, this series expansion has a finite
radius of convergence which is defined by z. and a
nonuniversal map of T, u, and m to the scaling variable z,

Mg\ VAT=T0  ,(w)?
Z(T,ﬂ):Z()(mS> |:T9+K2 ?9 + .

The nonuniversal parameters (T2, x5, and z,) for this map
were computed in lattice QCD, see Refs. [8,11,62,63].
This, complemented by our result, shows that the radius of
convergence R = |u.| defined by z(T,u.) =z. is >
420 MeV for the O(4) universality class and > 460 MeV
for the O(2) universality class (which is of relevance for
staggered fermions). These numbers are consistent with the
ratio test applied to the Taylor series expansion in Ref. [8].
More importantly, they are well below the latest results for
the location of a critical endpoint in the QCD phase
diagram [64—66]. This highlights that the edge singularity,
not the critical endpoint, is the crucial quantity for
explorations of the QCD phase structure by lattice QCD.

Conclusions.—In this Letter we have provided the first
results on a previously unknown universal quantity for
O(N)-like theories. We determined the location of the
Yang-Lee edge singularity for the O(N) universality class
for a wide range of N and dimensions d. Our numerical
calculations reproduce known analytical results for z.. in the
infinite N limit and in the mean-field approximation
(d = 4). The computation described here can readily be
adapted for the precise study of the edge singularity in other
universality classes as well.

f((;l) ~ 2BO|ZL'|_n
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