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At low temperature, collective excitations of one-dimensional (1D) interacting fermions exhibit
spin-charge separation, a unique feature predicted by the Tomonaga-Luttinger liquid (TLL) theory, but
a rigorous understanding remains challenging. Using the thermodynamic Bethe ansatz (TBA) formalism,
we analytically derive universal properties of a 1D repulsive spin-1=2 Fermi gas with arbitrary interaction
strength. We show how spin-charge separation emerges from the exact TBA formalism, and how it is
disrupted by the interplay between the two degrees of freedom that brings us beyond the TLL paradigm.
Based on the exact low-lying excitation spectra, we further evaluate the spin and charge dynamical
structure factors (DSFs). The peaks of the DSFs exhibit distinguishable propagating velocities of spin and
charge as functions of interaction strength, which can be observed by Bragg spectroscopy with ultracold
atoms.
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Interacting quantum many-body systems with rich inter-
nal degrees of freedom usually pose a formidable challenge
for theoretical study. Understanding how interactions
between fermions affect the state of a quantum liquid at
low temperatures has been an important topic for over
fifty years, and many outstanding questions still remain.
A wealth of approximate formalism has been developed to
understand the universal low-energy physics. These include
Landau’s Fermi liquid theory [1,2], the density matrix
renormalization group [3,4], the Green’s function approach
[5], etc. In particular, the Tomonaga-Luttinger liquid (TLL)
theory [6–10] describes the universal low-energy physics of
strongly correlated systems in one dimension. The TLL
usually refers to the collective motion of bosons that is
significantly different from the free fermion nature in the
Fermi liquid.
A hallmark of 1D physics is the splitting of low-lying

excitations of interacting fermions into two separate TLLs,
i.e., the separated quasiparticles carry either spin or charge.
This phenomenon is known as spin-charge separation.
Usually, TLL physics can be directly obtained from the
Bethe ansatz (BA) solutions [11–14], where the particle-
hole excitations have the same energy for a given momen-
tum. This special feature of the TLL, however, is disrupted

once backward scattering is included or when the system is
strongly disturbed by thermal fluctuations at quantum
criticality [15,16]. Although the realizations of 1D cold
atom systems [17–25] have confirmed many predictions
from exactly solvable models, including recent studies on
the dynamical deconfinement of spin and charge on 1D
lattices [26–29], an observation of the unique spin-charge
separation still remains a long-standing challenge in experi-
ments [30–35]. We naturally ask if spin-charge separation,
its criticality, and behavior beyond the TLL can be
observed in ultracold atoms in a well-controlled manner.
In this Letter, we aim to answer these questions and

report on the universal properties of spin-charge separated
and disrupted liquids in a repulsive spin-1=2 Fermi gas. We
present analytical results of thermodynamic and magnetic
properties of the system which essentially mark the spin-
charge separated liquids below a lower critical temperature,
the universal scaling behavior of free fermion quantum
criticality above an upper critical temperature, and the
disrupted quantum liquids in between. We also evaluate
exact low-lying excitations that indicate the separation of
the particle-hole continuum in the charge sector from the
two-spinon spectrum in the spin sector. Such separated
spectra are exploited to calculate the charge and spin
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dynamic structure factors (DSFs) and to probe the emergent
phenomena such as spin-charge separation and fractional
excitations in Fermi gases.
Yang-Gaudin model.—The Hamiltonian of the 1D δ

function interacting Fermi gas, the so-called Yang-Gaudin
model [36,37], is given by

H ¼ −
XN
i¼1

∂2

∂x2i þ 2c
X

1≤i<j≤N
δðxi − xjÞ −HM − μN; ð1Þ

where the total number of particlesN and the magnetization
M ¼ ðN↑ − N↓Þ=2 are defined by the numbers of spin-up
N↑ and spin-down N↓ fermions, H and μ denote the
external magnetic field and the chemical potential, respec-
tively. All quantities in Eq. (1) are dimensionless where we
have adopted a units system with ℏ ¼ 2m ¼ 1, here m is
the mass of the particle. We also define the number density
n ¼ N=L (L being the length of the system).
In this Letter we only consider the repulsive interaction

with c > 0. The whole set of the exact BAwave functions,
spectra and the associated BA equations were obtained by
Yang in 1967 [36].
The universal properties of the system can be derived

from the thermodynamic Bethe ansatz (TBA) equations
which, for the repulsive Fermi gas, are given by [38–40]

εðkÞ ¼ k2 − μ −
H
2
− T

X∞
n¼1

an � ln½1þ e−ϕnðλÞ=T �; ð2Þ

ϕnðλÞ ¼ nH − Tan � ln½1þ e−εðkÞ=T �

þ T
X∞
m¼1

Tmn � ln½1þ e−ϕmðλÞ=T �; ð3Þ

where � denotes the convolution, εðkÞ and ϕnðλÞ are the
dressed energies for the charge and the length-n spin
strings, respectively, with k’s and λ’s being the rapidities;
the integral kernel anðkÞ ¼ ð1=2πÞfðncÞ=½ðncÞ2=4þ k2�g,
and the functions Tmn are given in Refs. [12,40] (also see
Supplemental Material [41] for more detail). Once εðkÞ is
obtained, we can calculate the pressure, i.e., the equation of
state p ¼ ðT=2πÞ R∞

−∞ ln½1þ e−εðkÞ=T �dk, from which all
other thermodynamic quantities of interest can be obtained
[41]. The TBA equations (2) and (3) reveal the full spin and
thermal fluctuations controlled by the interplay between
spin and charge.
Phase diagram and spin-charge separation.—Based on

the configurations of spin orientations, the ground state
phase diagram of a 1D repulsive Fermi gas in the μ̃-H̃ plane
contains three phases: vacuum, a mixed phase, and a
fully polarized phase. The Wilson ratio, defined as
Rχ
W ¼ ð4=3Þ½πkB=ðgμBÞ�2½χ=ðcV=TÞ�, where χ is the mag-

netic susceptibility and cV the specific heat, captures the
essence of the quantum liquid [16,42,43]. This ratio
becomes temperature-independent in the TLL regime,

while it displays a universal scaling behavior in the vicinity
of the quantum critical point, signaling a breakdown of the
TLL. We show that the WR elegantly marks the low-
temperature phase diagram, as can be seen in Fig. 1,
and characterizes the TLL of spinons via the following
relation [44]

Rχ
W ¼ 2vc

vs þ vc
Ks: ð4Þ

Here the Luttinger parameter Ks ¼ 1 at critical point and
Ks < 1 in the MP phase. Rχ

W ¼ 1 for the FP phase. For the
MP phase, we have Rχ

W < 2, where the spin and the
charge degrees of freedom dissolve into two separate
TLLs with different speeds of propagation vs and vc,
respectively.
The spin-charge separation phenomenon for the Fermi

gas describes a splitting of low-energy excitations in the
spin and the charge sectors. Because of the limited
capabilities to control interaction, spin density, and
temperature, unambiguously identifying the spin-charge
separation is extremely challenging. Next, we derive
rigorous results of spin-charge separation by means of the
TBA equations (2) and (3) near and far from the quantum
critical point (QCP) that separates the MP and the FP
phases.
Throughout the MP phase with H̃ < H̃c, where H̃c is the

critical field for a fixed chemical potential (Fig. 1), we
rigorously show [41] that the pressure can, in general, be
given by

FIG. 1. (a) Contour plot of the Wilson ratio (WR) in the μ̃ − H̃
plane for the repulsive Fermi gas at T̃ ¼ 0.005. Here the
dimensionless quantities are T̃ ¼ ðT=jcj2Þ, μ̃ ¼ ðμ=jcj2Þ,
H̃ ¼ ðH=jcj2Þ. The values of the WR given by Eq. (4) elegantly
mark three quantum phases: mixed phase (MP), full-polarized
phase (FP), and vacuum at zero temperature. At low tempera-
tures, the phase boundaries are indicated by sudden enhance-
ments of the WR, which match well with the zero temperature
phase boundaries (black dashed lines). The inset shows the WR
vs magnetic field H̃ at μ̃ ¼ 0.3 and T̃ ¼ 0.005, where a sudden
enhancement of the WR is observed.
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p − p0 ¼
πT2

6

�
1

vc
þ 1

vs

�
; ð5Þ

where p0 ¼
R k0
−k0 εðkÞdk is the pressure at T ¼ 0 and the

charge and spin velocities are given by

vc ¼
tc

2πρcðk0Þ
; vs ¼

ts
2πρsðλ0Þ

; ð6Þ

respectively, with ρc;s being the distribution functions at the
Fermi points k0 and λ0 for the charge and the spin sector,
(i.e., the points at which the dressed energies vanish),
respectively; and tc and ts are the respective linear slopes of
the dispersion at the Fermi points. We show that vc and vs
vary as functions of the external field H for a fixed
chemical potential. More detail is given in the
Supplemental Material [41].
Quantum criticality and disrupted liquids.—

Understanding quantum criticality and the disrupted
Luttinger liquid provide a rich paradigm for many-body
physics. In contrast to the spinless Bose gases [23], the
interplay between the spin and the charge degrees of
freedom dramatically alters the critical behavior of the
system. For c → ∞, the states of the system are highly
degenerate and the spin sector becomes an incoherent free
spin chain that does not exhibit magnetic ordering [45].
Here we consider a system with arbitrary interaction
strength to obtain the universality class of quantum
criticality encoding the interplay between spin and charge.
Using the TBA equations (2) and (3), we find that the phase
transition occurs in the spin sector across the phase
boundary between the MP and FP phases, see Ref. [41].
At finite temperatures, a quantum critical region (QC) fans
out from the critical point, forming a critical cone in the
T̃-H̃ plane, see Fig. 2. In the QC region, all thermodynamic
quantities can be cast into universal scaling forms. Through
an expansion of the length-1 spin string dressed energy
equation (2) and (3) with an arbitrary interaction strength at
low temperatures, we obtain the universal scaling function
for the equation of states (pressure) [41]

p − p0 ¼
8<
:

−gT3=2Li3
2
ð−eðs0ΔH=TÞÞ; for μ ¼ μc;

−gT3=2Li3
2
ð−eðr0Δμ=TÞÞ; for H ¼ Hc;

ð7Þ

where ΔH ¼ Hc −H, Δμ ¼ μc − μ, g ¼ arctanð2k0=cÞ=
½π3=2 ffiffiffi

a
p �, s0 ¼ 1 − ð1=πÞ arctan ½ð2=cÞk0�, r0 ¼ −ð2=πÞ

arctan ½ð2=cÞk0� and a is a constant determined by the
critical chemical potential μc and the critical magnetic field
Hc. Here the Fermi momentum k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μc þHc=2

p
is

obtained from the charge dressed energy condition
εðk0Þ ¼ 0. The background pressure

p0 ¼

8>><
>>:

πT2

6
ffiffiffiffiffiffiffiffiffiffiffiffi
μcþH=2

p þ 2
3π ðμc þH=2Þ3=2; for μ ¼ μc;

πT2

6
ffiffiffiffiffiffiffiffiffiffiffiffi
μþHc=2

p þ 2
3π ðμþHc=2Þ3=2; for H ¼ Hc;

ð8Þ

reflects the regular part at quantum criticality. The corre-
lation and dynamic critical exponents ν ¼ 1=2
and z ¼ 2 are, respectively, read off by comparing
Eq. (7) with the universal scaling form p − p0 ¼
gTð1=zÞþ1G½ðs0ΔH=T1=νzÞ; ðr0Δμ=T1=νzÞ�. These exponents
also determine the two critical temperatures of the QC
region T�

l ¼ α1jH −Hcjνz and T�
r ¼ α2jH −Hcj, indicated

by the two black dashed lines in Fig. 2. Here α1;2 ¼ s0=y1;2
with y1 ¼ −1.5629, y2 ¼ 3.6205 are constants [44].
Building on the exact scaling form of the pressure (7),
scaling functions of other thermodynamic quantities, such
as magnetization, susceptibility, density, compressibility,
and specific heat, can be evaluated in a straightforward way
using standard statistical relations.
Our result, Eq. (7), provides not only a precise

understanding of the emergent criticality of spinons inter-
playing with charge [41], but also insightful perspectives of
disrupted liquids beyond TLL. The interplay between the
spin and the charge degrees of freedom leads to large
deviations from the linear dispersion in both the spin and
the charge sectors and to the disruption of the TLL in the
crossover region Espin ≪ kBT ≪ EF, labeled as COR1 and
COR2 in Fig. 2. Here Espin and EF are the energy of the
spin sector and Fermi energy, respectively. The crossover
region COR1 coincides with the so-called incoherent
Luttinger liquid [46,47]. We observe from p0 in Eq. (8)
that the TLL nature only remains in the charge sector, while
the dilute deconfined spinons become free fermionlike.

FIG. 2. Phase diagram in the T̃-H̃ plane: contour plot of specific
heat. We set the dimensionless chemical potentials μ̃ ¼ 2.5,
H̃c ¼ 2.9145. The black dashed lines denote the peak positions
of specific heat, and the dot-dashed line shows the boundary of
the linear T dependence of specific heat. The crossover regions
between QC and the TLL are labeled as COR1 and COR2.
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These CORs reveal a coexistence of liquid and gaslike
states; for more details see Ref. [44].
Exact low-lying excitations and dynamic structure

factor.—Solving the TBA equations (2) and (3), we obtain
precisely the low-lying excitations in both spin and charge.
As shown in Fig. 3, the excitations in the two sectors are
separated from each other. The charge particle and hole
excitations at low energy are given exactly by

ωðqÞ ¼ vcjqj �
ℏq2

2m� þ � � � ð9Þ

with ½m=ðm�Þ� ¼ f½ϵc″ðk0Þ�=f2½2πρcðk0Þ�2gg − f½πρc0ðk0Þ
ϵc

0ðk0Þ�=½2πρcðk0Þ�3g, where m� is the effective mass,
taking the form m� ≈m½1þ ð4 ln 2=γÞ� as γ ≫ 1 [41].
For small q, the charge excitation can be well captured
by the leading order in Eq. (9), while the second term is
irrelevant. The charge DSF in a 1D repulsive Fermi gas has
been recently measured [24,48] using the technique of
Bragg spectroscopy [49,50], where the key feature of free
Fermi liquid was observed in the DSF and the speed of
sound in the charge sector was measured. The charge
DSF of a free homogeneous Fermi gas is already known to
be [51]

Sðq;ωÞ ¼ Imχðq;ω; kF; T; NÞ
πð1 − e−βℏωÞ : ð10Þ

Based on the charge excitation spectrum (9), the interaction
only modifies the effective mass with the Fermi point kF
replaced by kc ¼ m�vc=ℏ [24]. As a consequence, it will
move the resonance position from ω ¼ vFq to ω ≈ vcq in
the excitation spectrum. Here we observe that for T → 0,
DSF Sðq;ωÞ ≠ 0 only for ω− ≤ ω ≤ ωþ, where ω� ¼
vcjqj � ðℏq2=2m�Þ captures the dispersion (9). Taking
the setting for a gas of spin-balanced 6Li with particle
number N ¼ 60, several different values of inter-
action strength at temperature T ¼ 120 nk, tube length
L ¼ 20 μm, and q ¼ 1.47 μm−1 ≈ 0.15kF [24,48], we
demonstrate in Fig. 4(a) the Bragg spectrum as a function
of Bragg frequency. The peak frequency of the DSF
signal is plotted in Fig. 4(b) as a function of γ, from which
we can read off the peak velocity defined as the ratio of
peak frequency and q. As Fig. 4(b) demonstrates, this peak
velocity is solely determined by the charge sound velocity,
whereas the effective mass affects the width of the
DSF. Our results on charge velocity and its dependence
of the interaction strength are consistent with the
experimental measurement and analysis reported in
Ref. [24]. A more detailed study will be presented in the
near future [44].

FIG. 3. Exact low energy excitation spectra in charge (yellow
green) and spin (dark green) at γ ¼ c=n ¼ 5.03ðas ¼ 700a0Þ
with the Fermi surface kF ¼ nπ, density n ¼ N=L ¼
3 × 106ð1=mÞ, ΔE ¼ ℏω. The yellow green shows the par-
ticle-hole continuum excitation. The black solid lines indicate
the thresholds of particle-hole excitation which remarkably
manifest the free fermion-like dispersion (9) with an effective
mass m� ≈ 1.27m at low energy. The black dashed line in the
charge excitation stands for the charge velocity vc. The dark green
shows the two-spinon excitation, where the black dashed lines
stand for the spin velocities vs near ΔK ¼ 0 and ℏkF, respec-
tively. The two red dashed lines indicates the positions of
excitation momenta in charge and spin sectors for Fig. 4.

(a)

(c) (d)

(b)

FIG. 4. Normalized charge and spin DSFs of a homogeneous
Fermi gas with parameters corresponding to these of
Ref. [24]: length L ¼ 20 μm, particle numbers N ¼ 60, tempera-
ture T ¼ 120 nk, and various interaction strengths
as ¼ 400a0, 500a0, 600a0, 700a0. Here as is the 3D scattering
length, which is related to the 1D interaction strength by c ¼
−2ℏ2=ma1D with a1D ¼ ð−a2⊥=2asÞ½1 − Cðas=a⊥Þ� [52]. In con-
verting to dimensional quantities, we have assumed the atoms are
6Li with transverse harmonic confinement ω⊥ ¼ ð2πÞ198 kHz.
(a) Normalized charge DSF [Eq. (10)] vs Bragg frequency ω=2π
at q ¼ 1.47 μm−1. (b) The empty circles denote the peak
frequency of each spectrum vs γ. The corresponding peak charge
velocity ω=q is given by the right axis. The dashed line is the
charge sound velocity obtained from TBA. (c) Normalized spin
DSF [Eq. (11)] vs Bragg frequency ω=2π at δk ¼ 1.47 μm−1.
(d) The empty circles denote the peak frequency of each spectrum
vs γ. The corresponding peak spin velocity ω=δk is given by the
right axis. Stars are spin sound velocity obtain from the TBA.
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In Fig. 3, we further show that the low-lying excitation in
the spin sector gives rise to the two-spinon excitation,
which remarkably displays the low-energy behavior of the
Heisenberg spin-1=2 chain [41]. This two-spinon excitation
spectrum holds for any finite interaction strength. The spin
DSF of the Fermi gas is associated with the spin-spin
correlation described by an effective Heisenberg spin chain.
Near the Fermi momentum with wave number ΔK ¼
ℏðπ=aþ δkÞ with an effective lattice constant a ¼ L=N,
the spin DSF is given by [7,53,54]

Sðδk;ωÞ ¼ 1

1 − e−βℏω
ALL

kBT
Im

�
ρ

�
ℏωþ vsℏδk

4πkBT

�

× ρ

�
ℏω − vsℏδk

4πkBT

��
; ð11Þ

where ρðxÞ ¼ Γð1=4 − ixÞ=Γð3=4 − ixÞ, and vs is the spin
velocity of the spin chain which can also be obtained from
the second equation of (6) in the strong interaction limit.
Also, ALL ¼ −c2⊥α=2 is a constant with the length scale
parameter α and a constant factor c⊥. With the same
setting for the above charge DSF, we show in Figs. 4(c)
and 4(d) the spin DSF signal and the spin peak velocity
read off from its peak positions. As Fig. 4(d) shows, unlike
in the charge case, here the peak velocity does not
coincide with the spin sound velocity due to the peculiar
feature of the two-spinon excitation near ΔK ¼ ℏπ=a
[41]. However, both the spin peak and the sound velocities
are almost linearly decreasing functions of γ, in contrast to
the charge velocity dependence on γ. This is a clear and
unambiguous demonstration of the spin-charge separa-
tion. The fractional excitations beyond the two-spinon
DSF (11) involve length-n spin strings (high order spinon
process) in the spin imbalanced Fermi gas; see the TBA
Eqs. (2) and (3).
Summary.—We have presented universal properties of

the spin-charge separation and disrupted liquids at and off
quantum criticality. The emergent liquid and gaslike
quantum phases near QCP show a subtle interplay between
the spin and charge degrees of freedom. The universal
scaling functions, the crossover temperatures, as well as the
DSFs deeply reveal the essence of the separated TLLs and
their disruption, which takes us beyond the spin-charge
separation paradigm. Our method suggests a promising
way to control fractional spin excitations, TLLs, and
magnetism in ultracold atomic systems with higher
symmetries.
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