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Elucidating the orbital level origin of second harmonic generation (SHG) in materials and identifying the
local contributions is a long-standing challenge. We report a first principles approach for the SHG where
the contributions from individual orbitals or atoms can be evaluated via symmetry adapted Wannier
functions without semiempirical parameters. We apply this method to the common SHG materials
KBe2BO3F2, KCaCO3F, and β-BaB2O4, and show that the orbitals on noncentrosymmetric sublattices are
responsible for SHG effect and the energies of these orbitals control the magnitude.
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Nonlinear optical (NLO) interactions between intense
laser fields and condensed matter have been extensively
studied since frequency doubling was observed in quartz [1].
Second harmonic generation (SHG) has emerged as the most
practical and widely used approach for extending the solid-
state laser spectrum to ultraviolet and deep-ultraviolet (UV)
or infrared and far infrared regions [2–11]. Further, SHG can
be applied in quantum up-conversion [12], driving polariton
Fano resonances [13] and generating optical quantum
mechanical superposition cat states [14]. These can enable
production and manipulation of entangled photons for
quantum information [15–20]. Since 1980, large size
KH2PO4 single crystals have been grown. These provided
a revolutionary breakthrough in overcoming the ultraviolet
wall in all-solid-state lasers [21,22]. Subsequently, in 1985,
β-BaB2O4 (β-BBO) [23] was reported to be a promising
NLO crystal and was rapidly industrialized because it
enables high-power UV and extends the UV spectrum.
However, to date, no crystal can be used to generate
high-power deep UV directly in industry. Although
KBe2BO3F2 (KBBF) [24–27] can produce deep UV
directly, its platelike habit prevented growth of large-size
single crystals, limiting applications. Discovery of new
materials is critical.
Historically, calculation of SHG coefficients used band

theory [28]. This suffers from a severe explicit divergence
in the static limit. However, Aspnes proved that
the divergent term vanishes for cubic crystals [29].
Ghahramani et al. then used a sum rule to obtain a general
formalism free of divergence [30,31]. The methodology was

further improved by systematic separation of inter- and
intraband contributions [32]. Aversa and Sipe used the length
gauge instead of the velocity gauge to give expressions
avoiding unphysical divergences [33]. Subsequently, a gen-
eral mixing frequency-dependent formalism was proposed
[34] and the local field effect was also discussed [35–37].
Many approaches can be used to calculate the global SHG
coefficients, including summation of states based on per-
turbation theory [30,31,38], Wannier and Bloch orbital-
based methods [39], density-functional perturbation theory
[40], and Berry phase methods [41–43]. However, obtaining
global SHG coefficients is not sufficient for identifying and
distinguishing underlying response mechanisms in terms of
chemistry and structure. Identification of contributions from
particular anionic groups or cations has been done by real-
space cutting with semiempirical parameters [44,45]. The
contribution of particular bonds can be evaluated by a
localized-bond-charge model [46] based on bonding char-
acteristics. What is lacking is a pure ab initio method for
isolating SHG contributions at atomic or orbital levels. How
this can be done has been an important open question.
Extended Bloch functions are widely used in

SHG calculations. Physically, the SHG response [44]
comes from virtual electron (VE) processes, virtual hole
(VH) processes, and in early formulations also a
two-band transition process, later shown to be exactly
zero [38]. The static limit SHG coefficients are χð2Þijk ¼
χð2ÞijkðVEÞ þ χð2ÞijkðVHÞ. The expressions are in terms of
momentum matrices pi

mn;k ¼ humkjp̂ijunki and ener-
gies ϵmk ¼ humkjĤjumki,
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Here, i, j, and k are Cartesian components, and v=v0 and
c=c0 are band indices for valence and conduction bands,
respectively. The implicit k dependence of these indices is
understood. ωmn;k ¼ ðϵmk − ϵnkÞ=ℏ is the energy differ-
ence between Bloch states of themth and nth bands. PðijkÞ
is the full permutation and explicitly shows the Kleinman
symmetry. Calculated SHG coefficients by this approach
generally agree well with experimental values when the
density-functional theory (DFT) band gap is corrected by a
scissors operator [47]. Bloch waves are extensive, leading
to nonvanishing pmn;k with arbitrary m and/or n. As a
result, there is no simple physical way to define local
contributions using this formula. However, according to
phenomenological anionic group theory [48], which
suggests that NLO effects are dominated by contributions
from anionic groups, NLO effects should mainly be due to
BO3−

3 in KBBF, B3O3−
6 in β-BBO, and CO2−

3 in
KCaCO3F [49].
Wannier functions (WFs) provide an alternative.

Although not strictly eigenfunctions of the Hamiltonian,
they are well localized and can be used to study local
physical properties, including electric polarization and
orbital magnetization [50–52]. In addition, the Bloch
sum of Wannier functions jwαki forms a natural local
basis. This connects to the Bloch states junki via a unitary
transformation,

jwαki ¼
X

n

Uk
nαjunki: ð3Þ

The Wannier basis is further related with the local Wannier
orbitals jRαi through

jRαi ¼ V
ð2πÞ3

Z

BZ
exp−ik·Rjwαkidk3: ð4Þ

Here, maximally projected WFs [53] were adopted so
that crystal symmetry is retained. We can analyze local
orbital contributions to the SHG using the local Wannier
representation. To evaluate the contribution from a set of
orbitals ℵ, we first project all valence states jnki ∈ fvg to
the atomiclike Wannier orbital jwαi and get the projection
coefficients Cα

nk

jnki ¼
X

α

Cα
nkjwαki: ð5Þ

According to Eqs. (1) and (2), χð2Þijk can be decomposed as
the sum of contributions from different valence bands,
χð2Þijk;nk (jnki ∈ fvg). Therefore jCα

nkj2 is the weight of wα to
the nth valence band-decomposed SHG χð2Þijk;nk. Then, the
contributions to the total SHG χð2Þijk;wα

can be obtained using

χð2Þijk;wα
¼

X

jnki∈fvg
jCα

nkj2χð2Þijk;nk: ð6Þ

Additional details are in the Supplemental Material [54].
We take KBBF, β-BBO, and KCaCO3F as examples and

apply this method to analyze the orbital contributions.
These are representative of high-performance NLO borates
with BO3−

3 or B3O3−
6 groups, carbonates with CO2−

3 groups,
which crystallize in the space groups R32, R3c, and P6̄2m,
respectively. The crystal structures of KBBF [24],
KCaCO3F [49], and β-BBO [23] and the definitions of
the local orbital directions are shown in Fig. S1 [54].
Table S1 gives experimental and DFT lattice constants and
atom positions.
Interpolated Wannier and DFT [55] band structures are

compared in Fig. 1. For clarity, high symmetry lines and
states between EF − 10 and EF þ 10 eV are shown, with
Fermi level EF at the middle of gap. Full band structures
and wider energy ranges are in Fig. S2 [54]. The DFT band
gaps without scissors corrections are 6.06, 4.35, and
4.82 eV. A scissors operator [47] including the Ward
identity correction for the momentum operator [59] was
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FIG. 1. Band structures of KBBF, KCaCO3F, and β-BBO.
Solid lines: DFT bands; dots: Wannier-interpolated bands.
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applied with the experimental gaps of 8.43, 6.22, and
6.52 eV for KBBF, KCaCO3F, and β-BBO, respectively.
Then the calculated SHG coefficients are comparable with
experimental values (Table I).
Table I also gives calculated orbital contributions to the

SHG. The orbital contribution weight is defined as
WðαÞ ¼ χð2Þijk;wα

=χð2Þijk . The total weights of the oxygen sp2

(see footnote of Table I for definitions) and 2pz orbitals for
KBBF, β-BBO, and KCaCO3F are 0.76, 0.96, and approx-
imately 1.00, respectively. The fact that oxygen sp2 or pz
orbitals have the largest contribution to the SHG is in
accord with anionic group theory. In all three materials, the
nonbonding oxygen orbital (O pz orbital) contributes
considerably to the SHG (from ∼52% to ∼68%), whereas
σ bonds (O sp2 3) between oxygen and boron or carbon in
the planes of the BO3=CO3 groups make negligible
contribution (1%–1%). However, contributions from O
sp2 1 or O sp2 2 orbitals vary among the materials. In
KBBF, the σ bonds (O sp2 1 or O sp2 2) between oxygen
and beryllium have almost no contribution. However, in
KCaCO3F, these two orbitals are the ionic bonds between
oxygen and cations and play an important role in SHG
response (22% each). In β-BBO, there are two types of
oxygen atoms, namely the bridge oxygen and the terminal
oxygen (Fig. 2). The contributions from σ bonds (O sp2 1
or O sp2 2 orbitals) of bridge oxygens, are zero, whereas
the ionic bonds (O sp2 1 or O sp2 2 orbitals) of the terminal
oxygen contribute 56% of the SHG.
The orbital contributions can be understood by consid-

ering the symmetry and the orbital energies. The SHG
coefficient χð2Þijk is an antisymmetric tensor with three
indices, each representing a certain direction. Therefore,
in centrosymmetric crystals, the SHG coefficients are zero.

In noncentrosymmetric crystals, the crystal structure in
general can be decomposed to centrosymmetric and non-
centrosymmetric sublattices. On one hand, the orbitals on
centrosymmetric sublattices have no contribution to SHG
coefficients by themselves. However, since the Wannier
orbitals on centrosymmetric sublattices also have non-
centrosymmetric content due to the construction, they
generally have noncentrosymmetric tails (Fig. S3) [54].
Therefore, the contribution from orbitals on centro-
symmetric sublattices is very small but not zero. On the
other hand, χð2Þijk decays as fast as ω

−5, according to Eqs. (1)

TABLE I. Calculated (Cal.) static nonlinear susceptibilities (pm=V) as well as experimental (Expt.) values for KBBF, KCaCO3F, and
β-BBO and contributions (Con., pm=V) of atomic orbitals to the largest SHG coefficienta.

Material Orbital Contributions Orbital Contributions

KBBF K p 0.00 O sp2-3 0.00
Calculated Experimental F sp2 1, 2, 3 0.04 O 2pz 0.33
d11 ¼ 0.49 d11 ¼ 0.47 F 2pz 0.00 Sum 0.49
d14 ¼ −0.02 d14 < 0.01 O sp2 1, 2 0.02
KCaCO3F K p 0.00 O sp2 1,2 0.26
Calculated Experimental Ca p −0.02 O sp2 3 0.00
d22 ¼ 1.16 d22 ≈ 1.40 F sp2 1, 2, 3 0.02 O 2pz 0.60

F 2pz 0.00 Sum 1.16
β-BBO Ba 5s 0.01 Ot sp2 1,2 0.48
Calculated Experimental Ba 5px;y;z −0.07 Ot sp2 3 0.02
d11 ¼ 1.69 d11 ¼ 1.60 Ob sp2 1, 2 0.00 Ot 2pz 0.72
d31 ¼ 0.03 d31 ¼ 0.11 Ob sp2 3 −0.02 Sum 1.69
d33 ¼ 0.00 d33 ≈ 0.00 Ob 2pz 0.21
aOt and Ob stand for terminal oxygen and bridge oxygen in B3O6 group. The sp2 1, sp2 2, sp2 3 are 1=

ffiffiffi
3
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6

p
px, respectively. Here, the x direction is the bonding direction between B-O or C-O atoms,

and z direction is perpendicular to the BO3−
3 plane or CO2−

3 plane. sp2 1, 2 or 1, 2, 3 are symmetry equivalent. Here we give the
contribution of each orbital and the total contribution is the sum. Following convention, Voigt notation is used contracting the last two
indices (11 ¼ 1; 22 ¼ 2; 33 ¼ 3; 32, 23 ¼ 4; 31, 13 ¼ 5; 12, 21 ¼ 6) [60] and d ¼ χð2Þ=2.

R3m P6/mmm

(a) (b) (c)

(d) (e)

FIG. 2. sp2-3-like Wannier orbitals of oxygens (red) in
(a) KBBF, (b) KCaCO3F, and (c) some terminal oxygens of
β-BBO. The triangles represent C3 symmetries and the triangle
with horns in (a) represent that there is a 31 screw axis. The
sublattice with R3̄m orP6=mmm symmetries consisting of only F
(gray) and Be (gray green) in (d) KBBF, as well as F and Ca (gray
blue) in (e) KCaCO3F. The colors of remaining atoms are B
(green), C (black), K (purple), Ba (bright green).
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and (2), where ω is at least the size of the band gap.
Therefore, the contribution from orbitals on noncentro-
ymmetric sublattices would be substantially affected by
their energy levels, and contributions from deep-energy
bands will be small.
Figure 3 shows the contribution of Bloch states to SHG

coefficients in energy space. We use the Bloch states at Γ as
an illustration. The calculated SHG coefficients d11 for
KBBF, d22 for KCaCO3F, and d11 for β-BBO on Γ are 0.50,
1.40, and 1.60 pm=V. These values are consistent with
experimental values as well as results using dense k-point
meshes (Table I). As seen in Fig. 3, only states near the
Fermi level give large contributions and Bloch states below
−2.5 eV, relative to the valence band top, contribute little.
For a given crystal structure, the orbitals can be projected
on a set of symmetrically equivalent orbitals (Figs. S4–S6)
[54]. Thus, the contribution of these symmetrically equiv-
alent orbitals is

χð2Þℵ ¼
X

α;n

hwαjvniχð2Þijk;vn
hvnjwαi: ð7Þ

The materials we investigated generally have C3 sym-
metry. For the oxygen pz-like orbitals, there are three
equivalent O pz orbitals located on symmetrically equiv-

alent sites, and T̂C3
χð2Þ111T̂

−1
C3

¼ χð2Þ111 for KBBF and β-BBO or

T̂C3
χð2Þ222T̂

−1
C3

¼ χð2Þ222 for KCaCO3F. Therefore, their total

contribution amounts up to 3
P

nhpzjvniχð2Þ111;vn
hvnjpzi or

3
P

nhpzjvniχð2Þ222;vn
hvnjpzi. In addition, O pz orbitals in

these three compounds have large weight in bands near the
band edges (Fig. S7) [54]. As a result, the set of pz-like
orbitals makes a large contribution to SHG in all cases
studied. Similar arguments can always be applied to planar
chemical groups containing symmetrically equivalent
atoms, and therefore planar groups such as BO3−

3 ,

B3O3−
6 , and CO2−

3 always play a important role in SHG
response. Therefore, as seen in Table I, all O pz-like
orbitals [Figs. S4(d), S5(d), and S6] [54] make major
contributions in these materials due to the superposition of
pz orbitals. In contrary, the F pz-like orbitals in KBBF and
KCaCO3F, which connected fluorine to beryllium or
calcium, are located on a centrosymmetric sublattice. As
shown in Fig. 2(d), beryllium and fluorine occupy Wyckoff
position c so that the sublattice has an inversion center at
the center of the unit cell and the space group is R3̄m.
Similarly, in KCaCO3F [Fig. 2(e)], an inversion center can
also be found for the calcium and fluorine sublattices with a
space group of P6=mmm (Wyckoff positions b and a) at
the center of the unit cell. The detailedWyckoff positions in
crystals are in Table S1 [54]. Although the F pz orbitals are
significant in the Bloch states near the band edge in KBBF
(Fig. S7) [54], their contribution to SHG coefficients is
limited due to the restriction of sublattice symmetry. This is
seen in the results (Table I).
Now, we analyze the sp2-like orbitals of oxygen

in Fig. 2. The sp2-like orbitals are bonding states
between X (X ¼ C, B) atoms and oxygens. The
three symmetrical equivalent Wannier orbitals are
jw1i ¼ jX sp2 1i − jO sp21i, jw2i ¼ jX sp22i − jO sp22i,
and jw3i ¼ jXsp23i − jO sp2 3i. In KBBF or β-BBO,
these sp2 orbitals occupy deep energies (below ∼3 eV
relative to the top of valence bands) far from the band edge
(Fig. S7) and the density of states (DOS) (Fig. S8) [54].
Therefore, the sp2 3, the bonding sp2-1-, and the sp2-2-
like Wannier orbitals of oxygens in KBBF and the bridge
oxygen in β-BBO make little contribution. In comparison,
in KCaCO3F, the sp2-1- and the sp2-2-like orbitals are not
bonded with the central atom but weakly hybridize with d
orbitals from surrounding cations (Fig. S8) [54]. Thus,
these orbitals have large weight near the band edge. They
will therefore make significant contributions to SHG
coefficients, consistent with Table I.
To further elaborate our argument, we constructed a

CaCO3 crystal cell with a CO3 and three calcium atoms
along the rotation axis, as shown in Fig. 4(a). In this case,
the sp2-1- and sp2-2-like orbitals do not hybridize with
cations due to the symmetry restriction. We use the same
method to analyze the contributions to the SHG. The result
shows that the SHG coefficient d11 is reduced to 0.50 pm/V
and mainly comes from the pz-like orbitals. The contri-
bution from the rest of the orbitals is negligible. The
Wannier orbitals including sp2 1 and sp2 2 of KCaCO3F
and artificial CaCO3 are shown in Figs. 4(b) and 4(c).
In β-BBO, three BO3−

3 groups trimerize into a B3O3−
6

group by sharing three oxygens. Therefore, the oxygen
atoms can be classified as bridge oxygens (Ob) that bond
with two boron atoms and terminal oxygens (Ot) that bond
only one boron, as shown in Fig. 2. The sp2-1- and sp2-2-
like orbitals for terminal oxygens have sizable contribu-
tions because of the hybridization between oxygen and
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FIG. 3. Contribution to the SHG coefficients of Bloch states of
KBBF, KCaCO3F, and β-BBO. Here energy is relative to the
band edge.
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strontium. Therefore, under the C3 symmetry, the contri-
butions of pz-like orbitals have large weight in bands near
the band edge so that they always make large contributions
to the SHG. In addition, although the barium atoms in
β-BBO are in a noncentrosymmetric sublattice (R3), these
orbitals do not contribute near the band edge (Fig. S8) [54],
so they have little SHG contribution.
Our argument is not limited to planar groups with C3

symmetry. It can also be applied to other groups subjected
to other symmetries. To verify this, we constructed a crystal
AlPO4, with a face-centered-cubic lattice. The Al and P are
at (0.00, 0.00, 0.00) and (0.25, 0.25, 0.25), while oxygen is
along the line between these atoms. The crystal structure is
shown in Fig. 4(d). In this case, the P─O bonds or s orbitals
have very little contribution because they appear at high
binding energy. The remaining nonbonding oxygen orbitals
do not hybridize with other atoms. The oxygen atoms
classified by mirror symmetry are shown in Fig. S9(c) [54].
Also, the oxygen sublattice is centrosymmetric. Therefore,
the SHG is expected to be very small. As anticipated, the
result of direct calculations is only 0.02 pm=V. To further
verify this idea, we rotated the PO4 tetrahedral to break the
inversion symmetry of oxygen sublattice [Figs. S9(b) and
S9(d)] [54]. The calculated SHG coefficient is substantially
enhanced to 0.61 pm=V, whereas the band gap changes
very little (from 4.45 to 4.48 eV). This AlPO4 compound is
isostructural to BPO4 [61], which has the largest SHG of
compounds built of tetrahedra with deep ultraviolet cutoff
edges. Therefore, the lack of inversion in oxygen sublattice,
whose p orbitals dominate the DOS near the valence band
maximum, is crucial for strong SHG response.
In conclusion, we used symmetrized Wannier functions

to identify the underlying mechanism of SHG response in
NLO materials. The orbital contributions to the SHG are
dictated by the symmetry of the sublattice and controlled by

their energies. More specifically, only orbitals forming
noncentrosymmetric sublattices and occurring in the top
valence bands make substantial contributions to the SHG
coefficient. The analysis is based on symmetry consider-
ations, applicable to NLO materials in general, and may be
helpful in identifying new NLO materials with large SHG
effect.
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