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Under inhomogeneous flow, dense suspensions exhibit behavior that violates the conventional
homogeneous rheology. Specifically, one finds flowing regions with a macroscopic friction coefficient
below the yielding criterion, and volume fraction above the jamming criterion. We demonstrate the
underlying physics by incorporating shear rate fluctuations into a recently proposed tensor model for the
microstructure and stress, and applying the model to an inhomogeneous flow problem. The model
predictions agree qualitatively with particle-based simulations.
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Introduction.—Many materials, such as foods, cosmet-
ics, and ceramic precursors, consist of particles densely
suspended in liquid, and their production relies on under-
standing the corresponding fluid mechanics [1]. Despite a
century of intense research including recent progress [2],
comprehensive theoretical models are still lacking [3].
Indeed, even the simple case of non-Brownian, noninertial,
hard spheres remains deceptively challenging [4]. Under
simple shear flow the mechanics are, in principle, governed
by a single dimensionless parameter: specifying only the
macroscopic friction coefficient μ ¼ Σxy=Π sets the
remaining nondimensional variables, viz., the volume
fraction ϕ and the nondimensional shear rate S ¼ ηs _γ=Π
[5]. Here, Σxy is the shear component of the stress tensor
Σij, Π ¼ −D−1Σii is the pressure (in D dimensions), ηs is
the viscosity of the suspending medium, and _γ is the shear
rate. Carefully designed homogeneous flow experiments
support this picture, revealing a decreasing S and increasing
ϕ upon reducing μ, until the system jams (S ¼ 0) when ϕ
reaches a maximum and μ reaches a minimum value [5]. As
opposed to frictionless particles that jam isotropically at
random close packing ϕ ¼ ϕRCP and μ ¼ 0, frictional
particles jam with an anisotropic microstructure at
ϕ ¼ ϕJ < ϕRCP and μ ¼ μJ > 0 [6].
Despite the conceptual power of this general result [4],

its utility beyond homogeneous shear is limited. In pressure
driven Poiseuille flow, for example, momentum conserva-
tion dictates that μ < μJ in a finite region around the center
line. In this region, the [SðμÞ, ϕðμÞ] rheology described
above clearly predicts jamming with S ¼ 0 and ϕ ¼ ϕJ.
This behavior is not observed in experiments and particle-
based simulations, however, which instead consistently
show “subyielding” (S > 0) and sometimes “overcompac-
tion” (ϕ > ϕJ), in regions where μ < μJ [7–11]. Making
quantitative predictions of practical flows that comprise
contiguous regions of μ > μJ and μ < μJ thus requires
more detailed constitutive models that capture both

homogeneous rheology and the physics of subyielding
and overcompaction that arise under inhomogeneous
conditions. Although these effects have been addressed
separately in the literature, there are no models available
that capture both effects simultaneously.
Subyielding and overcompaction under inhomogeneous

flow occur in regions of vanishing shear rate, where the
dynamics are completely governed by fluctuating particle
motions [12–21]. These fluctuations propagate from flow-
ing regions with μ > μJ into (nearly solid) regions with
μ < μJ, inducing particle rearrangements. This may allow
the suspension to fluidize in otherwise solid regions,
with ϕJ < ϕ < ϕRCP.
Attempts at incorporating overcompaction in constitu-

tive models are so far limited to linear extrapolation of the
homogeneous ϕðμÞ relation from regions with μ > μJ into
regions with μ < μJ [20]. The shape of the resulting density
profiles, however, qualitatively differs from experimental
data [7,8,11]. Subyielding, meanwhile, has been modelled
by subjecting the fluidity (inverse viscosity) to a diffusion
process [18], or by accounting for fluctuations in the
expression for the suspension stress, with the fluctuation
magnitude being computed using a transport equation
borrowed from kinetic theory [9]. Alternatively, a simpler
account for fluctuations can be derived by spatially
averaging, i.e., filtering, the stress over a volume that is
small compared to the system size and large compared to
the particle size [12,22,23]. This leads to an increase in the
normal viscosity but leaves the shear viscosity unaffected,
thereby reducing μ below μJ. Crucially, these sub-
yielding models fail to account for microstructural
changes due to fluctuations and therefore do not capture
overcompaction.
In this Letter, we address these shortcomings, providing

an intuitive explanation of subyielding and overcompac-
tion. We do so by incorporating shear rate fluctuations into
a recent microstructure model [24–28]. When applied to
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inhomogeneous flows the resulting tensorial constitutive
model predicts that fluctuations can (i) isotropize the
microstructure; (ii) increase ϕ above ϕJ; (iii) reduce μ
below μJ. We compare the model predictions to those of
particle-based simulations.
Constitutive model.—The suspension stress tensor is

modeled as [28]

Σ
ηs

¼ 2hEi þ
�

α0hEi
ð1 − ϕ

ϕRCP
Þ2 þ

χ0hEci
ð1 − ξ

ξJ
Þ2
�
∶ hnnnni: ð1Þ

Here, n is the separation unit vector of interacting particle
pairs, L ¼ ∇uT is the velocity gradient tensor, and E ¼
1
2
ðLþ LTÞ is the rate of strain tensor, which we decompose

into extensional Ee and compressive Ec parts:

Ee ¼
1

2
Eþ 1

4
jjEjjδ; Ec ¼

1

2
E −

1

4
jjEjjδ: ð2Þ

Note that Eq. (2) is valid in 2D but not in 3D. Given the
practical ubiquity of 2D shear we nonetheless proceed
with Eq. (2).
In Eq. (1) the filter operator h·i averages over particle

pairs that are contained in a space-time, filtering volume
which must be small compared to the spatial and temporal
extents of the suspension and large compared to those of
the fluctuations. When carrying out the filtering, it has been
assumed in Eq. (1) [and in Eq. (5) below] that the
fluctuations in the velocity gradient field are uncorrelated
with the fluctuations in the pair separation vector,
e.g., hEcnnnni ≈ hEcihnnnni.
In Eq. (1) the jamming coordinate ξ is defined as [28]

ξ ¼ −
hnni∶hEciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihEci∶hEc

p i ; ð3Þ

which acts as a proxy for the coordination number Z, i.e.,
the number of direct contacts per particle [27]. The first
and second terms in Eq. (1) are, respectively, the stress
induced by the fluid and by the particles. The latter
contains lubrication and contact contributions, where
α0 and χ0 are constants and ξJ is the value of ξ at
jamming.
In Eq. (1) the fourth-order moment hnnnni of the

orientation distribution function of n is expressed in terms
of the second-order moment hnni using [29]:

hninjnknli ¼ −hnmnmi

×
1

ðDþ 2ÞðDþ 4Þ ðδijδkl þ δikδjl þ δilδjkÞ

þ 1

Dþ 4
ðδijhnknli þ δikhnjnli þ δilhnjnki

þ hninjiδkl þ hninkiδjl þ hninliδjkÞ: ð4Þ

The second-order moment hnni is related to the velocity
gradient field with the following steady state balance
equation [28]:

0 ¼ hLi · hnni þ hnni · hLTi − 2hLi∶hnnnni

− β

�
hEei∶hnnnni þ

ϕ

DðDþ 2Þ ð2hEci þ TrðhEciÞδÞ
�
:

ð5Þ

The “pair association rate” β controls the rate at which
particle pairs are created and destroyed by fluid compres-
sion and extension, set, respectively, by Ec and Ee.
Equations (1)–(5) define a constitutive model for steady
microstructure and stress in dense suspensions.
Incorporating fluctuations.—The shear rate consists of a

mean _γ ¼ jjhEijj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hEi∶hEip

and fluctuations. While in
homogeneous flow the fluctuations are subdominant to the
mean, the fluctuations may dominate the mean in inho-
mogeneous flow, e.g., close to a Poiseuille center line. In
those regions, although the filtered E is (nearly) zero, the
filtered Ee and Ec are nonzero, which is a consequence of
the nonlinearity of Ee and Ec in E [Eq. (2)]. Below we
account for fluctuations in the model [Eqs. (1)–(5)] by
filtering Ee and Ec.
In order to express hEei and hEci in terms of hEi, we use

that a fluctuating quantity q ¼ hqi þ q0 can be decomposed
into its filtered hqi and its fluctuating q0 components, and
that hq0i ¼ 0. Filtering a nonlinear function of q gives
additional terms. Specifically, filtering the absolute value of
q gives hjhqi þ q0ji ≈ jhqij þ qrms [30] where
qrms ¼ hjq0ji. Similarly, filtering Eq. (2) gives

hEei ¼ hEie þ
1

4
_γrmsδ; hEci ¼ hEic −

1

4
_γrmsδ; ð6Þ

where _γrms ¼ hjjE0jji is the amplitude of the shear rate
fluctuations.
In homogeneous shear flow, the fluctuating shear rate

_γrms vanishes when the mean shear rate _γ vanishes. In
inhomogeneous shear flows, on the other hand, _γrms may
remain finite when _γ → 0, since fluctuations are pro-
pagating from nearby regions with finite _γ. In this
limiting case, the dynamics are dominated by _γrms and
hEei ¼ −hEci ¼ 1

4
_γrmsδ. Inserting these expressions into

the filtered microstructure and stress equations [Eqs. (1),
(4), and (5)] gives isotropic tensors for the microstructure
hnni ∼ δ and the stress Σ ∼ −ηs _γrmsδ, with negative normal
stresses and zero shear stresses. This behavior corresponds
to a vanishing macroscopic friction coefficient μ, below the
jamming friction coefficient for homogeneous systems μJ.
Our constitutive model similarly predicts isotropization of
the microstructure and stress in shear flow with superposed
shear oscillations [28].
Kolmogorov flow.—We apply the above model

[Eqs. (1)–(6)] to steady 2D Kolmogorov flow, driven by
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a body force density f ¼ f̂ sinð2πy=LÞδx (with f̂ the force
amplitude) pointing in the x direction and oscillating in the
y direction with a wavelength L [Fig. 1(a)]. We chose this
flow to test our model, as it is possibly the simplest
inhomogeneous shear flow without solid surfaces. In this
inhomogeneous shear flow L ¼ ∂yuxδxδy and the fluid
mechanical profiles are periodic in y and independent of x
and t. Figures 1(b) and 1(c) show schematically the
instantaneous and filtered profiles of the flow-gradient
xy component of the total deformation E and of its
compressive part Ec. Crucially, the filtered Exy ¼ 0 on
the center lines [at y ¼ L=4 (mod L=2)], whereas the
filtered Ec;xy < 0. This difference arises due to the non-
linearity of Ec in Ementioned above, and demonstrates that
fluctuations produce normal stresses but no shear stresses,
resulting in subyielding close to the center lines.
Particle-based simulation.—We compare our constitu-

tive model to particle-based simulations on 2D domains

with dimensions in the x and y directions, respectively, of
Lx ¼ 200a and L ¼ 56a, 139a, and 278a. We use N ∼ 104

bidisperse frictional spheres (radii a and 1.4a, stiffness k,
density ρ) and a domain averaged volume fraction:

ϕ̄ ¼ L−1
Z

L

0

ϕðyÞdy; ð7Þ

of ϕ̄ ¼ 0.7. The particles interact with each other through
short-range lubrication and frictional contact forces [31]
while drag forces between the particles and the suspending
medium are omitted. Instead, the flow is driven by a y-
dependent force in the x direction f0 sinð2πy=LÞδx added
to each particle. We set f0=ka ¼ 10−8, sufficiently small
for the particles to behave as hard, inertia-free spheres
(ρ_γa2=ηs < 10−2). The resulting driving force density is
f ¼ f0nðyÞ sinð2πy=LÞδx where nðyÞ is the particle num-
ber density and the average force amplitude equals
f̂ ¼ f0n̄ ¼ f0N=ðLLxÞ. Simulations are run until a sta-
tistically steady state is reached in the entire domain and
profiles are computed thereafter over _γt ≈ 20, based on the
maximum _γ in the domain. We obtain velocity and
structural profiles by averaging particle properties in y
bins, so that each single simulation provides a range of μ
and S values.
We also simulate 2D homogeneous shear flow, driven by

Lees-Edwards boundary conditions, on a square domain
with size L ¼ 56a and with ϕ ¼ 0.5–0.9. By measuring the
divergence of the stresses with increasing ϕ, we found
the jamming friction coefficient to be μJ ¼ 0.285
and the limiting volume fractions as ϕJ ¼ 0.795 and
ϕRCP ¼ 0.840.
Model predictions of μðSÞ.—Figure 1(d) shows

the simulation results on (S, μ) coordinates under
homogeneous shear and in Kolmogorov flow for various
L=a. The data points correspond to fixed ϕ values
in homogeneous shear and to fixed y coordinates in the
Kolmogorov simulation. The inhomogeneous Kolmogorov
flow simulation predicts subyielding, i.e., S > 0 in regions
where μ < μJ while the homogeneous shear simulation
predicts the homogeneous μðSÞ rheology consistent with
Ref. [5].
Shown in Fig. 1(e) are the simulated, nondimensional

shear rate fluctuations Srms ¼ ηs _γrms=Π as a function of S
for the same cases as in Fig. 1(d). The shear rate fluctua-
tions _γrms ¼ hj∂yu0xji are calculated based on instantaneous,
local realizations of ∂yux, computed by fitting a linear
function to the spatial distribution of the instantaneous
particle velocities in a box of size 6a. The data show an
increase in Srms with a decrease in L=a (that is, for steeper
gradients of the driving force) and a (non)vanishing Srms in
the limit of S → 0 for the (in)homogeneous shear flow.
Constitutive model predictions are plotted with lines in

Fig. 1(d), with α0 ¼ χ0 ¼ 0.96, ξJ ¼ 0.6, and β ¼ 4. The
latter two are not fitting parameters per se, but follow from

(a)

(d) (e)

(b) (c)

FIG. 1. (a) Snapshot of particle-based simulation of Kolmo-
gorov flow with relative domain size L=a ¼ 278. The gray level
indicates the particle pressure (black and white represent negative
and positive, respectively) and the driving force fxðyÞ is sketched
with the black line. (b),(c) Sketches of the xy component of E and
Ec respectively, showing raw signals (gray) and filtered signals
(black). The latter is zero at y=L ¼ 0.25, 0.75 for hEi but not for
hEci. The dashed lines indicate the abscissas. (d) Macroscopic
friction coefficient μ as a function of the nondimensional shear
rate S predicted by simulation in homogeneous shear flow (filled
circles) and in Kolmogorov flow for L=a ¼ 278 (open squares),
139 (open downward triangles), and 56 (open rightward trian-
gles) and predicted by constitutive model for Srms ¼ 0 (solid line)
6 × 10−3 (dashed line), 1.5 × 10−2 (dash-dotted line) and 4.2 ×
10−2 (dotted line). (e) Nondimensional shear rate fluctuations
Srms as a function of S predicted by simulation. The markers are
as in (d).
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ϕRCP ¼ 0.840 and ϕJ ¼ 0.795 [32]. Each line is obtained
by solving ϕ and S from Eqs. (1)–(6) for various values of μ
at fixed Srms. Srms values are chosen to best match the
simulation data in Fig. 1(d) (markers). They are somewhat
smaller than Srms predicted by simulation [Fig. 1(e)],
reflecting that the constitutive model does not capture
the correct quantitative relationship between μ, S, and
Srms. Nevertheless, the model predicts the correct qualita-
tive behavior, specifically Srms > 0 results in subyielding,
i.e., μ → 0 as S → 0, with the effect being amplified as Srms
is increased.
Model predictions of profiles.—Next, we make predic-

tions of the velocity and structural profiles in Kolmogorov
flow by combining our constitutive model [Eqs. (1)–(6)]
with the (inertia-free) momentum balance ∇ · Σþ f ¼ 0,
whose x and y components reduce to

Σxy ¼
f̂L
2π

cosð2πy=LÞ; Σyy ¼ −constant: ð8Þ

We use three nondimensional shear rate fluctuations
(assumed constant throughout the domain) Srms ¼ 0,
10−2, and 10−1 where the former represents the homo-
geneous flow model and the latter two are chosen to match
the model to the simulated ϕ profiles in Fig. 2(a) (described
below). These Srms values are different from those used in
Fig. 1(d) which were chosen to match the simulated μðSÞ
profiles. These differences again indicate the quantitative
discrepancies between model and simulation. We compute
ϕ, ∂yux, and hnni in each y coordinate for a given constant

Σyy from Eqs. (1)–(6), (8) using Newton-Raphson and then
iteratively updating Σyy using the bisection method such
that the integral volume fraction ϕ̄ [Eq. (7)] approaches 0.7.
Shown in Fig. 2 are profiles of the volume fraction ϕ

[Fig. 2(a)], the nondimensional suspension velocity
uxηs=ðf̂L2Þ [Fig. 2(b)], the anisotropy A of the particle
contacts [Fig. 2(c)] and the coordination number Z nor-
malized by the value at homogeneous jamming ZJ [Fig. 2
(d)]. Z is computed from the simulation output by counting
contacting particle pairs (with ZJ ¼ 3), while A is obtained
by averaging nxny over all such pairs (with n the unit vector
along the center-to-center line). In the constitutive model,
Z=ZJ and A are represented, respectively, by ξ=ξJ and
−ðhEci∶hnnnniÞxy=hnni∶hEci [28]. Because of symmetry
Fig. 2 only shows the profiles over one quarter of the
wavelength L.
Without fluctuations, i.e., following the homogeneous

rheology, the constitutive model predicts a jammed region
around the center lines with _γ ¼ S ¼ 0 and ϕ ¼ ϕJ (gray
lines in Fig. 2). Fluctuations induce two effects. The first is
an increase of the repulsive normal stress relative to the
imposed shear stress, which is evidenced by a decrease in μ
for small S in Fig. 1(d). This increased normal stress drives
particles away from the center lines to the outer regions
[Fig. 2(a)]. In these outer regions the shear rate is larger and
the particles generate more shear stress than in the center
line regions. This results in a lower nondimensional
velocity [Fig. 2(b)]. The second effect is isotropization
(i.e., A → 0) of the microstructure [Fig. 2(c)], resulting in
fewer particle contacts at a given ϕ [Fig. 2(d)]. This
isotropization allows ϕ to exceed ϕJ and reduces the
normal stress near the center lines. These two competing
effects may lead either to an increase in the volume fraction
ϕ above ϕJ (overcompaction, observed for Srms ¼ 10−2) or
to a reduction below ϕJ (observed for Srms ¼ 10−1) at the
center lines [Fig. 2(a)].
Despite the qualitative agreement, there are quantitative

differences between the constitutive model and the particle-
based simulation. Figure 2(d), for instance, shows that ξ=ξJ
in the constitutive model is larger than Z=ZJ in the
simulation. There are many possible avenues for improving
the quantitative accuracy of the model, e.g., by relaxing the
assumption that velocity gradient fluctuations are uncorre-
lated with microstructure fluctuations or by using complex
relationships between the material functions α0, χ0, and β
and the state variables ϕ, hLi, and hnni. However, having
demonstrated that our model contains a (possibly minimal)
set of physics that can simultaneously reproduce subyield-
ing and overcompaction, we have chosen mathematical
simplicity over quantitative accuracy, leaving the above
developments as promising routes for further analysis.
Conclusion.—We have presented a tensorial model for

the microstructure and stress in dense suspensions of
frictional particles that includes the effect of fluctuations
by applying a filtering to the microstructure balance

(a)

(c)

(b)

0 0.1 0.2
0.2

0.4

0.6

0.8

1
(d)

FIG. 2. Kolmogorov flow profiles as a function of the normal-
ized distance to the nearest center line y0=L, predicted by
constitutive model with Srms ¼ 0 (gray lines), Srms ¼ 10−2 (solid
black lines), and Srms ¼ 10−1 (dashed black lines) and by
simulations with L=a ¼ 278 (filled circles) and 56 (open circles).
(a) Volume fraction ϕ; (b) normalized velocity ux=ðf̂L2=ηsÞ;
(c) anisotropy of particle contacts A; (d) normalized coordination
number Z=ZJ in simulation and normalized jamming coordinate
ξ=ξJ in constitutive model.
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equation. In doing so, we are able to predict subyielding
and overcompaction, features common under practical
flows but not predicted by homogeneous rheology models.
In addition to the potential model developments

described above, further improvements to the predictive
capacity for practical applications will require testing in
complex geometries. We provide one such example in the
Supplemental Material [33], namely, a comparison between
model and simulation predictions for pressure driven flow
through a curved channel. Addressing the full details of this
and other complex flows will be the next step toward a
comprehensive fluid dynamical description of dense
suspensions.
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[32] To determine β we use that, in the isotropic (microstructure
and stress) limit where _γrms ≫ _γ, we have ξ ¼ ϕ=
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[28],

and demanding jamming at ϕRCP gives ξJ ¼ ϕRCP=
ffiffiffi
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p
. We

furthermore use that, in the simple-shear limit,
where _γrms ≪ _γ, we have ξ ¼ ϕð5β2 − 4β þ 32Þ=
ð2β2 þ 8β þ 64Þ [28], and demanding jamming at ϕJ gives

ξJ ¼ ϕJð5β2 − 4β þ 32Þ=ð2β2 þ 8β þ 64Þ. Combining
these two expressions for ξJ gives
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which is around four for ϕRCP ¼ 0.84 and ϕJ ¼ 0.795.
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