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The mobility of a fakir state droplet on a structured surface is fundamentally determined by the effective
length of a microscopic contact line. However, it is largely unknown how the surface topography
determines the effective contact line length. Based on the direct measurement of droplet adhesion force and
the visualization of contact line, this work shows that effective contact line length is topography dependent
as opposed to prior notion. On pored surfaces, contact line is not distorted, and the effective length
approaches the droplet apparent perimeter regardless of pore dimensions. On pillared surfaces, the
distortion of contact line is significantly dependent on the packing density of the pillar structures so that the
effective length is as small as a pillar diameter on densely packed pillars and as large as a pillar perimeter on
sparsely-packed pillars, while changing linearly between the two extremes.
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Placing, moving, and removing liquid droplets with
controllable driving forces are crucial in many applications
such as condensation, droplet manipulation, water harvest-
ing, self-cleaning and anti-icing surfaces, and coatings [1–
6]. Thus, it is important to understand how the force
required to depin a droplet on a surface is dictated by
the surface topography. The droplet depinning force is
fundamentally governed by the shape and length of a
contact line at the droplet perimeter. Especially, for a fakir
droplet on a structured surface where a liquid-gas interface
is suspended by partially wetted solid structures (Cassie-
Baxter state), the depinning force originates from the
energy consumed by the displacement of a contact line
on a solid structure and the energy stored at the distorted
liquid-gas interface between adjacent solid structures [7–9].
Because of the difficulty in visualizing their microscopic
dynamics, the effective length of the contact line that
contributes to the depinning force has been proposed
and used in analyzing the droplet dynamics [9–15].
Despite its importance, how the topography of a structured
surface determines the effective contact line length remains
largely unknown and its estimation remains mystifying.
The depinning force results from the distortion of the

liquid-gas interface which can be regarded as a stretched
spring (see Fig. S1 in the Supplemental Material [16]). The
spring force is proportional to the length of the anchored
contact line that is surrounded by the distorted interfaces
[7]. In one extreme case where the perimeter of the structure
remains fully wetted during the distortion, the full perim-
eter (maximum) can be taken as an effective contact line
length [10,15,17]. In the other extreme case where only the
displacement of the contact line consumes energy with no

distortion of the liquid-gas interface, the size (diameter or
width) of the structure (minimum) is equivalent to the
effective contact line [12,18,19]. Or, the interface distortion
and contact line displacement can coexist and an effective
contact line is then an arbitrary value between the structure
size and perimeter [20,21]. Despite the disparity and
ambiguity in the effective contact line length, all prior
studies considered the ratio (x) of an effective contact line
length on an individual structure (li) to the structural size
(d) to remain constant (i.e., li ∝xd, where x is fixed),
regardless of the structural dimensions or spatial distribu-
tions. This means that the contact line dynamics should be
indifferent to the surface topography, which is quite
questionable and needs verification. However, the depend-
ency of an effective contact line length on surface topo-
graphy has not been investigated for structured surfaces
with systematically regulated contact line continuity (e.g.,
pillared vs pored surfaces; a contact line is discontinuous
on pillared surfaces whereas it is continuous on pores
surfaces) and packing density (d=λ, where λ is a periodicity
of the structures).
The estimation of an effective contact line length can be

accomplished by measuring droplet-surface interactive
forces. Four different approaches have been used in
measuring the interactive forces, including tilting [22],
centrifugally rotating [23], tangential shearing [14,24,25],
and vertical detaching [17,20,26–32]. The forces measured
by the first three approaches are defined as the retention or
lateral adhesion force, where the contact line is anisotropic
along the droplet perimeter since one side is advancing
(wetting) while the other is receding (dewetting). Because
of the anisotropy, it is not appropriate to directly correlate
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the measured force to the effective contact line length. In
contrast, the fourth approach allows the contact line to be
isotropic, where the contact line recedes uniformly towards
the droplet center, being the most suitable one for the
investigation of the effects of the surface topography on the
effective contact line length. However, such an attempt has
not been made yet, leaving the understanding unclear.
Here, we employ the vertical detaching approach to

unveil the effects of surface topography on the effective
contact line length and establish the predictive correlation
model. The maximum forces required to vertically detach a
fakir droplet from both micropillared (discontinuous con-
tact line) and micropored (continuous contact line) surfaces
are directly measured using a tensiometer. The correlation
between the effective contact line length and structural
dimensions is established by comparing the experimentally
measured adhesion forces to theoretical ones, which is
further verified by the visualization of the contact line
dynamics.
The microstructured hydrophobic surfaces were pre-

pared using a soft lithography technique with polydime-
thylsiloxane (PDMS) (see Supplemental Material [16] for
details) [10,29]. The diameter (d) of the structures varied
from 2.5 to 50 μm and the center-to-center pitch (λ) from
10 to 100 μm [Fig. 1(a); see also Table S1 and Figs. S2-S3
[16]]. The solid area fraction (Φ) of the surfaces ranges
from 0.03 to 0.65 for pillars and 0.35 to 0.99 for pores,
defined as πd2=4λ2 and 1 − πd2=4λ2, respectively. A
smooth PDMS surface was also prepared and tested as a
control, whose Φ is 1.
The measurement of the adhesion force of a water

droplet (∼3 μL) to the prepared surfaces of PDMS was
conducted as shown in Fig. 1(b) (see Supplemental
Material [16] for details) [20,27–29]. As illustrated in
Fig. 1(c), the adhesion force initially increased while the
stage was moving downwards, until a maximum value
(referred to as a maximum adhesion force, Fmax) was
reached. Then, the force decreased until the droplet was
detached. The contact angle and the contact radius of a
droplet were measured based on the captured image of the
droplet profile using ImageJ software. The contact angle
and the contact radius at Fmax are denoted as θms and R,
respectively (see Table S2 [16]). All the experimental
values were the average of at least five reproducible tests.
The Fmax represents the adhesion force at the most stable
droplet shape (the most stable contact angle) in contact with
the solid during depinning, depending on the dimensions of
solid structures [28,33].
Figure 2 shows Fmax with respect to Φ of the prepared

surfaces. Although Fmax generally increases with Φ, no
universal dependence of Fmax on Φ was identified. This
puzzling trend cannot be explained by the contact angle
hysteresis, which has been conventionally employed to
quantify the droplet retention. Both Fmax and contact angle
hysteresis are essentially determined by the dynamics of

contact line and its effective length. The maximum adhe-
sion force consists of surface tension force (FS) and
Laplace pressure force (FL), as [34–36]

Fmax ¼ γ
Xn
i¼1

li sin θi − AΔP; ð1Þ

where γ is the surface tension of water, n is the number of
structures along the droplet perimeter, li is the length of the
effective contact line segment per each structure with a
contact angle of θi, A is the droplet base area, and ΔP is the
Laplace pressure. ΔP is estimated by droplet surface

FIG. 1. (a) Scanning electron microscope images of pillared (i)
and pored (ii) surfaces with varying dimensions, where λ, d, and
Φ represent the structure pitch, diameter, and solid fraction,
respectively. The scale bar is 20 μm. (b) Schematic of the
measurement of adhesion force of a water droplet (∼3 μL) on
a solid surface. (c) Force measured with respect to the vertical
position of a pored surface of Φ ¼ 0.65. Insets illustrate the
change in the droplet shape and the maximum adhesion force is
denoted as Fmax. (d) The principal radii of curvatures measured
on droplets in convex and concave shapes.
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curvatures [Fig. 1(d)], asΔP ¼ γ (1=R1 þ 1=R2), where R2

is a negative value for concave droplet shape. A positive
ΔP represents a force to maintain a spherical droplet shape,
and henceFL works against FS. At the most stable state, the
droplet is axisymmetric with an apparently circular base
(A ¼ πR2) and the contact angles are identical everywhere
along the droplet perimeter. Fmax can be simplified as
[28,33]

Fmax ¼ γ2πRδ sin θms − πR2ΔP; ð2Þ

where 2πRδ represents the effective contact line length
along the apparent droplet perimeter (2πR). Or, δ represents
the ratio of the effective contact line length to the apparent
perimeter (effective contact line fraction) [10]. Since the
contact line is isotropic, 2πRδ ¼ nli, and the apparent
droplet perimeter equals the summation of the total number
of pitches along the perimeter (2πR ≈ nλ) [10], and hence,

δ ¼ li
λ
¼ xd

λ
; ð3Þ

where x can be as large as π, if the unit effective contact line
length (li) equals the perimeter of the unit structure. On an
ideally smooth surface, δ is unity.
Based on Eq. (2), δ can experimentally be estimated as

δ ¼ Fmax þ πR2ΔP
γ2πR sin θms

: ð4Þ

Figure 3(a) shows the δ values with respect to Φ,
computed according to Eq. (4) (see Table S2 for the
experimental data [16]). For droplets on pored surfaces,
δ remain practically constant (δ ≈ 1) irrespective of the
structural dimensions. This indicates that the contact line
cannot effectively distort in recession on pored surfaces and
the effective contact line is equivalent to the apparent
droplet perimeter (2πR). It is corroborated by the

visualization of the contact line using a reflective interfer-
ence contrast microscopy (see Supplemental Material [16])
[10], as shown in Figs. 3(b)–3(d), where δ is effectively the
maximally distorted contact line (orange-solid line) divided
by the pitch (λ). This agrees with the previous studies
showing that receding contact angles [9,37] and measured
adhesion force [27] on pored surfaces remain roughly
constant despite the variations in structural dimensions.
Although the visualizations were conducted independently
using a receding droplet with reducing volume, the visu-
alized dynamics of the contact line represented those at the
most stable state, because they both were measured in the
constant contact angle modes as a droplet boundary
continuously recedes (see Fig. S4 [16]). In contrast, for
droplets on pillared surfaces, δ varies significantly with Φ.
The distinct behavior of δ on pillared surfaces mainly
results from the discontinuity of the contact line (i.e., the
contact line is isolated on each pillar tip surrounded by
suspended liquid-gas interface), whereas that on pored
surface is continuous. Although δ does not show the global
dependence on Φ of pillared surfaces, Fig. 3(a) shows

FIG. 2. Measured maximum adhesion forces (Fmax) on pillared
(filled circle), pored (circle), and smooth (filled diamond)
surfaces with respect to solid fractions (Φ).

FIG. 3. (a) The calculated contact line fraction (δ) on pillared
(filled circle), pored (circle), and smooth (filled diamond)
surfaces with respect to solid fractions (Φ). The red-dotted line
at δ ¼ 1 is for the guide for reading. The dark-gray, light-gray,
and yellow regimes show three distinct trends of δ on pillared
surfaces (filled circle) with respect toΦ. (b)–(d) The shapes of the
pinned contact line on the pored surfaces (orange-solid line) of
Φ ¼ 0.50, 0.78, and 0.93, respectively, on the brink of detach-
ment (i) and right after the detachment (ii).
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distinct trends of δ within the three local regimes of Φ as
marked in different colors.
Further noting that the contact line dynamics can be

distinct depending on the packing density (d=λ) of pillar
structures [9], the ratio of the unit effective contact line length
to a pillar diameter (x ¼ li=d ¼ δλ=d) is plotted with respect
to d=λ in Fig. 4(a). It shows three distinctive regimes as
follows. For sparsely packed pillars (d=λ < 0.3), x ≅ π. It is
the maximum value for the effective contact line (li) to reach
on a circular pillar top, suggesting that the effective contact
line follows almost the full perimeter of the circular pillar top
in the case of sparsely packed pillars. This is because the
sparsely packed pillars allow the liquid-gas interface to be
fully distorted in the vicinity of the wetted pillars (dark
regions), as shown in Fig. 4(b) where the distorted liquid-gas
interface (dark-bright interference fringes) surrounds the
entire wetted pillar top (orange-solid line) right before
detachment. The yellow-dotted lines in Fig. 4(b) represent
the lowest local positions of the distorted interface [9], which
forms a continuous interface with the liquid remained on the
pillar top (farthest edge of the dark regions). Their distance
represents the extent of distortion, and the contact line

between them is the effective contact line (see Fig. S1
[16]). In this case, the liquid-gas interface consumes much
energy in distortion and the entire pillar top perimeter
effectively contributes to Fmax. In contrast, for densely
packed pillars (d=λ > 0.67), x ≅ 1, indicating that the
effective contact line length (li) roughly equals the pillar
size (d). This is because the liquid-gas interface cannot distort
much in such a confined space relative to a large pillar size, as
shown in Fig. 4(d) where the interference fringes are not
found around the pillars. In this case, the consumption of
energy and contribution to Fmax by the distortion of liquid-
gas interface are small. Thus, the displacement of the contact
line starts relatively early and mainly contributes to Fmax,
limiting the effective contact line length not to exceed the
pillar size. Formoderately packed pillars (0.3 ≤ d=λ ≤ 0.67)
between the two extremes, x decreases almost linearly from
∼π to∼1with the increase in d=λ. In this regime, the contact
line starts to recede on the pillar top along with the distortion
of the liquid-gas interface, as shown in Fig. 4(c) where the
orange-solid line represents the effective contact line. This is
because the distortion of the liquid-gas interface accompa-
nies a decrease in the local (microscopic) contact angle on a
pillar top, and the local contact line recedes when the contact
angle reaches the intrinsic receding contact angle of the pillar
top surface. Thus, the effective contact line length contrib-
uting toFmax is smaller than the full pillar perimeter (πd) but
greater than the pillar diameter (d). Such a behavior becomes
more pronounced on the pillared surface with a greater value
of d=λ.
Based on the results, the empirical dependence of x on

d=λ can be summarized as

x ¼
8<
:

π; d=λ < 0.3

−5.6d=λþ 4.7; 0.3 ≤ d=λ ≤ 0.67

1; d=λ > 0.67

: ð5Þ

This empirical correlation also supports the experimental
data reported by others. For example, Paxson and Varanasi
measured the adhesion force of a water droplet on pillared
surfaces and found that the increase rate of the adhesion
force with d=λ was retarded when the value of d=λ reached
0.375 [17]. The result implies that the effective contact line
length on the pillared surface, i.e., the value of x, would
start to decrease when the packing density of the pillars
increased greater than the value of 0.375. Meanwhile, the
empirical correlation obtained in this study may need
modifications depending on other factors such as the
direction and velocity of a droplet motion, droplet size,
liquid property (e.g., surface tension), intrinsic hydropho-
bicity of solid structures, and the shape, edge roughness,
and curvature of a solid structure [8,14,24,27,35,38–40].
Nonetheless, the main discovery made in this work that the
effective contact line length differs depending on the
continuity of the contact line and structural packing density
should universally hold true. In other words, the common

FIG. 4. (a) The ratio (x) of the effective contact line length (li)
on a pillar to a pillar size (d) with respect to the packing density
(d=λ) of pillars. The black-dashed line represents the best fitting
line. (b)–(d) The effective contact lines on pillar tops (orange-
solid lines) and the lowest local positions of the distorted liquid-
gas interfaces in between pillars (yellow-dotted line) in the cases
of d=λ ¼ 0.18, 0.41, and 0.80, respectively, on the brink of
detachment (i) and right after the detachment (ii).
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notion of the invariable ratio of the effective contact line
length to the structure size regardless of a packing density,
suggested by or adopted in many previous studies
[7,10,12,15,17–19,21] should not be taken for granted
but applied with great care, since the variation of the
effective contact line length can be as large as π times.
In conclusions, this study shows how the effective

contact line length, which essentially determines the
droplet mobility, depends on surface topography, enabled
by the direct measurement of the droplet maximum
adhesion force and the visualization of the microscopic
contact line dynamics. As opposed to most studies dealing
with contact line, results here reveal that the effective
contact line length on a structured surface cannot be
considered as a constant but varies distinctly with respect
to the structure type and dimensions. On pored surfaces
(continuous contact line), the contact line is not signifi-
cantly distorted at the most stable state and the effective
contact line length equals the apparent perimeter of the
droplet boundary despite the variation in the structural
dimensions. In contrast, on pillared surfaces (discontinuous
contact line), the effective contact line length significantly
varies with respect to the packing density (i.e., the pillar
size-to-pitch ratio) of the structure. On sparsely packed
pillars, the effective length reaches the maximum as pillar
top perimeter. As the packing density increases to the first
critical value (∼0.3), the effective length starts to decrease
linearly. As the packing density increases to the second
critical value (∼0.67), the effective length reaches the
minimum as pillar diameter. The novel insights of the
topography-dependent effective contact line length on
structured hydrophobic surfaces are of great significance
in the fundamental understanding of the droplet dynamics
and the proper design of the surfaces for tailored droplet
retention.
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