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It has been argued that fluctuations of fermion parity are harmful for the demonstration of non-Abelian
anyonic statistics. Here, we demonstrate a striking exception in which such fluctuations are actively used.
We present a theory of coherent electron transport from a tunneling tip into a Corbino geometry Josephson
junction where four Majorana bound states (MBSs) rotate. While the MBSs rotate, electron tunneling
happens from the tip to one of the MBSs thereby changing the fermion parity of the MBSs. The tunneling
events in combination with the rotation allow us to identify a novel braiding operator that does not
commute with the braiding cycles in the absence of tunneling, revealing the non-Abelian nature of MBSs.
The time-averaged tunneling current exhibits resonances as a function of the tip voltage with a period that is
a direct consequence of the interference between the noncommuting braiding operations. Our work opens
up a possibility for utilizing parity nonconserving processes to control non-Abelian states.
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Introduction.—A braiding operation reveals the quantum
statistics of identical particles [1–3]. Majorana zero-energy
states bound to certain defects (e.g., vortices or edges) in
topological superconductors are quasiparticles obeying
non-Abelian statistics [4–8]. In an isolated system with
2N decoupled Majorana states, there is a 2N-fold
degenerate ground-state manifold fjΨig, and adiabatically
moving one Majorana state around another acts as a unitary
matrix on the manifold. Such unitary matrices of different
braiding operations, A and B, are in general non-
commutative, so that the order of operations matter,

ABjΨi ≠ BAjΨi or ðAB − BAÞjΨi ≠ 0: ð1Þ

Non-Abelian braiding is one of the hallmarks of topo-
logical quantum phases associated with non-Abelian
statistics appearing in many contexts [3,9,10] and also
represents the basic resource for executing topologically
protected gates for quantum computing [1,11].
The essence of the present work is to provide transport

signatures of Majorana bound states (MBSs) induced by the
noncommutativity shown in Eq. (1). The envisioned system
is a Corbino geometry topological Josephson junction (JJ),
formed by two s-wave superconductors on a topological
insulator (TI) surface [see Fig. 1(a)]. Four vortices, each
hosting a MBS, rotate along the junction, and the time-
dependent tunneling conductance between the junction and a
metallic tip is measured [12]. A ground state of the system
evolves in the fourfold degenerate ground-state manifold,
governed by the rotation and the coherent electron tunneling

processes. The evolution can be cast into two braiding
operators [corresponding to A andB in Eq. (1)] which do not
commute: one is a parity-conserving rotation and the other is
a tunneling-assisted braiding. In the low bias voltage regime,
the time-averaged conductance exhibits unusual peak
positions, which we interpret as a direct signature of non-
commutativity of the two braiding operators.
Tremendous amounts of proposals and experiments

lead to great achievements in the realization [13–19],
manipulation [20–25], and detection [26–37] of MBSs in

(a) (b)

FIG. 1. (a) Schematic of a Corbino geometry Josephson
junction formed by thin-film superconductors (S1 and S2)
deposited on the surface of a topological insulator (TI). In the
presence of four flux quanta 4Φ0, four MBSs γj (red balls) appear
in the junction. Majorana positions can move along the junction
when applying a small voltage across the junction, allowing us to
perform an adiabatic rotation. (b) Braiding depicted as worldlines
of the four MBSs corresponding to the π=2 rotation shown in (a).
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superconducting hybrid structures. In particular, a recent
experiment exploiting a quantum anomalous Hall insulator-
superconductor structure [38] boosts interest in searches for
transport signatures of non-Abelian braiding [39,40]. Based
on such hybrid structures, the authors of Refs. [39,40]
theoretically investigated transport properties of Mach-
Zehnder-like interferometers of chiral Majorana modes.
The overlap or fusion of two paths of Majorana modes
whose relative dynamics is determined by braiding with the
other Majoranas signals a unitary evolution (which is not a
phase factor) of Majorana modes.
Different to these recent studies in Refs. [39,40], we

demonstrate interference involving four rotating MBSs
whose braiding operations are assisted by tunneling of
electrons into or out of the MBSs and thus in which the
fermion parity formed by the MBSs is not conserved. Such
tunneling-assisted braiding has been to the best of our
knowledge not considered before, on the contrary, electron
tunneling was seen detrimental for topological quantum
processing [41–43]. We will show that, in our scheme,
electron tunneling probes non-Abelian statistics via the
tunneling conductance. Our scheme does not require
control of fusions of Majorana states.
Theoretical model.—We consider a Corbino JJ deposited

on the surface (x-y plane) of a three dimensional TI
[Fig. 1(a)]. The circular shaped junction with a radius R
is formed by thin films of inner (S1) and outer (S2) s-wave
superconductors and contains four magnetic flux quanta,
4Φ0 with Φ0 ¼ h=ð2eÞ, inducing a phase difference across
the junction [see Eq. (4)]. The Bogoliubov–de Gennes
Hamiltonian for the TI surface proximity coupled to the
Corbino JJ is given by [44]

HC ¼ 1

2

Z
d2rΦ†ðrÞHCΦðrÞ; ð2Þ

HC ¼
�
H0 − μ ΔðrÞ
Δ�ðrÞ μ −H0

�
; ð3Þ

and ΦðrÞ ¼ ðΦ↑;Φ↓;Φ
†
↓;−Φ

†
↑ÞT is the Nambu spinor and

H0 ¼ vFðσxpx þ σypyÞ with Pauli spin matrices σx;y
describes the surface states and μ is the chemical potential.
The proximity-induced superconducting gap ΔðrÞ is

ΔðrÞ ¼
(
Δ0eiϕ1 0 ≤ r < R;

Δ0e−i4θþiϕ2 r > R;
ð4Þ

where ϕ1 and ϕ2 are spatially uniform phases in each
superconducting region, and the polar-angle-dependent
phase −4θ at r > R is due to the presence of the four flux
quanta [45]. By solving the Bogoliubov–de Gennes equa-
tion HCΨðrÞ ¼ EΨðrÞ, we find four Majorana wave
functions ΨMjðrÞ with j ∈ f1; 2; 3; 4g, at zero energy
E ¼ 0. They are localized at ðr; θÞ ¼ ðR; θjÞ where
θj ¼ ð3π − 2πjÞ=4 − ðϕ1 − ϕ2Þ=4, at which the local

phase difference across the junction is π. Detailed calcu-
lations of the Majorana wave functions for μ ¼ 0 are given
in Supplemental Material [46].
If we change ϕ1 − ϕ2 by 2π, the four MBSs rotate by π=2

in a clockwise direction maintaining their relative
distances, as plotted in Fig. 1(a), leading to a transformation
γj → UcγjU

†
c,

γ1 → −sγ2; γ2 → −sγ3;

γ3 → sγ4; γ4 → −sγ1; ð5Þ

where γj ¼
R
d2rΨ†

MjðrÞΦðrÞ. s ¼ 1ð−1Þ corresponds to
the change of ϕ1ðϕ2Þ by 2πð−2πÞ. Graphical representation
of the transformation is given in Fig. 1(b) for the s ¼ −1
case. A rotation operator Uc for the transformation can
be constructed as a product of three pairwise braidings
Uc ¼ U41U12U23 where Uij is the braiding exchange
operator of γi and γj given by Uij ¼ exp ðsπγiγj=4Þ [49].
The adiabatic rotation can be achieved if a dc-bias

voltage VJ across the junction is much smaller than the
excitation energy of the junction. For a finite VJ, ϕ1 − ϕ2

varies in time t as ϕ1 − ϕ2 ¼ ϕ0 þ 2eVJt=ℏ where ϕ0

is a spontaneously chosen constant. The states
ΨMj½r;ϕ1ðtÞ;ϕ2ðtÞ� then become instantaneous eigenstates
of HC½ϕ1ðtÞ;ϕ2ðtÞ� at zero energy, and Uc can be consid-
ered as the time evolution operator of the MBSs from t to
tþ TJ, where TJ ¼ ðπℏ=eVJÞ is the time needed for the
π=2 rotation.
Tunneling-assisted Majorana braiding.—To explore the

effect of electron tunneling, we connect a metal tip to the
Corbino JJ, as depicted in Fig. 2(a). The tip is located such
that an electron can tunnel onto or off the Corbino JJ
through γ1ðt0Þ at t ¼ t0, and we assume that the tunnel
coupling is switched on at t ¼ t0. A phase coherent time-

(a) (b)

FIG. 2. (a) Time-dependent electron tunneling between the
rotating MBSs and a metal tip for detecting non-Abelian
statistics. (b) Tunneling-assisted braiding created by the compo-
sition of the π=2 rotation shown in (a) and electron tunneling. The
tunneling effect reverses the exchange direction of a Majorana
pair involving γ1. A signature of the interference processes
involving the non-Abelian braiding operations—the tunneling-
assisted braiding and the braiding shown in Fig. 1(b)—is probed
by the time-averaged tunneling current.
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dependent tunneling event between the tip and adiabatically
rotating Majorana states can occur at discrete times
tq ¼ t0 þ qTJ, where q ¼ 0; 1; 2;…. Creation or annihi-
lation of an electron via a Majorana state at t ¼ tq is
described by γ1ðt0ÞjΨgðtqÞi, where jΨgðtqÞi ¼ Uq

c jΨgðt0Þi
is the time-evolved initial state (being part of the ground-
state manifold) of the MBSs from t0 to tq. Note that our
proposal does not depend on the initial configuration of the
ground state and other choices of Majorana states coupled
to the tip at t ¼ t0. Hereafter, we will denote γ1ðt0Þ by γ1.
The time evolution of a Majorana state from t ¼ tq0 to tq

at which tunneling events occur is described by the
Majorana Green’s function

Mðtq; tq0 Þ ¼ −iTr½ρ0γ̂1ðtqÞγ̂1ðtq0 Þ�; ð6Þ

where γ̂1ðtqÞ ¼ ðU†
cÞqγ1Uq

c and ρ0 is a density matrix of the
Majorana state at t ¼ t0. For a more comprehensive
description of the tunneling effect, we introduce a tunnel-
ing-assisted braiding operator,

Ūc ¼ γ1Ucγ1; ð7Þ

consisting of three events: changing fermion-occupation-
number parity due to the tunneling at t ¼ tq, followed by an
evolution for a time TJ with Uc, and then changing the
parity again at t ¼ tq þ TJ. The transformation governed
by Ūc is drawn in Fig. 2(b); comparing the cases without
and with the tunneling in Figs. 1(b) and 2(b), respectively,
notice that the tunneling effectively reverses the direction of
the pairwise braiding when a braiding involves γ1.
Therefore, Ūc ¼ U14U21U23 can be considered—besides
Uc—as another genuine braiding operator. Mðtq; tq0 Þ then
can be presented as

Mðtq; tq0 Þ ¼ −iTr½ρ00ðŪcÞnðU†
cÞn�; ð8Þ

where we used the cyclic property of the trace. ρ00 ¼
ðUcÞqρ0ðU†

cÞq and n ¼ q − q0. We find that U†
c and Ūc

do not commute, ½Ūc; U
†
c� ≠ 0. As a consequence,

Mðtq; tq0Þ is not just a sum of phase factors but involves
nontrivial state changes in the ground-state manifold. We
show below that the noncommuting braidings result in
observable interference signatures free of the necessity of
physically fusing MBSs.
Transport signatures.—To obtain the tunneling current

between the tip and the JJ in the weak coupling limit, we
extend the formalism of Ref. [12] to four MBSs. The
Hamiltonian of the tip is HN ¼ P

kσ εkc
†
kσckσ , where ckσ is

the electron annihilation operator in the tip with momentum
k and spin σ. Since we are interested in the low-energy
sector of the junction, tunneling between the tip and
the MBSs is the only relevant process. Around t ¼ tq
where the coupling strength to γ1 is maximal, we assume
that the coupling increases and decreases exponentially as

γ1 approaches to and leaves from the tip, respectively, while
its phase does not change significantly. Moreover, since the
Majorana states are spin polarized, and couple only to
electrons of the tip with their spin parallel to that of the
Majorana states; electrons with opposite spin are reflected
at the junction between the tip and the Corbino JJ and do
not contribute to the tunneling current. Then the tunneling
Hamiltonian becomes

HTðtÞ ¼
X
k;q

e−λjt−tqjV1kc
†
kγ1 þ H:c:; ð9Þ

where λ−1 is the tunneling duration and V1k is the coupling
between the tip and γ1. Here, we have assumed λ−1 ≪ TJ,
implying that only nearest-neighbor coupling between the
tip and the MBSs is taken into account.
Using the current expression IðtÞ ¼ −edNT=dt with the

tip number operator NT ¼ P
k c

†
kck and lowest order

perturbation theory in HTðtÞ, the differential conductance
of the time-averaged current measured after many rotation
cycles of MBSs has the form

dĪ
dV

¼ e
h

Z
∞

−∞
dεTðεÞ½SðεÞ þ Sð−εÞ� dnFðε − eVÞ

dV
; ð10Þ

where nF is the Fermi-Dirac distribution and eV is the bias
voltage. The tunneling probability TðεÞ and the interference
term SðεÞ are given by

TðεÞ ¼ 2ΓTJ

ℏ

�
2λTJ

λ2T2
J þ ε̃2

�
2

; ð11Þ

SðεÞ ¼ Re

�
1

2
þ i

XQ
n¼1

einε̃MðtQ; tQ−nÞ
�
: ð12Þ

Here, ε̃ ¼ ε=ðℏT−1
J Þ and the integer Q ≫ 1, which will go

to infinity later. Γ ¼ 2πρjV1kj2 where ρ is the tip density of
states. We assumed a wideband approximation where ρ and
V1k are energy independent and we neglected the contri-
butions proportional to e−λTJ=2; note that these small
contributions do not change the positions of conductance
peaks. The details for the calculation of Ī are given in [46].
In the limit Q → ∞, we obtain

dĪ
dV

¼ e2

h
πℏ

8TJkBT

X
l

TðεlÞsech2
�
eV − εl
2kBT

�
; ð13Þ

which shows peaks at εl ¼ ðℏ=4TJÞð2πl − αÞ where l is an
integer and α ¼ π arising from a 2π rotation of the four
MBSs. This perturbative calculation is valid for
Tðε0Þℏ=ð8TJÞ ≪ kBT ≪ Eg where Eg is the excitation
energy of the junction.
The dĪ=dV in Eq. (13) is plotted in Fig. 3 for realistic

parameters. It shows peaks at eV ¼ εl. This is our main
result. The peak positions are determined by TJ and α, but
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are independent of system details such as the initial
Majorana state at t ¼ t0 and the tunneling strength Γ.
Note that the periodicity TJ of the system Hamiltonian in
Eqs. (2) and (9) does not coincide with the periodicity of the
ground state 4TJ from the fact that U4

c ¼ Ū4
c ¼ 1. It is a

consequence of the nontrivial state evolution within the
ground-state manifold of 4 MBSs requiring a matrix
structure. As shown below, the 4TJ periodicity and the
noncommutativity between Uc and Ūc result in peaks in
dĪ=dV separated by h=ð4TJÞ and not by h=TJ associated
with the frequency of appearance of MBSs beneath the tip.
The results are the same for the case of an anticlockwise
rotation of four MBSs.
Non-Abelian statistics.—In order to clearly unveil such a

link between the interference effect and the non-Abelian
matrix structure, we analyze the term SðεÞ in the occupation
number basis fjn1n2ig, where n1; n2 ¼ 0, 1 are occupation
numbers for fermionic operators f1 ¼ ½ðγ1 þ iγ2Þ=2� and
f2 ¼ ½ðγ3 þ iγ4Þ=2�, see [46] for more details on the
occupation number representation. As Eq. (13) is indepen-
dent of the initial condition, the specific form of the initial
density matrix (ρ0 or ρ00) is unimportant. Substituting
Eq. (8) into Eq. (12) leads to SðεÞ ¼ RefTr½ρ00ŜðεÞ�g,
where

ŜðεÞ ¼ 1

2
þ
XQ
n¼1

einε̃ðŪcÞnðU†
cÞn: ð14Þ

Note that the operations U†
c and Ūc do not commute, and

thus the sum cannot be treated as a simple geometric series:P∞
n¼1 e

inε̃ðŪcÞnðU†
cÞn⟶

P∞
n¼1 e

inε̃einφ. The operator
ŜðεÞ comes from the overlap between the following two
processes of temporal length QTJ: In process I, an electron
tunnels from the tip to γ1 at t0 þ ðQ − nÞTJ, and in process
II, the tunneling happens at t0 þQTJ. Here, einϵ̃ is the
dynamical phase factor gained for the time interval nTJ.
The interference between terms of different n determines
the peak positions of the conductance.
Let us assume that an even parity state, a mixture of j00i

and j11i, is prepared at t ¼ t0; the case of an odd parity

state is obtained in a similar way. In the limit Q → ∞,
Eq. (14) for an even parity is given by

ŜðεÞjeven ¼
1

2
þ ð−siτzeiε̃ − iτyei2ε̃ þ siτxei3ε̃

− ei4ε̃Þ ×
X∞
m¼0

eimð4ε̃þπÞ; ð15Þ

where τx;y;z are Pauli matrices acting in the space of the
even parity states, j00i and j11i. In the second line, the
summation is classified into four categories in each of
which the Pauli matrix (including the identity matrix)
is factored out, manifesting the interference with period
4TJ. Using Eqs. (14) and (15) yields SðεÞ þ Sð−εÞ ¼P

m exp½imð4ε̃þ πÞ� ∼P
l δ½4ε̃þ πð2lþ 1Þ�, where m, l

are integers. Together with Eq. (10) we obtain our final
result Eq. (13). We note that the period of 4TJ cannot be
obtained by corresponding braiding operators that would
commute, see [46]. We also note that this non-Abelian
interference effect cannot be envisaged in a system with
two MBSs where noncommuting braiding operations do
not occur [12].
We remark that the suggested test of non-Abelian

braiding statistics needs only a local measurement of
MBSs that are at zero energy so that the way we fuse
the four MBSs into the two fermions f1 and f2 is actually
arbitrary. The period 4TJ also does not depend on a specific
initial state (if the time-average is performed after times
t ≫ TJ) but is only a consequence of the noncommuting
matrix structure ofUc and Ūc. The extracted information of
the state changes is due to interference that is generated
because the MBSs rotate in the Corbino geometry JJ. This
is fundamentally different compared to other braiding
schemes which use the selective switching on and off of
couplings between the Majorana bound states and the
readout of the non-Abelian state changes is done without
physically moving the MBSs [22,50]. In our scheme the
rotation induces a dynamical coupling between the MBSs
as we discuss in detail in the Supplemental Material [46]
employing the Floquet picture. There we consider also the
zero temperature case to all orders in the tunneling from the
tip to the MBSs.
Discussion and conclusion.—We have demonstrated that

a non-Abelian state evolution can be identified in tunneling
conductance measurements between four rotating MBSs in
a Corbino geometry topological Josephson junction and a
metal tip. Unitary evolutions of the MBSs acting on even
and odd parity subspaces, which are separable if the
fermion parity is conserved, are intertwined by electron
tunneling, inducing parity-conserving and tunneling-
assisted braiding operators. Coherent interference between
different orders of round trips of Majorana states governed
by the parity-conserving and tunneling-assisted braiding
operators yields a time-averaged conductance exhibiting
peaks with a period of h=ð4TJÞ as a function of bias voltage

FIG. 3. Plot of the time averaged differential conductance
given in Eq. (13) with parameters ℏT−1

J ¼ 0.1 meV ¼
10−1ℏλ ¼ 10kBT ¼ 10Γ. The conductance peak spacing
h=ð4TJÞ is a consequence of the non-Abelian state evolution
within the degenerate ground-state manifold.
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between the metal tip and the Josephson junction, whereas
the period of the Hamiltonian is TJ. This constitutes a clear
signature of non-Abelian state evolution of four MBSs.
We explicitly showed that these results have their origin

in the noncommutativity of the parity-conserving and
tunneling-assisted braiding operators and are therefore
independent on the way we fuse the MBSs into fermions
which is fundamentally different from other recent pro-
posals that use time-dependent couplings between the
MBSs or Coulomb interaction to lift their degeneracies
[11,22,50]. Here, an effective coupling between MBSs
is induced dynamically by the rotation which only
requires a dc-Josephson voltage applied between the two
superconductors.
We expect that other kinds of exotic zero modes such as

MBSs in time-reversal invariant topological super-
conductors [51–57] and parafermions [58–66] could be
analyzed with our time-dependent tunneling scheme to
manifest the quantum statistics of the corresponding modes.
The experimental realization may be challenging, but

within reach of current experiments. Assuming the prox-
imity-induced superconducting gap Δ0 ¼ 1 meV that can
be achieved, for example, in thin films of Nb or NbN
[67,68], the excitation energy gap of Josephson vortices of
the junction can be estimated by Eg ¼ Δ0

ffiffiffiffiffiffiffiffiffiffiffi
4ξ=R

p
∼

0.9 meV for the radius of the junction R ¼ 5ξ [12,69],
where ξ is the superconducting coherence length. We
require a coherent and adiabatic rotation of the MBSs so
that TJ (the time taken for the π=2 rotation) should satisfy
ℏ=Egð¼ 0.7 psÞ ≪ TJ ≪ tqpð≳μsÞ where tqp is the quasi-
particle poisoning time [70,71]. At the same time, the
temperature should be much smaller than the separation
between the conductance peaks h=ð4TJÞ. MBSs can be
spaced unequally apart in the presence of inhomogeneities
in the junction. However, they do not affect the rotation
time TJ due to the periodicity of the system Hamiltonian
and corresponding interference traces on the time scale of
4TJ due to non-Abelian evolution would remain. We
believe that the Corbino geometry topological Josephson
junction can also be realized in heterostructures of a thin-
film topological insulator and a superconductor [72]
or Pb=Co=Sið111Þ two-dimensional topological super-
conductor [73].
Our findings provide a new way of looking at braiding

experiments, by actively using parity switching events by
tunneling, instead of avoiding them. This may define a new
way to build non-Abelian operations for topological qubits
utilizing coherent fluctuations of the fermion parity. Such a
change of fermion parity could be achieved on demand
during a definite time using charge pumps based on
quantum dots in the single electron regime [74] coupled
to the setup. Quantum dots could already be coupled to
MBSs in experiment [31].
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wave functions, Floquet analysis, and the transport experi-
ment with Majorana braidings that commute, which
includes Refs. [12,47,48].

[47] J. Cayssol, B. Dóra, F. Simon, and R. Moessner, Floquet
topological insulators, Phys. Status Solidi RRL 7, 101
(2013).

[48] K. Flensberg, Tunneling characteristics of a chain of
Majorana bound states, Phys. Rev. B 82, 180516(R) (2010).

[49] D. A. Ivanov, Non-Abelian Statistics of Half-Quantum
Vortices in p-Wave Superconductor, Phys. Rev. Lett. 86,
268 (2001).

[50] P. Bonderson, Measurement-only topological quantum
computation via tunable interactions, Phys. Rev. B 87,
035113 (2013).

[51] F. Zhang, C. L. Kane, and E. J. Mele, Time-Reversal-
Invariant Topological Superconductivity and Majorana
Kramers Pairs, Phys. Rev. Lett. 111, 056402 (2013).

[52] A. Keselman, L. Fu, A. Stern, and E. Berg, Inducing
Time-Reversal-Invariant Topological Superconductivity
and Fermion Parity Pumping in Quantum Wires, Phys.
Rev. Lett. 111, 116402 (2013).

[53] A. Haim, A. Keselman, E. Berg, and Y. Oreg, Time-reversal-
invariant topological superconductivity induced by
repulsive interactions in quantum wires, Phys. Rev. B 89,
220504(R) (2014).

[54] K. Wölms, A. Stern, and K. Flensberg, Local Adiabatic
Mixing of Kramers pairs of Majorana bound states,
Phys. Rev. Lett. 113, 246401 (2014).

[55] K. Wölms, A. Stern, and K. Flensberg, Braiding properties of
Majorana Kramers pairs, Phys. Rev. B 93, 045417 (2016).

[56] J. Li, W. Pan, B. A. Bernevig, and R. M. Lutchyn, Detection
of Majorana Kramers Pairs Using a Quantum Point Contact,
Phys. Rev. Lett. 117, 046804 (2016).

[57] C. Schrade and L. Fu, Parity-Controlled 2π Josephson
Effect Mediated by Majorana Kramers Pairs, Phys. Rev.
Lett. 120, 267002 (2018).

[58] P. Fendley, Parafermionic edge zero modes in Zn-invariant
spin chains, J. Stat. Mech. (2012) P11020.

[59] N. H. Lindner, E. Berg, G. Refael, and A. Stern, Fraction-
alizing Majorana Fermions: Non-Abelian Statistics on the
Edges of Abelian Quantum Hall States, Phys. Rev. X 2,
041002 (2012).

[60] M. Cheng, Superconducting proximity effect on the edge of
fractional topological insulators, Phys. Rev. B 86, 195126
(2012).

[61] D. J. Clarke, J. Alicea, and K. Shtengel, Exotic non-Abelian
anyons from conventional fractional quantum Hall states,
Nat. Commun. 4, 1348 (2013).

[62] A. Vaezi, Fractional topological superconductor with
fractionalized Majorana fermions, Phys. Rev. B 87,
035132 (2013).

[63] M. Barkeshli and X.-L. Qi, Synthetic Topological Qubits in
Conventional Bilayer Quantum Hall Systems, Phys. Rev. X
4, 041035 (2014).

[64] J. Klinovaja and D. Loss, Time-reversal invariant para-
fermions in interacting Rashba nanowires, Phys. Rev. B 90,
045118 (2014).

[65] M. F. Maghrebi, S. Ganeshan, D. J. Clarke, A. V. Gorshkov,
and J. D. Sau, Parafermionic Zero Modes in Ultracold
Bosonic Systems, Phys. Rev. Lett. 115, 065301 (2015).

[66] J. Alicea and P. Fendley, Topological phases with para-
fermions: Theory and blueprints, Annu. Rev. Condens.
Matter Phys. 7, 119 (2016).

[67] S.-Z. Lin, O. Ayala-Valenzuela, R. D. McDonald, L. N.
Bulaevskii, T. G. Holesinger, F. Ronning, N. R.
Weisse-Bernstein, T. L. Williamson, A. H. Mueller, M. A.
Hoffbauer, M.W. Rabin, and M. J. Graf, Characterization of
the thin-film NbN superconductor for single-photon
detection by transport measurements, Phys. Rev. B 87,
184507 (2013).

[68] P. Kumaravadivel, S. Mills, and X. Du, Magnetic field
suppression of Andreev conductance at superconductor-
graphene interface, 2D Mater. 4, 045011 (2017).

[69] A. C. Potter and L. Fu, Anomalous supercurrent from
Majorana states in topological insulator Josephson junc-
tions, Phys. Rev. B 88, 121109(R) (2013).

[70] D. Rainis and D. Loss, Majorana qubit decoherence
by quasiparticle poisoning, Phys. Rev. B 85, 174533
(2012).

[71] A. P. Higginbotham, S. M. Albrecht, G. Kiršanskas, W.
Chang, F. Kuemmeth, P. Krogstrup, T. S. Jespersen, J.
Nygård, K. Flensberg, and C. M. Marcus, Parity lifetime
of bound states in a proximitized semiconductor nanowire,
Nat. Phys. 11, 1017 (2015).

[72] H.-H. Sun and J.-F. Jia, Detection of Majorana zero mode in
the vortex, npj Quantum Mater. 2, 34 (2017).

[73] G. Ménard, A. Mesaros, C. Brun, F. Debontridder,
D. Roditchev, P. Simon, and T. Cren, Isolated pairs of
Majorana zero modes in a disordered superconducting lead
monolayer, Nat. Commun. 10, 2587 (2019).

[74] L. Fricke et al., Self-Referenced Single-Electron Quantized
Current Source, Phys. Rev. Lett. 112, 226803 (2014).

PHYSICAL REVIEW LETTERS 125, 187702 (2020)

187702-7

https://doi.org/10.1038/nphys3342
https://doi.org/10.1103/PhysRevB.82.174515
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.187702
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.187702
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.187702
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.187702
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.187702
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.187702
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.187702
https://doi.org/10.1002/pssr.201206451
https://doi.org/10.1002/pssr.201206451
https://doi.org/10.1103/PhysRevB.82.180516
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevB.87.035113
https://doi.org/10.1103/PhysRevB.87.035113
https://doi.org/10.1103/PhysRevLett.111.056402
https://doi.org/10.1103/PhysRevLett.111.116402
https://doi.org/10.1103/PhysRevLett.111.116402
https://doi.org/10.1103/PhysRevB.89.220504
https://doi.org/10.1103/PhysRevB.89.220504
https://doi.org/10.1103/PhysRevLett.113.246401
https://doi.org/10.1103/PhysRevB.93.045417
https://doi.org/10.1103/PhysRevLett.117.046804
https://doi.org/10.1103/PhysRevLett.120.267002
https://doi.org/10.1103/PhysRevLett.120.267002
https://doi.org/10.1088/1742-5468/2012/11/P11020
https://doi.org/10.1103/PhysRevX.2.041002
https://doi.org/10.1103/PhysRevX.2.041002
https://doi.org/10.1103/PhysRevB.86.195126
https://doi.org/10.1103/PhysRevB.86.195126
https://doi.org/10.1038/ncomms2340
https://doi.org/10.1103/PhysRevB.87.035132
https://doi.org/10.1103/PhysRevB.87.035132
https://doi.org/10.1103/PhysRevX.4.041035
https://doi.org/10.1103/PhysRevX.4.041035
https://doi.org/10.1103/PhysRevB.90.045118
https://doi.org/10.1103/PhysRevB.90.045118
https://doi.org/10.1103/PhysRevLett.115.065301
https://doi.org/10.1146/annurev-conmatphys-031115-011336
https://doi.org/10.1146/annurev-conmatphys-031115-011336
https://doi.org/10.1103/PhysRevB.87.184507
https://doi.org/10.1103/PhysRevB.87.184507
https://doi.org/10.1088/2053-1583/aa8825
https://doi.org/10.1103/PhysRevB.88.121109
https://doi.org/10.1103/PhysRevB.85.174533
https://doi.org/10.1103/PhysRevB.85.174533
https://doi.org/10.1038/nphys3461
https://doi.org/10.1038/s41535-017-0037-4
https://doi.org/10.1038/s41467-019-10397-5
https://doi.org/10.1103/PhysRevLett.112.226803

