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We investigate the frontier between classical and quantum plasmonics in highly doped semiconductor
layers. The choice of a semiconductor platform instead of metals for our study permits an accurate
description of the quantum nature of the electrons constituting the plasmonic response, which is a crucial
requirement for quantum plasmonics. Our quantum model allows us to calculate the collective plasmonic
resonances from the electronic states determined by an arbitrary one-dimensional potential. Our approach
is corroborated with experimental spectra, realized on a single quantum well, in which higher order
longitudinal plasmonic modes are present. We demonstrate that their energy depends on the plasma energy,
as is also the case for metals, but also on the size confinement of the constituent electrons. This work opens
the way toward the applicability of quantum engineering techniques for semiconductor plasmonics.
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The properties of plasmons in nanostructures can be
profoundly modified whenever their elementary constitu-
ents, electrons and photons, enter the quantum regime
[1–5]. One of the pioneering works in quantum plasmonics
is the demonstration that the optical resonances of localized
surface plasmons can be strongly affected by the electronic
confinement for metallic nanoparticle sizes of the order of
10 nm [6]. In this case, the Drude model fails in describing
the optical response of the electron gas, and a quantum
treatment or nonlocal electromagnetic models [7] must be
considered. Size confinement also strongly affects the
optical properties of polar materials [8] and has required
the use of computational models based on perturbative
density functional theory [9] or the use of a nonlocal
dielectric response that goes beyond the Lorentz model to
describe the material resonances [10]. Another fundamental
quantum effect, tunneling, has been shown to strongly
impact the properties of the plasmons beyond the classical
treatment [11–13].
In this Letter, we investigate the frontier between

classical and quantum plasmonics by studying the effect
of a confining potential on volume plasmons. We observe
that size confinement gives rise to several longitudinal
modes with quantized wave vectors at different energies, as
a particle in a quantum well. We demonstrate that these
modes do not obey the Lindhard formula, which holds for
thin metallic films. Nonlocality of volume plasmons in
semiconductor layers clearly appears to be related to
electronic size confinement and is explained by using a
quantum model that constructs the plasmon modes directly
from the confined states of the constituent electrons.
Figure 1 summarizes the properties of classical and

quantum plasmons in a highly doped semiconductor.

A sketch of the system is presented in Fig. 1(a). It is
composed of a highly doped semiconductor layer with a
thickness smaller than the plasmawavelength in the material.
The oscillation of the free electrons in the doped layer
excited by an incident electromagnetic field results in an
optically active collective mode of the system: a plasmon
confined in the doped layer with a dipole moment along the
growth direction z. The absorption spectrum, sketched in
Fig. 1(a), presents a single Lorentzian resonance, centered at
the plasma energy, with a quality factor on the order of 10 to
20 [14]. This resonance, called the Berreman mode [14–18],
can be simulated with the Drude model, which describes the
isotropic permittivity of the doped semiconductor, and also
by taking into account the finite thickness of the layer
through standard electromagnetic simulations. This system
is thus an example of classical plasmonics. Berreman
modes, which were first observed in thin metallic films
[15,16,19,20], have recently raised considerable attention
because at the plasma frequency the real part of the dielectric
permittivity is zero. For this reason, the Berreman mode is
also referred to as an epsilon-near-zero (ENZ) mode [21,22].
Hyperbolic metamaterials obtained by alternating ENZ and
dielectric layers have also been demonstrated [23]. In the
classical description, the plasma frequency is independent
from the plasmon wave vector k⃗, as sketched in Fig. 1(b). As
a consequence, the dielectric function is local, i.e., it only
depends on the photon frequency and not on thewave vector.
Quantum effects appear in semiconductors when the

thickness of the layer is smaller than the de Broglie
wavelength of electrons. In this case, size confinement
along the z direction gives rise to quantized energy levels.
Figure 1(c) sketches a doped semiconductor quantum well
(QW) with three occupied confined states. In this case,
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there are three main optically active transitions, represented
as three different sets of harmonic oscillators along z.
Dipole-dipole interaction between these optically active
transitions gives rise to a collective mode of the system, a
confined plasmon, with an energy that is higher than the
plasma energy of the electron gas [14,24,25] and higher
than the energy of the individual electronic transitions. The
Drude model thus fails to describe the collective optical
properties of confined electrons, while quantum [22,25,26]
or nonlocal semiclassical [27] models correctly reproduce
the experimental absorption spectra.
Optical experiments conducted on metal foils of a few

nm thickness [19,20,28] have shown the existence of higher
order longitudinal modes known as Tonks–Dattner modes
[20,29,30], whose energies are described by the Lindhard
formula: Ω2

kz
¼ Ω2

p þ ð3=5Þv2Fk2z , where Ωp is the bulk
plasma frequency, vF the Fermi velocity, and kz the z
component of the plasmon wave vector. This dispersion
relation, sketched in Fig. 1(d), requires a quantum treat-
ment of electrons in metals and a semiclassical treatment of
light-matter interaction [31].
In order to investigate the effect of a confining potential

on the Berreman mode and on the higher order longitudinal
plasmons, we have chosen to work within a semiconductor
platform. Indeed, the quantum nature of the electrons is
described straightforwardly in a semiconductor through
the envelope function approximation that takes into account
size confinement and tunneling [32], while in metals
a quantum description requires numerical approaches.
Our sample is a doped 100 nm GaInAs/AlInAs layer
with electronic density Nv ¼ 7.5 × 1018 cm−3, embedded

between two AlInAs barriers. We have performed angle
resolved emission experiments under thermal excitation of
the plasmons through the application of an in-plane current,
as in Ref. [33]. Figure 2 shows normalized thermal
emission spectra (in red) at different angles, measured at
room temperature. Several peaks are clearly observed in the

FIG. 2. Measured (red lines) and simulated (black lines)
emission spectra under thermal excitation of the plasmons for
different values of the internal angle of light propagation. The
thermal emission spectra have been simulated by solving quan-
tum Langevin equations in the input-output formalism [34]. The
plasmon eigenmodes have been calculated from a full numerical
diagonalization accounting for the finite barrier height as well as
for nonparabolicity effects [35].

FIG. 1. (a) Sketch of a doped semiconductor layer embedded between two undoped layers. If the thickness L is smaller than the
plasma wavelength in the material λP ¼ 2πc=ΩP, it is possible to optically excite a Berreman mode at EP ¼ ℏΩP. (b) Dispersion of a
volume plasmon in a classical model. (c) Effect of size confinement in the optical response of a semiconductor QW with three occupied
electronic states. The optical response of the system is a collective resonance at a greater energy than EP due to size confinement
contribution. (d) Longitudinal dispersion of a volume plasmon taking into account the material band structure and the Fermi distribution
of electrons.
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spectra. When increasing the angle, the main plasmon
resonance, the Berreman mode, becomes broader and
weaker due to the increase of the radiative decay rate of
the plasmon [33]. Simultaneously, the higher energy
resonances, the Tonks–Dattner modes, become more and
more visible.
The energy position of all the plasmon modes and their

angle dependent radiative broadening are very well repro-
duced by our quantum model (black lines in Fig. 2), which
is based on the dipole representation of the light-matter
interaction in the Coulomb gauge [25,26,34,36]. In this
model, the Hamiltonian of the electron gas in the QW is
written in terms of the excitations between confined
states as

H ¼
X

α

ℏωαb
†
αbα

þ e2

2ϵ0ϵs

X

α;β

Sα;β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔNαΔNβ

p ðb†α þ bαÞðb†β þ bβÞ: ð1Þ

Here the indices α, β run over all transitions between
confined states in the QW; the operators b†α; bα are the
creation and annihilation operators of the transition α of
energy ℏωα and ΔNα the associated population difference;
ϵs is the background dielectric constant. The coupling
coefficients Sα;β are expressed as

Sαβ ¼
1

ℏωα

1

ℏωβ

�
ℏ2

2m�

�
2
Z þ∞

−∞
dzξαðzÞξβðzÞ; ð2Þ

with m� the electron effective mass. The coupling coef-
ficients between the electronic transitions Sα;β are propor-
tional to the overlap between the a.c. microcurrent
functions ξα describing the electronic transitions α ¼ i →
iþ j and defined as [36]

ξαðzÞ≡ξi→iþjðzÞ¼ψ iðzÞ
∂ψ iþjðzÞ

∂z −ψ iþjðzÞ
∂ψ iðzÞ
∂z ; ð3Þ

where ψ i is the envelope function of the confined electronic
state with quantum number i. The integral of each micro-
current function is proportional to the optical dipole of the
corresponding transition [26,36]. Note that in a square QW
the transitions with a nonzero dipole are only those with
odd j.
Figure 3 focuses on the construction of quantum confined

plasmons from single electron transitions in a QW with
infinite barriers and thickness L. In this case, the micro-
current associated with the transition i → iþ j writes as

ξi→iþjðzÞ¼
π

L2

�
jsin

�
2iþj
L

πz

�
−ð2iþjÞsin

�
jπz
L

��
: ð4Þ

Examples of such functions for optically active transitions
i → iþ j, with odd j, are plotted in Fig. 3(a), (j ¼ 1), and

3(b), (j ¼ 3), for different values of i. From both panels one
can see that, for a fixed j, when increasing the value of the
index i, the shape of the functions representing the
microcurrents approaches sin ðjπz=LÞ. As a consequence,
in the limit i ≫ 1, when a large number of subbands
are occupied, the microcurrents fξi→iþjgi;j are mutually
orthogonal for different j. In this approximation, the
coupling coefficients between microcurrents are given by
Si→iþj;i→iþj0 ¼ L=ð2π2jj0Þδj;j0 . The matrix of the coupling
coefficients is block-diagonal: all the electronic transitions
with the same j contribute to the same plasmon mode.
In other words, the Hamiltonian Eq. (1) can be independ-
ently diagonalized on the subspaces relative to transitions
i → iþ j for fixed j. For each subspace of index j, light
couples with the plasmon corresponding to the highest
frequency eigenmode. Its frequency Ωj can be found, after
Bogoliubov transformation within the associated subspace,
by calculating the zeros of the following determinant
[26,27,36]:

ΔjðωÞ ¼ 1 −
2e2

ℏϵ0ϵs

XNocc

i¼1

Si→iþj;i→iþjΔNi→iþjωi→iþj

ω2 − ω2
i→iþj

¼ 1 −
XNocc

i¼1

ωP
2
i;iþj

ω2 − ω2
i→iþj

; ð5Þ

with ωPi;iþj the plasma frequency associated with the
transition i → iþ j.
Figure 3(c) presents the microcurrents associated with

the confined plasmon modes issued from the subspaces of
index j ¼ 1, 3, 5. These microcurrents present the same
symmetry as those of the electronic transitions i → iþ j:
they vary as sin ðjπz=LÞ with a quantized wave vector
kz ¼ jπ=L. The oscillator strength of the plasmon modeΩj
concentrates the interaction with light of all i → iþ j
transitions, and it is given, for odd values of j, by
4LℏNv=ðm�π2j2Þ [25,26]. Figure 3(c) also presents the
charge distributions oscillating at frequency Ωj, which are
proportional to the derivative of the microcurrents [26]. We
can clearly see that the fundamental mode j ¼ 1 corre-
sponds to a dipole along z. This mode is thus the analogue
of a Berreman mode in a metallic thin film. The modes with
j > 1 and j odd are higher order longitudinal confined
plasmons characterized by a quantized wave vector. They
correspond to the Tonks–Dattner modes observed in the
spectra in Fig. 2.
The zeros of the determinant, Eq. (5), can be analytically

calculated in two different regimes: themetallic limit where
a very large number of electronic states are occupied in an
infinite potential well, and the semiconductor limit that
describes QWs with only few tens of electronic subbands
occupied. In the metallic limit, when the number
of occupied subbands Nocc is such that j2=Nocc ≪ 1, our
model demonstrates the Lindhard formula (see the
Supplemental Material [37]). However, in the QW that
we have experimentally investigated we are far from the
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metallic limit, as Nocc ¼ 20, and we observe higher order
modes up to j ¼ 9; thus, j2=Nocc ≫ 1. In our system, the
energy separation between successive confined states is
approximately constant due to finite barrier and band
nonparabolicity effects. In this case, we can introduce an
average energy separation between the confined states,
E0 ¼ ℏω0, calculated as the conduction band offset Vb
divided by the total number of confined states in the QW
Ntot: E0 ¼ Vb=Ntot. The zeros of the determinant, Eq. (5),
can be again calculated analytically, observing that
Ω2

P ¼ PNocc
i¼1 ωP

2
i;iþj [14]. The resulting plasmon mode

frequencies are accurately described by

Ω2
j ¼ Ω2

p þ ω2
0j

2: ð6Þ

From this equation, it clearly appears that in the semi-
conductor limit the observation of higher order plasmon
modes is intimately related to the existence of an energy
separation between the electronic states, E0, induced by
size confinement.
In Fig. 4 we compare the results of equation (6) with our

data and numerical simulations. Figure 4(a) presents in red
symbols the squared plasmon energies E2

j ¼ ðℏΩjÞ2
extracted from 15 emission spectra measured at angles
between 23° and 83° as a function of the index j of the
plasmon. The red line in Fig. 4 shows the calculated
dispersion following Eq. (6), which is in excellent agree-
ment with the experimental results. Note that this
dispersion has been calculated with no free parameters
by using the calculated plasma energy EP ¼ 114 meV,

which takes into account band nonparabolicity [14] and the
confinement energy E0 ¼ 17 meV. From the excellent
agreement between the experimental and the theoretical
results, we can infer that, notably, size confinement still
plays a nonnegligible role in a QW with L ¼ 100 nm, and
it is at the origin of the observed nonlocality effects [10].
In Figs. 4(b) and 4(c), we verify the validity of Eq. (6) by

varying the QW thickness for Nv ¼ 7.5 × 1018 cm−3

[panel (b)] and the electronic density for L ¼ 100 nm
[panel (c)]. The squared plasmon frequencies are numeri-
cally calculated with our full quantum model (bullets) and
compared to the results of Eq. (6) (lines). Note that all the
dispersions plotted in panel (b) have been calculated with
the same value of the plasma energy EP ¼ 114 meV, while
those in panel (c) have been obtained with E0 ¼ 17 meV
independently on the electronic density.
Having confirmed our microscopic approach in a square

QW through the comparison of experimental and theoreti-
cal results, we discuss in the last part of this Letter how
electronic confinement and tunneling can be used as a
degree of freedom to engineer the plasmonic resonances
(Fig. 5). The starting point is a GaInAs layer of 54 nm
thickness, sandwiched between two AlInAs barriers. The
electronic density per unit volume in the GaInAs layer is
Nv ¼ 2 × 1019 cm−3. Figure 5 presents the absorptivity
spectrum simulated at 45° (black line), showing the Tonks–
Dattner resonances as previously discussed. The inset of
the figure shows the corresponding band diagram, where
we also plotted the square moduli of the electronic envelope
functions and the position of the Fermi energy (black

(a)

(b)

(c)

FIG. 3. (a),(b) Normalized microcurrents ξi→iþjðzÞ calculated for an infinite barrier QW for j ¼ 1 (a) and j ¼ 3 (b) and i ¼ 2 (black),
i ¼ 6 (red), i ¼ 12 (green) and in the limit of i ≫ 1 (blue). (c) Schematic representation of a square QW for the plasmon modes (dashed
line). We have plotted in this effective potential the plasmon microcurrents (black continuous lines) of the j ¼ 1, j ¼ 3, and j ¼ 5
modes, with j the quantum number of the confined longitudinal wave vector. The charge density distributions are also plotted for each
longitudinal mode.
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horizontal line). We now insert in the GaInAs layer six
identical AlInAs barriers of 1.5 nm thickness such that the
structure is now composed of tunnel coupled asymmetric
QWs as shown in the inset of Fig. 5. The electronic
structure is profoundly modified by the presence of the
barriers, resulting in the formation of several minibands. In
particular, as the tunnel coupled QWs have different sizes,
we now have optically active transitions between the states
of the ground miniband and those of the second excited one
(i.e., j ¼ 2, which are forbidden in a single QW) [38]. The
electronic density per unit volume is kept equal to that of
the single GaInAs layer, Nv ¼ 2 × 1019 cm−3. The absorp-
tivity spectrum, including the collective effects, is pre-
sented in red. This spectrum is completely different with
respect to that obtained in the single layer case, proving that
also collective excitations can be engineered by a judicious

size confinement of the single electron states. Not only can
many collective resonances be observed, but their oscillator
strengths are distributed differently between them. In
particular, the lowest energy collective mode is no longer
the mode with the highest absorptivity.
This Letter clarifies the link between the single electron

wave functions and their collective response to the light. In
that sense, it opens new degrees of freedom for engineering
ad hoc plasmonic resonances in which the energy position
and oscillator strength are determined by shaping single
electron wave functions. Our theoretical approach is well-
suited for this goal, as it goes well beyond the Drude model,
which is commonly used in semiconductor plasmonics
[39], and the Lindhard formula, which applies to a free
electron gas in a metallic thin film. Our model thus allows
quantum engineering techniques to enter the field of
semiconductor plasmonics. The ultimate goal is a complete
three-dimensional shaping of the dielectric function, which
fully exploits all the degrees of freedom offered by epitaxial
growth and nanofabrication techniques in order to fabricate
artificial ENZ materials for negative refraction [40] and
high harmonic generation [41] exploiting nonlinear optical
properties [42].
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