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An effective way to design structured coherent wave interference patterns that builds on the theory of
coherent lattices, is presented. The technique combines prime number factorization in the complex plane
with moiré theory to provide a robust way to design structured patterns with variable spacing of intensity
maxima. In addition, the proposed theoretical framework facilitates an elegant computation of previously
unexplored high-order superlattices both for the periodic and quasiperiodic case. A number of beam
configurations highlighting prime examples of patterns for lattices with three-, four-, and fivefold
symmetry are verified in a multibeam interference experiment.
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Structured interference patterns of coherent waves,
known as coherent lattices, play a key role in a wide
range of applications. In particular, coherent lattices are
prominent in structured illumination microscopy [1,2],
fabrication of microstructures such as photonic [3] or
plasmonic crystals [4], optical trapping in the life
sciences [5], and quantum research [6,7]. In all these
applications, the periodicity of the patterns has been of
the same order as the wavelength λ. The intensity
maxima defining the periodicity are thus too closely
spaced to be used as individually resolvable excitation
foci or trapping potentials. Sparse multifocal excitation
fields have been proposed more than fifteen years ago by
Betzig [8] but have gone virtually unnoticed outside the
microscopy community, where the implementation of
coherent lattices in light-sheet microscopy was limited
to a small subset of configurations [9]. More recent
advancements in microscopy are targeted toward
lens-free implementations that use photonic integrated
circuit (PIC) technology. Also here, coherent lattices
can prove to be pivotal as it allows for a planar
configuration of input waves to generate sparse optical
superlattices.
The applicability of structured interference patterns

spans beyond photonics. In materials science research,
for example, acoustic interference patterns enable measur-
ing piezoelectric transduction efficiency [10]. Furthermore,
a subset of sparse lattices was discovered in thermal
convection [11], and Faraday wave experiments [12,13],
but the connection to the theory of coherent lattices was not
yet made to our knowledge.
Sparse and composite coherent lattices are designed

by cycling through combinatorial lattice symmetry con-
figurations, as described in Ref. [8]. By observing that
both sparse and composite lattices are rotational moiré

superlattices [14], we present a new model that relies on
symmetries in number fields. The proposed model
successfully predicts coherent superlattices ranked by
order of moiré transformation and is equally valid for
quasiperiodic lattices, which were previously not treated
[8]. The rotational moiré pattern synthesis consists of
superposing periodic lattices with a relative rotation,
further referred to as twist. It has been demonstrated that
the interference patterns obtained by concentrically
arranging coherent wave sources at equal distances
around a circle have (quasi-)periodic symmetry [15].
Starting from these simple interference patterns, the
moiré superpattern is obtained by averaging the wave-
front over a finite group of transformations. We will
show that the values of these twist angles are encoded in
the complex prime factorization. Furthermore, we
present experimental results validating this integer lattice
method approach.
Light as scalar waves.—Arbitrary coherent waves, such

as acoustic, two-layer interfacial waves and monoenergetic
matter waves, can be described by plane wave functions.
This also holds true for electromagnetic waves when
disregarding polarization. We define a plane wave as a
function f∶C → C propagating along the y axis with the
wavefront parallel to the x axis

fðzÞ ¼ e2πiImðzÞ; ð1Þ

where z ¼ xþ iy ∈ C. The plane wave is expressed in
units of wavelength λ. If G is a finite set of
transformations of the complex plane with N elements,
the average of Eq. (1) over the elements of G will be
defined as
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f̂ðzÞ ¼ 1

N

X
g∈G

fðg · zÞ: ð2Þ

This equation corresponds to the normalized total super-
position of the plane waves oriented according to the
elements of G.
Specific to electromagnetic waves, the intensity of the

interference pattern is obtained from the complex amplitude
[Eq. (2)] by multiplying it with its complex conjugate [16]:

IðzÞ ¼ f̂ðzÞf̂�ðzÞ: ð3Þ

Notably, the choice ofG will determine the symmetry of the
resulting pattern.
Plane wave orientations from integer lattices.—The

common way to obtain (quasi-)periodic patterns is to orient
wavefronts at equidistant angles. In an optical setup this can
be realized for various light beam configurations ranging
from planar [Fig. 1(a)] such as in systems with 2D confined
wave propagation like PICs, to tilted [Fig. 1(b)] such as in
conventional interference setups, to diffraction cones
[Fig. 1(c)] such as in photolithography using photomasks.
Configuring beams in an equally spaced circular configu-
ration corresponds to choosing G to be a cyclic group. The
generator of the cyclic group ζm ¼ e2πi=m, where m ≥ 3 is
an integer, generates an algebraic field QðζmÞ for which
regular structures such as integer lattices can be defined [17].

Wewillmake the key observation that finding the planewave
orientations from these integer lattices is equivalent to
selecting wave vectors as was established in Ref. [8].
We focus on integer lattices in cyclotomic fields

QðζmÞ ⊃ Z½ζm� ¼ faþ bζmja; b ∈ Zg, where m is an
integer [17]. In the complex plane the only 2D periodic
lattices that are allowed by the crystallographic restriction
theorem are the rectangular and triangular lattices [15]. Our
argument can be further restricted to the case where m is
even because QðζmÞ ¼ Qðζ2mÞ for odd m, as is detailed
in Ref. [17].
For these specific cases, the representations of an integer

n are known to be concyclic. Each lattice point on a circle
with radius

ffiffiffi
n

p
corresponds to a representation of n as a

product of aþ ζmb and its conjugate. To find all concyclic
lattice points for a given n, we compute the field norm, for
any α ∈ Z½ζm� defined [17] as

NðαÞ ¼ αᾱ ¼
�
a2 þ b2 for m ¼ 4

a2 þ abþ b2 for m ¼ 6:
ð4Þ

Since Z½ζm� with m ¼ 4 or 6 is Euclidean and hence a
unique factorization domain, the number of points on each
circle with radius

ffiffiffi
n

p
is equal to the number of combina-

tions of the complex factors of the prime factorization of n
in the considered number ring [18].
The set of points

PðnÞ ¼ fNðαÞ ¼ njα ∈ Z½ζm�g; ð5Þ

normalized to have unit magnitude, are used as input
for calculating the intensity in Eq. (3), i.e., setting
G ¼ n−1=2PðnÞ. As an example, in Fig. 1(d), the triangular
integer lattice is shown with points selected by setting
n ¼ 7. The obtained corresponding coherent lattice is
shown in Fig. 1(e). Note that the normalization step
ensures that all chosen integer lattice points have unit
magnitude and act as pure rotations, fulfilling the coherence
criterion.
Relation with moiré.—So far, the plane wave orientations

seem to be selected on a number theoretical basis only.
The relation to moiré patterns, however, becomes obvious
when considering the symmetries in the distribution of the
concyclic points [Eq. (5)].
The units Z½ζm�× are defined as lattice points with

NðαÞ ¼ �1, where for periodic lattices the field norm
can only be positive [17]. Geometrically, these are the
lattice points lying on the circle with radius 1:

Z½ζm�× ¼
(
f�1;�ig for m ¼ 4

f�1;�ζ6;�ζ26g for m ¼ 6:
ð6Þ
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FIG. 1. Laser beam configurations for generation of optical
coherent lattices. The configuration can be planar (a), tilted with
respect to the horizontal (b), or using diffraction cones (c). The
orientations of the beams are determined from α ¼ aþ bζ6 ∈
Z½ζ6� with ζ6 ¼ e2πi=6 and field norm n ¼ 7, highlighted in red
(d). In the region where all beams overlap a triangular coherent
lattice will form (e).
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We can establish that the calculated intensity pattern using
these points defines a certain “base pattern.” Also, the
number of concyclic points PðnÞ come in multiples of the
number of units [19]. Thus, using orientations arg½PðnÞ� is
analogous to rotating multiple copies of the base pattern by
twist angles. As a consequence, the integer lattice method is
equivalently described in terms of moiré rotations.
For example, take the factorization 7 ¼ ð3 − ζ6Þð3 − ζ̄6Þ

over Z½ζ6�, written in terms of its complex conjugate pair
[20]. The set of concyclic points is therefore

Pð7Þ ¼ U · ð3 − ζ6Þ ∪ U · ð3 − ζ̄6Þ; ð7Þ

where U ¼ Z½ζ6�× is the set of the 6 units, giving 12 lattice
points [Fig. 1(d)]. Setting G ¼ Pð7Þ= ffiffiffi

7
p

when computing
the pattern, results in a moiré superlattice with a triangular
unit cell, as shown in Fig. 1(e).
Turning the search for plane wave orientations into a

factoring problem allows computation of high-order
superlattices without the need for an exhaustive search
for all possible circle radii. Here, the order is considered
to be the number of occurrences of the base pattern.
Let n ¼ 91, the factorization of this integer reveals
that the moiré superpattern is determined by the factors
91 ¼ 7 · 13 ¼ ð3 − ζ6Þð3 − ζ̄6Þð4 − ζ6Þð4 − ζ̄6Þ, such that

Pð91Þ¼U ·ð3−ζ6Þð4−ζ6Þ∪U ·ð3−ζ6Þð4− ζ̄6Þ
∪U ·ð3− ζ̄6Þð4−ζ6Þ∪U ·ð3− ζ̄6Þð4− ζ̄6Þ; ð8Þ

corresponding to 24 plane wave orientations forming the
interference pattern. The resulting coherent lattices retain
the integer lattice symmetry but have varying periodicity, as
is illustrated in Fig. 2(a) for n ¼ 7 and Fig. 2(b) for n ¼ 91.
More complex patterns can now be found systematically.

For example, n ¼ 1729 ¼ 7 · 13 · 19 corresponds to 48
lattice points [Fig. 2(c)].
Calculating the periodicity relies on a key result from

moiré theory for plane wave superpatterns. The final
superposition of all plane waves contains the frequency
components of each wave as well as the new frequencies
obtained in each convolution. Therefore, the dominant
spatial features are determined by the components closest
to the origin in the frequency domain [14]. Identifying the
integer lattice with the frequency domain, the pattern
periodicity d can be written in terms of lattice points
pi ∈ PðnÞ as follows:
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FIG. 2. Concyclic integer lattice points in Z½ζ6� (represented by arrows and grouped by color according to multiples of the units) with
the generated coherent lattices showing increasing periodicity. The corresponding interference patterns are calculated for (a) n ¼ 7,
(b) n ¼ 91, and (c) n ¼ 1729 with, respectively, 12, 24, and 48 wave components.
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FIG. 3. Illustration of the self-similarity property of quasilat-
tices. The lattice points of the reduced decagonal quasilattice Λ1

(circled dots) are a subset of the scaled quasilattice φΛ2 (dots),
where φ is the golden ratio. A selected circle (red) intersects with
20 lattice points.
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d¼min

����
�
pi−pjffiffiffi

n
p

�����
−1
; i≠ j; ð9Þ

where the elements of the reciprocal space pi − pj are
normalized by

ffiffiffi
n

p
to have unit length. This shows that the

coherent lattice periodicity is proportional to the square
root of the field norm n.
Quasilattices.—Computing discrete lattice points becomes

increasingly difficult for nonperiodic patterns. In general, a
lattice Λ is a discrete subgroup generated by linearly
independent elements. That is, Λ ¼ fPk aklkjak ∈ Zg,
where flkg is the set of generators [21]. When consider-
ing quasiperiodic lattices, also called quasilattices, their
aperiodic nature allows for infinitely many lattice points for
a given norm. This is also reflected by computing the
units, as, for example, for α ∈ Z½ζ5�, setting the norm
NðαÞ ¼ ða2 − 5b2Þ=4 ¼ �1, gives infinitely many integer
solutions a, b, complicating the integer lattice method for
quasilattices.

Away to circumvent this behavior and be able to analyze
a finite set of lattice points is to limit the number of linear
combinations of the generators by restricting the possible
values of ak. We can do this by writing a reduced form of
the quasilattice as follows:

Λn ¼
�X

k

akζk
����jakj ≤ n; ak ∈ Z

�
; ð10Þ

where fζg are the generators of the cyclotomic field and n
can be chosen to be a positive integer, such that
limn→∞Λn ¼ Λ, yielding the full quasilattice.
Moreover, quasilattices have the remarkable structural

property of self-similarity, meaning that scaling the lattice
points by a certain factor results in quasilattices that
look identical [22]. Let φ be the scaling factor, from
self-similarity it follows that for certain n ∈ N we have
Λn ⊂ φΛnþ1. Using this property and the fact that
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FIG. 4. Experimental generation of optical coherent lattices for several key examples. (a) Setup: a laser beam passes through a binary
amplitude mask (BAM) and the resulting diffraction pattern is focused on the camera using a lens (L). The BAM aperture positions are
calculated using the integer lattice method, illustrated in the leftmost column. The values of the field norm n ¼ 7 and n ¼ 91 were
selected for Z½ζ6� (b); n ¼ 1 and n ¼ 4þ ffiffiffi

5
p

for Z½ζ5� (g); and n ¼ 5 and n ¼ 65 for Z½ζ4� (l). Selected points, intensity plots, and
experimental data are shown for square (b)–(f), fivefold quasiperiodic (g)–(k), and triangular patterns (l)–(p). For the fivefold-periodic
case only half of the points were selected (g) since QðζmÞ ¼ Qðζ2mÞ.

PHYSICAL REVIEW LETTERS 125, 184101 (2020)

184101-4



limn→∞ Λn ¼ Λ, it is possible to construct arbitrary large
finite integer quasilattices. As an example, consider the ring
Z½ζ5�, where a good choice for φ is the golden ratio
ð1þ ffiffiffi

5
p Þ=2, which is the decagonal quasilattice self-

similarity ratio [22]. The construction of this reduced
quasilattice, illustrating the concept of self-similarity, is
shown in Fig. 3.
Returning to the problem of finding concyclic lattice

points, such that these could be related to plane wave
orientations, it should be noted that the field norm can have
infinitely many corresponding points. Therefore, lattice
points must be grouped by their complex magnitude. A set
of concyclic points selected using this approach is shown in
Fig. 3. Incidentally, the field norm can have noninteger
values for quasilattices.
Experimental results.—An experimental validation of

the integer lattice method was obtained by generating
optical coherent lattices as diffraction patterns emerging
from a binary amplitude mask [Fig. 4(a)]. Linearly polar-
ized monochromatic light cones are derived from a
common collimated laser beam (λ ¼ 532 nm) by passing
it through 10 μm diameter circular apertures in an other-
wise opaque mask, each aperture generating a diffraction
cone [Fig. 1(c)]. The mask was prepared using UV
lithography and lift-off on a 200 nm sputtered chromium
layer on a glass slide. The placement of the apertures is
determined by the concyclic points found from the integer
lattice method.
To exemplify the integer lattice method, the impact of the

choice of the field norm is demonstrated for triangular
patterns [Figs. 4(b)–4(f)], quasiperiodic patterns with five-
fold symmetry [Figs. 4(g)–4(k)], and square patterns [Figs. 4
(l)–4(p)]. The measured interference patterns show good
agreement with the calculated coherent lattices. An increase
in the primitive cell size is clearly obtained for increasing
selected field norm with more prime factors. Patterns like
these can significantly impact cold atom physics and optical
tweezer technology by offering access to nontrivial trapping
potentials, as well as multifocal microscopy and imaging by
allowing custom optical sectioning.
Conclusion.—We have presented a novel approach to

design (quasi-)periodic interference patterns generated
by coherent waves, with a focus on electromagnetic
waves. The formation of the patterns was shown to
follow from prime number factorization, i.e., transform-
ing wave components according to a selection of alge-
braic integers with equal field norm. Furthermore, we
have demonstrated that coherent lattices can be inter-
preted as moiré superlattices with periodicity bounded by
the square root of the field norm. The method was
experimentally verified by forming key optical lattices
as diffraction patterns in an optical setup. We conclude
that the integer lattice method is a powerful approach to
design coherent lattices with great control over the
spatial characteristics, such as pattern symmetry and
spacing of the intensity maxima.

The discussion was restricted to two dimensions, but
integer factorization and the moiré principle are equally
valid for any dimension, including 3D lattices. We
postulate that an approach using geometrical algebra
might suit a more general theoretical framework. The
proposed method was shown not only to be a robust way
to design (quasi-)periodic patterns, but most importantly,
opens the door to new ways of studying interference
patterns based on algebraic number theory. For example, a
more thorough study of the field norm of integer quasi-
lattices would be the next building block in the theoretical
framework.
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