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Electrical double layers (EDLs) play a significant role in a broad range of physical phenomena related to
colloidal stability, diffuse-charge dynamics, electrokinetics, and energy storage applications. Recently, it
has been suggested that for large ion sizes or multivalent electrolytes, ions can arrange in a layered structure
inside the EDLs. However, the widely used Poisson–Boltzmann models for EDLs are unable to capture the
details of ion concentration oscillations and the effect of electrolyte valence on such oscillations. Here, by
treating a pair of ions as hard spheres below the distance of closest approach and as point charges otherwise,
we are able to predict ionic layering without any additional parameters or boundary conditions while still
being compatible with the Poisson–Boltzmann framework. Depending on the combination of ion valence,
size, and concentration, our model reveals a structured EDL with spatially oscillating ion concentrations.
We report the dependence of critical ion concentration, i.e., the ion concentration above which the
oscillations are observed, on the counter-ion valence and the ion size. More importantly, our model displays
quantitative agreement with the results of computationally intensive models of the EDL. Finally, we
analyze the nonequilibrium problem of EDL charging and demonstrate that ionic layering increases the
total charge storage capacity and the charging timescale.
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When an electrolyte is in the vicinity of a charged
surface, oppositely charged ions from solution migrate
toward the surface and form a region of diffuse charge. The
combined region of the diffuse charge and the Stern layer,
known as the electrical double layer (EDL), is important for
applications such as energy storage and conversion [1–4],
desalination [5,6], manipulation of colloidal particles
[7–10], and soil remediation [11,12], among others.
Fundamentally, the EDL impacts diverse physical pheno-
mena, e.g., colloidal stability [13,14], electrokinetic trans-
port in nanochannels [15,16], the structure of ionic liquids
[17–20], and the stability of a living cell [21].
The classical perspective on the EDL suggests that the

EDL thickness decreases monotonically with an increase in
the ion concentration. However, recent reports, both experi-
mental and theoretical, have demonstrated that in the
concentrated limit the screening length can increase
[18,20,21] with an increase in ion concentration due to a
layered arrangement of ions [17,19], which is often
characterized through oscillations in ion concentrations.
Typically, the EDL phenomena are modeled through

Poisson–Boltzmann (PB) equations due to their analytical
simplicity and ease of application to out-of-equilibrium
processes. The recent literature on PB models has focused
on the effect of finite ion size [22–26], dielectric decrement

[26–30], electrolyte valence [26], and the effect of short-
range interactions between ions [26,31–33]. While the
inclusion of short-range interactions in PB models, i.e.,
the fourth-order PB model, commonly known as the
Bazant–Storey–Kornyshev (BSK) model, can predict the
sign reversal in the electrical potential [31,32,34], it is
unable to capture the details of oscillations in ion concen-
trations and the effect of electrolyte valence on such
oscillations.
In contrast, approaches such as classical density func-

tional theory (cDFT) [35–42], integral-equation theories
(IET) [43,44], Monte Carlo (MC) simulations [45–49],
and molecular dynamics [50–54] are able to predict the
oscillations in ion concentrations within the EDL.
Therefore, a natural question arises: can ion concentration
oscillations be incorporated in a PB model?
To address this knowledge gap, it is crucial to recognize

that the continuum approaches such as IET [43,44] and
cDFT models [35–42] use the Waisman and Lebowitz
result [55,56], which superimposes the hard-sphere and
Coulombic potentials and yields a direct correlation
function between ions. Therefore, these approaches
include the effect of ion size on net electrostatic inter-
actions, a feature typically overlooked in the PB models
[22–26,57].
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However, the Waisman and Lebowitz result is not
compatible with the PB framework. Accordingly, we
present an approach to include the effect of ion size on
net electrostatic interactions in a PB model. Our model is
able to capture the effect of electrolyte valence, concen-
tration, and ion size on the structure of the EDL, including
the onset of the layering phenomenon, without any fitting
parameters. Most significantly, we demonstrate that the
proposed model is in quantitative agreement with computa-
tionally intensive models. We also apply our model to the
out-of-equilibrium phenomenon of EDL charging and
discuss the implications of ionic layering on the charge
storage capacity and the charging timescale.
We focus on the scenario where an EDL is in equilibrium

with a charged surface. For simplicity, we consider a
primitive-electrolyte model and assume that the ions
possess a finite size such that the cations and anions are
of equal diameter. To include the effect of ion size on net
electrostatic interactions in a PB model, we treat a pair
of ions as hard spheres when the distance between their
centers is less than the diameter of the ions and as point
charges otherwise. Since an ion is treated as a hard sphere
below the distance of closest approach, the electric poten-
tial contributions by the ion are only integrated from the
region outside the ion (for a detailed derivation, the reader
is referred to Ref. [57]). Together, these effects modify the
PB equations as [57]

−ε∇2ψðrÞ ¼
X

i

zieciðrÞ; ð1aÞ

ci½ψðrÞ� ¼
ci0 exp f− zie½ψðrÞ−ψ sðrÞ�

kBT
g

1þP
ia

3ci0ðexp f− zie½ψðrÞ−ψ sðrÞ�
kBT

g − 1Þ
; ð1bÞ

ψ s½ψðrÞ� ¼ −
1

4π

Z

a=2<jr−r0j≤a
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jr − r0j dr

0; ð1cÞ

where a is the ion diameter, zi and ci are the signed valence
and concentration of the ith ion type (i ¼ “þ ” for cation,
i ¼ “ − ” for anion, zi > 0 for cation, and zi < 0 for anion),
ci0 is the concentration of the ith ion type in the bulk, ψðrÞ is
the electrical potential, ψ sðrÞ is the screened nearest-neigh-
bor potential, ε is the electrical permittivity of the solvent, kB
is the Boltzmann constant, T is the temperature, and e is the
charge on an electron. We note that ψ s is essentially a
measure of the excluded-volume correction to the electro-
static contributions to the free energy. Equation (1a)–(1c)
represent three equations for three unknowns.
When the ions are treated as volumeless, i.e., a → 0, the

original PB equations are recovered. If ψ s → 0, the steric PB
equations with entropic corrections due to finite ion size are
obtained [22,24–26,57]. We highlight that the system of
Eq. (1a)–(1c) does not require any additional parameter or an
extra boundary condition to describe the details of the EDL.

Furthermore, since ci is an explicit function of ψ − ψ s,
Eq. (1) can be reduced to an integro-differential equation for
ψ . We note that such a nonlocal screening potential has not
been previously included in PB models of the EDL.
Next, we focus on a one-dimensional scenario where a

planar surface with surface charge density σ is in equilibrium
with a binary electrolyte (valence zþ and z−) such that the
concentration of electrolyte far away from the surface (i.e.,
bulk) is cb. We denote the direction perpendicular to the
surface as x and assume that the charged surface is located at
x ¼ 0. We denote λB ¼ e2=ð4πεkBTÞ as the Bjerrum length.
We define the dimensionless position X ¼ x=a, dimension-
less potential Ψ ¼ eψ=ðkBTÞ, and ion volume fraction
χ� ¼ a3c�. We impose a constant surface charge boundary
condition atX ¼ 0 and a Debye–Huckel solution for X → ∞.
We also assume that the ion concentration is zero for X ≤ 1

2
,

akin to a Stern layer with thickness equal to the ion radius. In
addition to the ion valences (zþ and z−), the three dimension-
less parameters that govern the response are a=λB, the
dimensionless surface charge density S ¼ σλ2B=e, and the
total ion volume fraction in the bulk χb ¼ ðjzjþ þ
jzj−Þa3cb [57].
Our model predicts that the ion concentrations within the

EDL can exhibit oscillations, which is a signature of
molecular structure. Furthermore, we find that the oscil-
lations are strongly dependent on the valence of the
electrolyte. For a positively charged surface, we calculate
χ� for a 1∶1 electrolyte (zþ ¼ 1 and z− ¼ −1) and a 1∶3
(zþ ¼ 1 and z− ¼ −3) electrolyte (see Fig. 1). For the 1∶1

FIG. 1. Prediction of the EDL structure by the proposed model
for a charged surface located at X ¼ 0. Plot of ion volume
fractions (χ�) versus the dimensionless distance from the surface
(X) for (a) 1:1 electrolyte and (b) 1:3 electrolyte. χ� data is
converted to the number of ions N� in each spatial bin. The N�
data is transformed into a three-dimensional representation
of the EDL structure for (c) 1:1 electrolyte and (d) 1:3 electro-
lyte. a ¼ 0.6 nm, ðjzjþ þ jzj−Þcb ¼ 600 mM, T ¼ 298 K,
ε ¼ 6.94 × 10−10 F=m, and σ ¼ 8.7 × 10−2 C=m2. Anions are
shown in blue and cations are shown in red. The distribution of
ions in the y and z directions in panels (c) and (d) is random.

PHYSICAL REVIEW LETTERS 125, 188004 (2020)

188004-2



electrolyte, χ� is monotonic for all X. However, for the 1∶3
electrolyte, the oscillations in χ� are significant. In fact,
even for a positively charged surface, the cation concen-
tration is higher than the anion concentration around X ≈ 1.
Finally, since oscillations in the ion concentrations exist on
the order of the ion size and the local maxima in χþ
coincides with the local minima in χ−, the EDL has a
layered structure of ions.
For a visual representation of the ion concentration

distribution, we transformed the χ� data to absolute number
of ions N� in a 10 × 10 × 10 box (Fig. 1, see [57]). We find
that for the 1∶1 electrolyte, Nþ < N− for all X. In contrast,
for the 1∶3 electrolyte, Nþ > N− for X ¼ 1 and displays
oscillations in subsequent layers. We emphasize that the
structure of the EDL emerges only due to the inclusion of
ψ s in our model [Eq. (1)].
The structure of an equilibrium EDL has implications for

out-of-equilibrium electrokinetic phenomena. For instance,
in electrophoresis [58], diffusiophoresis [59–61], or charg-
ing of the EDL [62,63], the local equilibrium relations of
the EDL are used for understanding the physics of the
system. To this end, we focus on the phenomenon of
overcharging where the colloidal particles display electro-
phoresis opposite to the expected direction [51–53]. For
example, Kubíčková et al. [53] showed experimentally that
overcharging occurs for trivalent electrolytes, whereas
monovalent and divalent electrolytes do not display over-
charging. A molecular dynamics model revealed that the
net cumulative charge from the surface reverses sign for
trivalent electrolytes and thus the colloidal particles behave
as oppositely charged particles [53]. However, the existing
PB approaches are unable to predict overcharging and the
effect of electrolyte valence on it [53].
To explain the phenomenon of overcharging, we evaluate

ΨðXÞ for the one-dimensional scenario described above.
For a positively charged surface, the anion valence signifi-
cantly influences ΨðXÞ [see Fig. 2(a)]. For a 1∶1 electro-
lyte, ΨðXÞ decays monotonically. For both 1∶2 and 1∶3
electrolytes, ΨðXÞ reverses sign and has a local minimum,
where the minimum is deeper for the 1∶3 electrolyte. We
plot the dimensionless charge density Pe ¼

P
zici=cb for

the three electrolytes in Fig. 2(b). Pe is monotonic for the
1∶1 electrolyte, whereas the 1∶2 and 1∶3 electrolytes show
oscillations in Pe. Furthermore, the sign of Pe reverses for
1∶2 and 1∶3 electrolytes with a stronger reversal for the
1∶3 electrolyte. The charge reversal occurs because the
cations migrate closer to the wall for multivalent electro-
lytes [Fig. 1(b)]. The reversal in the sign of ΨðXÞ and Pe
indicates a tendency of the multivalent electrolytes to cause
overcharging.
Next, we investigate the conditions for reversal in the

sign of ΨðXÞ. To this end, we calculate the critical total ion
concentration in the bulk above which ΨðXÞ reverses the
sign, i.e., χb > χb;crit [see Fig. 2(c)]. We plot χb;crit versus
a=λB for a constant S. For equal a=λB, the 1∶3 electrolyte

has the smallest χb;crit, indicating that multivalent electro-
lytes lead to EDL structure for smaller ion concentrations.
In dimensional units, we find that the critical bulk con-
centration, cb;crit, decreases sharply with an increase in the
ion size a [Fig. 2(d)]. For a ≈ 1 nm, the cb;crit can be as
small as a few mM, indicating that the structure inside the
EDL can start to appear even for dilute electrolyte con-
centrations. Consequently, at moderate and large concen-
trations, the ions can display a layered structure further
away from the charged surface. This result is especially
significant for ionic liquids where the ion sizes are large
[22,24] and the ionic layers influence the effective Debye
length [17,18]. Finally, the dependence of ΨðXÞ on surface
charge density can also be crucial for ionic layering
[57,64].
We compare the predictions of our proposed model with

the steric PB model [22,24,26], the BSKmodel [26,31–33],
a cDFT model based on the generalized van der Waals
theory [38,39], and MC simulations based on the primitive-
electrolyte model framework [45,46]. Since MC simula-
tions do not rely on the continuum scale assumptions of the
other approaches, we consider them to be the most
accurate. Our results are summarized in Fig. 3.
The steric PB model predicts a monotonic ΨðXÞ for both

1∶1 and 2∶2 electrolytes and does not predict a sign

(a) (b)

(c) (d)

FIG. 2. Effect of electrolyte valence on overcharging. Plot of
(a) dimensionless electric potential Ψ and (b) dimensionless
charge density jPej versus the dimensionless distance from
the surface, X, for different combinations of electrolyte
valence. a ¼ 0.6 nm, ðzþ − z−Þcb ¼ 600 mM, T ¼ 298 K,
ε ¼ 6.94 × 10−10 F=m, and σ ¼ 8.7 × 10−2 C=m2 were used
as parameter values. (c) Variation of the critical total ion volume
fraction in the bulk (χb), i.e., the electrolyte concentration at
which Ψ reverses in sign, with dimensionless ion size (a=λB,
where λB is Bjerrum length) for different combinations of cation
and anion valence. (d) Plot of the critical bulk concentration
cb;crit, i.e., electrolyte concentration at which Ψ reverses sign with
ion size.

PHYSICAL REVIEW LETTERS 125, 188004 (2020)

188004-3



reversal in potential (see Fig. 3). In contrast, the BSKmodel
predicts a sign reversal in ΨðXÞ for both 1∶1 and 2∶2
electrolytes, unlike the MC simulation that only predicts
the sign reversal for the 2∶2 electrolyte. The cDFT yields a
reversal in ΨðXÞ, but the value of ΨðXÞ is significantly
lower than the MC predictions. Finally, our proposed
model yields ΨðXÞ closest to the MC predictions. More
importantly, the proposed model shows a sign reversal in
ΨðXÞ for 2∶2 electrolytes, similar to the MC predictions.
We observe qualitatively similar trends between the afore-
mentioned models when compared to IET (see Fig. S3 in
[57]) and molecular dynamics (see Fig. S4 in [57]). The
quantitative disagreement between the proposed model and
more computationally intensive models arise because we
assume that ions act as point charges for distances greater
than the closest approach and ignore the hard-sphere
correlations in that region.
Since we treat ions as hard spheres below the distance of

closest approach, our model is similar to the cDFT and the
IET approaches. Yet, we are able to preserve the simplicity
and computational appeal of the PB framework by exclud-
ing interactions that are less consequential and by using the
lattice gas model to describe entropy. The intent of the BSK
model is similar to our approach. However, it is unable to
self-consistently capture the effect of ion size and electro-
lyte valence on charge oscillations because it relies on the
correlation length scale to capture ion-ion correlations and
overlooks the inherent nonlocal nature of these correla-
tions. Nevertheless, our model is computationally more
expensive than the BSK model and thus there is a trade-off
between accuracy and computational ease (see Table S1 in
[57] for a comparative analysis of different modeling
approaches).
Next, we apply our model to an out-of-equilibrium

phenomenon. We investigate the EDL charging process
between flat plates (see Ref. [57] for details), typically
studied using the PB models [23,62]. We consider the
scenario where a binary electrolyte of concentration cb, ion
valences z�, ion size a, and ion diffusivities D (assumed to

be equal), is brought in contact with two electrodes
separated by a distance 2L [see Fig. 4(a)]. We assume
that ion fluxes are zero across the electrodes and that
λ=L ≪ 1, where λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εkBT=ð

P
z2i e

2cbiÞ
p

is the Debye
length. At t ¼ 0, a potential difference of 2ϕ is applied such
that EDLs develop at the electrodes. For t > 0, the potential
drop and charge stored inside the EDLs increase with time.
At steady state, the combined potential drop across the two
EDLs equals 2ϕ and the total charge saturates. We plot the
magnitude of dimensionless charge stored inside the EDL,
i.e., Q ¼ jσj=½ðjzjþ þ jzj−Þecbλ�, with dimensionless time,
i.e., τ ¼ tD=ðλLÞ in Fig. 4(b). Our model yields a larger Q
than the steric PB model for both 1∶1 and 1∶3 electrolytes.
In fact, the increase is larger for the 1∶3 electrolyte because
of a higher tendency for EDL structuring, which in turn
increases the effective Debye length that ultimately
increases the capacity to store charge. Finally, an increase
in effective Debye length also increases the timescale of
charging [62]. In summary, since our model is based on
the PB framework, it is able to reveal the subtle features
of a nonequilibrium phenomenon that may be otherwise
overlooked.
Looking forward, our model can be extended to two-

dimensional and three-dimensional EDLs that will yield
insights into the arrangement of ions tangential to the
surface. In addition, our methodology can be employed to
probe the effect of shape anisotropy on the screening
potential, which will be especially useful for large and
shape-asymmetric ions. Furthermore, our approach can be
extended to derive modified Nernst–Planck equations to
analyze electrophoresis [58], diffusiophoresis [59,61],
charging of supercapacitors [62,63], desalination [5,6],
and soil-based phenomena [11,12]. Our model can also
be exploited to obtain relationships for colloidal stability,
such as in the Derjaguin–Landau–Verwey–Overbeek
theory. The oscillations in ion concentration profiles will
also be crucial for understanding the structure of ionic
liquids. Lastly, we highlight that, since our approach

(a) (b)

FIG. 3. Comparison of the proposed model with other models.
Plot of the dimensionless electric potential Ψ versus the dimen-
sionless distance from the surface X for (a) 1:1 and (b) 2:2
electrolyte. The parameter values and the results for cDFT and
MC simulations were extracted from Refs. [38] and [45,46]. The
steric PB model was taken from Refs. [22,26], and the BSK
model was adapted from Ref. [31].

(a) (b)

FIG. 4. Charging dynamics of electrical double layers
in a planar geometry. (a) Schematic of the problem setup.
(b) Plot of the absolute dimensionless charge stored inside EDLs,
i.e., Q ¼ jσj=½ðjzjþ þ jzj−Þec0λ�, with dimensionless time, i.e.,
τ ¼ tD=ðλLÞ. ϕ¼37.5mV, a ¼ 0.6 nm, ðjzjþ þ jzj−Þcb ¼ 1 M,
T ¼ 298 K, and ε ¼ 6.94 × 10−10 F=m. The dependence on L is
absorbed in the definition of τ.
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already includes the effect of ion size, it can be adapted for
concentrated electrolytes, large potentials, and mixtures of
electrolytes [65].
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