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Entangled resources enable quantum sensing that achieves Heisenberg scaling, a quadratic improvement
on the standard quantum limit, but preparing large N spin entangled states is challenging in the presence of
decoherence. We present a quantum control strategy using highly nonlinear geometric phase gates which
can be used for generic state or unitary synthesis on the Dicke subspace with OðNÞ or OðN2Þ gates,
respectively. The method uses a dispersive coupling of the spins to a common bosonic mode and does not
require addressability, special detunings, or interactions between the spins. By using amplitude
amplification our control sequence for preparing states ideal for metrology can be significantly simplified
to OðN5=4Þ geometric phase gates with action angles Oð1=NÞ that are more robust to mode decay.
The geometrically closed path of the control operations ensures the gates are insensitive to the initial state
of the mode and the sequence has built-in dynamical decoupling providing resilience to dephasing errors.

DOI: 10.1103/PhysRevLett.125.190403

Introduction.—Quantum enhanced sensing offers the
possibility of using entanglement in an essential way to
measure fields with a precision superior to that which can
be obtained with unentangled resources [1–4]. Entangled
resources allow the measurement sensitivity to scale as 1=N
with respect to the resources applied (so-called Heisenberg
scaling), compared to the 1=

ffiffiffiffi
N

p
obtained otherwise (the

standard quantum limit, or shot-noise limit) [4–6].
Creating large-scale entanglement in multipartite

systems for the purposes of metrology is a difficult
problem for a number of reasons. There is the difficulty
in precisely constructing the required quantum state using
realistic quantum operations, the need to protect that
quantum state from decoherence and loss [7], and the
problem of carrying out a number of quantummeasurement
operations on the state with precise control.
From a metrology perspective, there is also the issue that

many schemes claim to achieve Heisenberg limit by virtue
of quadratic scaling of the Fisher information of the system
[8]. While this ensures that there is an observable which has
an uncertainty that scales as 1=N with respect to some
resource, it does not specify what that observable is, or
require it be a convenient experimentally measurable
quantity. There have been attempts to address these
problems in various ways. For example, to mitigate
the decoherence issue, recent work has suggested using
quantum error correction assisted metrology (see Ref. [9],
and references therein) or phase protected metrology [10].
Such workarounds require the ability to perform complex
quantum control in the former case or engineered inter-
actions in the latter.
Here we present a state preparation scheme and

measurement protocol using geometric phase gates

generalizing Ref. [11]. Our protocol addresses the issues
of state preparation, decoherence protection, and choice of
measurement operator. It is relatively simple to engineer as
it involves only the coupling of an ensemble of qubits to a
common bosonic mode, e.g., a cavity or mechanical
oscillation, as well as simple global control pulses on
the spins and mode. As such it is adaptable to a variety of
architectures at the forefront of quantum control including
nitrogen-vacancy (NV) centers in diamond, trapped ion
arrays, Rydberg atoms, and superconducting qubits.
Unlike previous work our scheme does not require

special engineering of the physical layout of the spins,
special detunings for adiabatic state preparation, address-
ability, or direct interaction between the spins. Furthermore,
it exceeds the performance of spin squeezing protocols
because of the highly nonlinear nature of the geometric
phase gates used. Another advantage is that due to the
geometric nature of the gate, it is completely insensitive to
variations or uncertainties in the rate at which the perimeter
is traversed.
Furthermore, our protocol has dynamical decoupling

built in, providing resilience against dephasing during the
state preparation, which is the dominant source of noise in
many physical implementations. While dynamical
decoupling has been considered [12] in the context of
the Møllmer-Sørenson geometric gate [13], our scheme
extends this to a highly nonlinear geometric phase gate and
a full quantum state preparation algorithm.
Method.—We consider a collection of two-level spin

half systems, and define the collective raising and
lowering angular momentum operators as Jþ¼P

N
j¼1σ

þ
j ,

J− ¼ ðJþÞ†, and the components of the total
angular momentum vector are Jx ¼ ðJþ þ J−Þ=2,
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Jy ¼ ðJþ − J−Þ=2i, Jz ¼ P
jðj0ijh0j − j1ijh1jÞ=2. Dicke

states are simultaneous eigenstates of angular momentum
J and Jz: jJ ¼ N=2; Jz ¼ Mi, M ¼ −J;…; J.
Consider the measurement of a field which generates a

collective spin rotation about an axis perpendicular to
ẑ given by UðηÞ ¼ exp ½iηðJx sin δþ Jy cos δÞ�. For a
measurement operator O on the system, the single shot
estimation of the parameter η has variance

ðΔηÞ2 ¼ ðΔOðηÞÞ2
j∂ηhOðηÞij2 : ð1Þ

When the measured observable is O ¼ Jz2, the parameter
variance is [14]

ðΔηÞ2 ¼ ½ðΔJx2Þ2fðηÞ þ 4hJx2i − 3hJy2i − 2hJz2i
× ð1þ hJx2iÞ þ 6hJzJx2Jzi�½4ðhJx2i − hJz2iÞ2�−1;

with fðηÞ ¼ ½ðΔJz2Þ2�=½ðΔJx2Þ2tan2ðηÞ� þ tan2ðηÞ. When
the initial state is the Dicke state jJ; 0i, the estimate
angle satisfies sin2ðηÞ ¼ ½8hJz2ðηÞi�=½NðN þ 2Þ� and the
uncertainty in the measured angle is minimized at ηmin ¼ 0
such that the quantum Cramér-Rao bound is saturated:

ðΔηÞ2 ¼ 2

NðN þ 2Þ : ð2Þ

Note it is not essential that we know the angle δ of the field
direction in the x̂-ŷ plane [15].
The best known quantum algorithm for deterministically

preparing a Dicke state jJ;Mi requires O(ðN=2þMÞN)
gates and has a circuit depthOðNÞ [16]. This works even for
a linear nearest neighbor architecture, but requires a
universal gate set and full addressability. Other proposals
exist [17–20], but they all suffer from drawbacks such as
not scaling beyond a few spins, strong adiabaticity or
geometry, constraints, requiring large initial Fock states of
motional modes, and couplings causing transitions outside
the Dicke space.
In our setup we assume N spins with homogeneous

energy splittings described by a free Hamiltonian
H0 ¼ ω0Jz which can be controlled by semiclassical
fields performing global rotations generated by Jx, Jy.
Additionally, we assume the ensemble is coupled to a
single quantized bosonic mode â. Our scheme requires a
dispersive coupling between the n spins and the bosonic
mode of the form V ¼ ga†aJz.
The geometric phase gate (GPG) makes use of two basic

operators [11,21], the displacement operator DðαÞ ¼
eαa

†−α�a and the rotation operator RðθJzÞ ¼ eiθa
†aJz which

perform a closed loop in the mode phase space,

UGPGðθ;ϕ; χÞ ¼ Dð−βÞRðθJzÞDð−αÞRð−θJzÞ
×DðβÞRðθJzÞDðαÞRð−θJzÞ

¼ e−i2χ sinðθJzþϕÞ; ð3Þ
where ϕ ¼ argðαÞ − argðβÞ and χ ¼ jαβj.

The system and the mode are decoupled at the end of the
GPG cycle. Also, if the mode begins in the vacuum state, it
ends in the vacuum state and the first operation Rð−θJzÞ in
Eq. (3) is not needed. In the GPG it is necessary to
evolve by both RðθJzÞ and Rð−θJzÞ. This can be
done by conjugating with a global flip of the spins
RðθJzÞ ¼ e−iπJ

x
Rð−θJzÞeiπJx , implying that the GPG can

be generated regardless of the sign of the dispersive
coupling strength g. Furthermore, because Rð�θJzÞ com-
mutes with H0 at all steps, this conjugation will cancel the
free evolution accumulated during the GPG.
Assuming the number of spins n is even, we consider

N=2 sequential applications of the GPG (see also
Ref. [11]):

WðlÞ ¼
YN=2

k¼1

UGPG(θk;ϕkðlÞ; χ)

¼
XJ
M¼−J

e−i2χ
P

N=2
k¼1

sinðθkMþϕkðlÞÞjJ;MihJ;Mj;

with l ¼ 0;…; N.

θk ¼
2πk
N þ 1

; ϕkðlÞ ¼
2πkðN=2 − lÞ

N þ 1
þ π

2
;

χ ¼ π

N þ 1

gives WðlÞ ¼ e−iπjJ;l−N=2ihJ;l−N=2j, meaning it applies a π
phase shift on the symmetric state with l excitations. For N
odd we can use N GPGs with the same angles θk;ϕkðlÞ as
above but with χ ¼ π=2ðN þ 1Þ.
Given the control toolbox above of global rotations and

the GPGs, one can synthesize an arbitrary unitary operator
on the Dicke subspace. Writing U ¼ P

N
k¼1 e

iλkjλkihλkj,
where fjλkig form an orthonormal basis on the Dicke
subspace and λk ∈ R (note since the global phase is
irrelevant we have set λ2Jþ1 ¼ 0). This unitary can
be decomposed as U ¼ Q

N−1
k¼1 ½KðλkÞeiλkjJ;−JihJ;−JjK†ðλkÞ�,

where KðλkÞ is any unitary extension of the state synthesis
mapping jJ;−Ji → jλki. The phasing unitary is the
same as Wð0Þ but with χ → λk=ðN þ 1Þ. To construct
KðλkÞ, we find the decomposition: K̃ ¼ ½QN−1

s¼1 eiβsJ
y

UGPGðθs;ϕs; χsÞ�e−iJyðπ=2ÞUGPGðπ=2; 0; π=4ÞeiJyðπ=2Þ gives
very accurate results when optimized over the 4N − 4 free
parameters fβs; θs;ϕs; χsg [22]. The overall complexity in
GPG count using this approach is N for state synthesis and
5N2=2 for unitary synthesis.
While the general state synthesis approach above can be

used for building Dicke states, theN − 1 action angles fχsg
that optimize state fidelity are Oð1Þ and this has implica-
tions for noise due to mode decay as described below. We
now describe a way, based on amplitude amplification,
to improve matters by only using the GPGs that appear in
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WðlÞ that have action angles Oð1=NÞ, and with the added
advantage of providing an analytical solution to the Dicke
state synthesis problem. Starting with all spins down, i.e., in
jJ;−Ji, let the target state be jwi ¼ jJ; 0i. We will make
use of the operators Uw ¼ e−iπjwihwj ¼ WðN=2Þ and
Us ¼ e−iπjsihsj ¼ eiJ

yπ=2Wð0Þe−iJyπ=2. In total the operators
Uw and Us each use N=2 GPGs. The orbit of the initial
state jsi under the operators Uw and Us is restricted
to a subspace spanned by the orthonormal states jwi
and js0i ¼ ðjsi − jwihwjsiÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhwjsij2

p
, exactly as in

Grover’s algorithm. The composite pulse is one Grover
step UG ¼ UsUw. Geometrically, relative to the state
js0i, the initial state jsi is rotated by an angle δ=2 toward
jwi, where δ ¼ 2 sin−1ðjhwjsijÞ, and after each Grover
step is rotated a further angle δ toward the target.
The optimal number of Grover iterations to reach the
target is G ¼ bπ=4jhwjsijc, where the relevant overlap is
hwjsi ¼ dJ−J;0ðπ=2Þ ¼ 2−J

ffiffiffiffiffiffiffiffiffiffiffið2JÞ!p
=J!. For J ≫ 1 we have

hwjsi ≈ ðπJÞ−1=4. Then the optimal number of Grover
steps is

G ¼ bπ5=4N1=4=29=4c: ð4Þ

The fidelity overlap of the output state ρ of the protocol
with the target state is F ¼ TrðjwihwjρÞ. For the Grover
method it is easily calculated as

F ¼ sin2½ðGþ 1=2Þδ� > 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
2=πN

p
: ð5Þ

While the fidelity error falls off at least as fast as
ffiffiffiffiffiffiffiffiffiffiffiffi
2=πN

p
for all N ≫ 1, if N is near a value where the argument in
Eq. (4) is a half integer, i.e., ⌈32ð2kþ 1Þ4=π5⌉, with k ∈ Z,
the error will be much lower. For example, at N ¼ ð10;
70; 260; 700; 1552Þ the fidelity error is ð1.84×10−4;
1.57×10−5;1.68×10−6;3.65×10−8;1.92×10−8Þ. The num-
ber of GPGs needed to prepare the Dicke state by the
Grover method is c × N5=4 with a constant c < 1.
The effectiveness of our scheme when used for metrol-

ogy is shown in Fig. 1, which shows the precision Δη
obtainable as a function of N, compared to that obtained
from both the standard quantum limit and the ultimate
Cramér-Rao bound. It also shows the fidelity obtainable as
a function of the number of spinsN. The achievable fidelity
is clearly optimized for specific spin values.
We have focused on preparing the state jJ; 0i, but with

simple modifications our protocol can prepare any Dicke
state jJ;Mi. First use the initial state jsi ¼ eiϵMJ

y jJ;−Ji,
and second substitute the operators Uw ¼ WðM þ N=2Þ
and Us ¼ eiϵMJ

y
Wð0Þe−iϵMJy , where ϵM ¼ cos−1ðM=JÞ.

Now the relevant overlap is jhwjsij ¼ jdJM;−Jð−ϵMÞj,
and for J− jMj≫ 1, jdJM;−Jð−ϵÞj≈ ð ffiffiffiffiffiffi

πJ
p

sinϵMÞ−1=2 [23],
implying G ¼ OðN1=4Þ.
Finally, measurement of Jz2 could be done by again

coupling the spins to the bosonic mode but now with a
linear coupling Vm ¼ gmJzða† þ aÞ which generates a

mode displacement depending on the collective spin
projection. When the mode is in a number diagonal state,
e.g., a thermal state, with mean excitation number n̄,
the measurement of n̂ after a coupling time τ is
hn̂i ¼ n̄þ ðgmτÞ2hJz2i. If mode number and quadratic spin
operator measurements are difficult, there are alternatives.
One is estimation by a classical average over p experi-
ments: E½hJz2i� ¼ Pp

k¼1ðMðkÞ2=pÞ, where MðkÞ is the
outcome of the kth measurement of Jz [24]. Another is,
after accumulating the signal, one could invert the state
preparation and measure jJ;−JihJ;−Jj which gives the
same precision scaling as Eq. (1), but does not require
number resolved excitation counts.
There will be errors due to decay of the bosonic mode

during the operations, as well as decoherence due to
environmental coupling to the spins, which will degrade
the fidelity. We now address these.
Mode damping.—We treat the mode as an open quantum

system with decay rate κ. In order to disentangle the
spins from the mode, the third and fourth displacement
stages of the kth GPG should be modified to Dð−αkÞ →
Dð−αke−κθk=gÞ andDð−βkÞ → Dð−βke−κθk=gÞ. For simplic-
ity, we choose jαkj ¼ jβkj. For an input spin state in the
symmetric Dicke space ρ ¼ P

M;M0 ρM;M0 jJ;MihJ;M0j, the
process for the kth GPG with decay on the spins, including
the modified displacement operations above, is [25]

EðkÞðρÞ¼UGPGðθk;ϕk;χkÞ
�X
M;M0

RðkÞ
M;M0ρM;M0 jJ;MihJ;M0j

�

×U†
GPGðθk;ϕk;χkÞ;

where χk ¼ jαkj2fðθkÞ, fðθkÞ ¼ ðe−3θkκ=2g þ e−θkκ=2gÞ=2,
and ΓM;M0 and ΔM;M0 are given in the Supplemental
Material [26].

FIG. 1. Measurement precision Δη as a function of number of
spins (log-log scale). Shown are the shot-noise limit (upper red
dashed line), the quantum Cramér-Rao bound given by Eq. (2)
(lower red dashed line), and this protocol (blue). Inset: Fidelity
for sets of ensemble sizes using the same number of Grover steps,
which grow as N1=4.
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The full operation is a concatenation of these imperfect
processes EðkÞðρÞ, and we characterize its accuracy with the
process fidelity FproðE; UÞ, which measures how close a
quantum operation E is to the ideal operation U [28].
For each GPGwe can readily find the lower bound on the

process fidelity (see Supplemental Material [26]),

FproðE; UGPGÞ > e−6πχkκ=fðθkÞg cos½χk4πκ=fðθkÞg�:

Note the scaling of the exponent with 1=N since the action
angles χ are Oð1=NÞ. For the composite phasing map,
numerically we find the tighter bound for the fidelity
Fpro(E;WðlÞ) > e−π

2κ=g, which is notably independent
of N.
Dephasing.—We next address spin decoherence. We

assume that amplitude damping due to spin relaxation is
small by the choice of encoding. This can be accommo-
dated by choosing qubit states with very long decay times
either as a result of selection rules or by being far detuned
from fast spin exchange transitions. Hence we will focus on
dephasing. Because of the cyclic evolution during each
GPG, there is error tolerance to dephasing because if the
interaction strength between the system and environment is
small compared to g, then the spin flip pulses used between
each pair of dispersive gates Rðθa†aÞ will echo out this
noise to low order.
For a given input density matrix ρð0Þ, the output after a

total time T has off-diagonal matrix elements that decay as
ρM;M0 ðTÞ ¼ ρM;M0 ð0Þe−ðM−M0Þ2AðTÞ. For the global dephas-
ing map the numbers M;M0 ∈ ½−N=2; N=2� are in the
collective Dicke basis, while for local dephasing it is with
respect to a local basisM;M0 ∈ ½−1=2; 1=2�. Our argument
for suppression of dephasing works for both cases. Global
dephasing is the most deleterious form of noise when the
state has large support over coherences in the Dicke
subspace, due to decay rates that scale quadratically in
the difference in M number. However, it leaves the total
Dicke space, and in particular the target Dicke state,
invariant. Local dephasing induces coupling outside the
Dicke space, but with a rate that is at most linear in N.
Consider the evolution during the N=2 control pulses to

realize either of the phasing gates Us or Uw. Assuming
Gaussian bath statistics, the effective dephasing rate can be
written as the overlap of the noise spectrum SðωÞ and
the filter function jfðωÞj2 [29,30]. As shown in the
Supplemental Material [26], for our pulse sequence to
lowest order in ω=g we find

g2jfðωÞj2 ≈ ðω=gÞ2π4N2ðN þ 2Þ2
9ðN þ 1Þ2 : ð6Þ

Comparison with the case where no spin flips are applied is
plotted in Fig. 2 showing there is substantial decoupling
from the dephasing environment when the spectral density
has dominant support in the range ω < g=2.

The freedom to apply the GPGs in any order
allows for further improvement. Consider coupling to a
zero temperature Ohmic bath with noise spectrum SðωÞ ¼
αωe−ω=ωc with cutoff frequency ωc=g ¼ 0.1. For N ¼ 20,
the ratio of the effective decay rate for the linearly ordered
sequence of GPGs above to that with no decoupling is
AðTÞ=A0ðTÞ ¼ 0.0085. However, by sampling over permu-
tations of the ordering of GPGs we find a sequence [31]
achieving AðTÞ=A0ðTÞ ¼ 0.0026. Examples of the effec-
tiveness of our decoupling protocol on sensitivity for various
values of AðTÞ are shown in Fig. 3. Effectiveness on the
fidelities can be found in the Supplemental Material [26].
Error-tolerant states.—The state preparation method we

have described has inherent tolerance to decoherence.
However, once the state is prepared further errors such
as qubit loss or dephasing could accumulate. Strategies to
address this by using superpositions of Dicke states were
recently proposed [32]. The states considered were

jφui ¼
1ffiffiffiffiffi
2n

p
Xn
j¼0

ffiffiffi
n
j

r ����J ¼ knu
2

;M ¼ kj − J

�
:

The number of spins N ¼ k × n × u and the parameters u
and n determine the robustness of the states to some
number of loss and dephasing errors, respectively. A state
performing well in the presence of one erasure error is
u ¼ 1; n ¼ 2; k ¼ N=2, which can be written jφ1i ¼
1
2
ðjJ;−Ji þ ffiffiffi

2
p jJ; 0i þ jJ; JiÞ while u ¼ 2; n ¼ 1; k ¼

N=2 tolerates one dephasing error and can be written
jφ2i ¼ 1=

ffiffiffi
2

p ðjJ;−Ji þ jJ; 0iÞ. Both of these states can be
prepared using our protocol. The specific steps are given in
the Supplemental Material [26]. Superpositions of Dicke
states also arise as code words of so-called permutationally
invariant quantum codes [33], and of recently discovered

FIG. 2. Suppression of dephasing via dynamical decoupling
inherent in the sequence of GPGs used for each of the operators
Us and Uw. Solid curves are filter functions using the GPGs.
Dashed curves are plots of Eq. (6), which is a good approximation
for ω=g < 1=πN. Short dashed curves are the bare case without
decoupling. Red, green, and blue curves correspond to n ¼
ð10; 100; 1000Þ spins.
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codes which admit Gaussian Clifford operations [34] which
our method could also prepare.
Implementations.—The scheme we have presented is

amenable to a variety of architectures which allow
collective dispersive couplings between spins and an
oscillator. These include trapped Rydberg atoms coupled
to a microwave cavity [35,36], trapped ions coupled to a
common motional mode [37] or to an optical cavity
mode [38], superconducting qubits coupled to microwave
resonators [39], and NV centers in diamond coupled to a
microwave mode inside a superconducting transmission
line cavity [40].
One contender to test our scheme is Rydberg atoms

coupled to microwave cavities. Recently the dispersive
detection of small atomic Rydberg ensembles coupled to a
high-Qmicrowave cavity was reported [36]. Their numbers
suggest a ratio of κ=g ≈ 0.8 (with κ ¼ 2π × 11.8 kHz
and g ¼ 2π × 14.3 kHz). The collective coupling rate
observed was a few megahertz, suggesting an additional
pathway to improving γ=g by orders of magnitude
by encoding spins through collective subensembles.
Consider an encoding where each spin is composed of n
physical spins with logical states j0i ¼ jj ¼ n=2;−ji and
j1i ¼ jj ¼ n=2;−jþ 1i, i.e., the permutationally invariant
states of zero or one excitation shared among the n spins. If
the spins within each logical qubit interact, e.g., via dipole-
dipole interactions, there will be a dipole blockade to larger
numbers of excitations. Hence, collective rotations fre-
quency tuned to the transition energy E1 − E0 will be
collective but only act on this qubit subspace. The dis-
persive interaction strength is enhanced by g → g

ffiffiffi
n

p
,

provided the number n is similar for all logical spins.
Using this kind of encoding, dispersive coupling with
strength g ≈ 2π × 2.2 MHz was obtained with NV ensem-
bles in diamond bonded onto a transmission line resonator
with quality factor Q ≈ 4300 at the first harmonic fre-
quency ω1 ¼ 2π × 2.75 GHz. Microwave cavities with
much higher quality factors, e.g., Q ≈ 109, have been
realized [41], which for the same dispersive coupling could
provide κ=g ≈ 10−6.
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