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We show how to double copy heavy quark effective theory (HQET) to heavy black hole effective theory
(HBET) for spin s ≤ 1. In particular, the double copy of spin-s HQET with scalar QCD produces spin-s
HBET, while the double copy of spin-1=2 HQETwith itself gives spin-1 HBET. Finally, we present novel
all-order-in-mass Lagrangians for spin-1 heavy particles.
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Introduction.—An expanding family of field theories has
been observed to obey double copy relations [1–36] (for a
review of the double-copy program, see Ref. [37]). In
particular, scattering amplitudes of gravitational theories
with massive matter can be calculated from the double copy
of gauge theories with massive matter [38–51].
As heavy quark effective theory (HQET) [52] is derived

from QCD and heavy black hole effective theory (HBET)
[53] is derived from gravity with massive particles, HBET
amplitudes should be obtainable as double copies of HQET
amplitudes. Indeed, this is the main result of this Letter. We
show through direct computation that the tree-level three-
point and Compton amplitudes of HQETand HBET satisfy
the schematic relations

ðQCDs¼0Þ × ðHQETsÞ ¼ HBETs; ð1aÞ

ðHQETs¼1=2Þ × ðHQETs¼1=2Þ ¼ HBETs¼1; ð1bÞ

for s ≤ 1, where the spin-s HQET and HBET matter states
are equal in the free-field limit, and the spin-1 heavy
polarization vectors are related to the heavy spinors through
Eq. (29). While we only show here the double copy for
three-point and Compton amplitudes, invariance of the S
matrix under field redefinitions implies that Eq. (1) holds
more generally whenever QCD double copies to gravita-
tionally interacting matter. Equation (1) expands the double
copy in powers of ℏ since the operator expansion for heavy
particles can be interpreted as an expansion in ℏ [53]. The
ℏ → 0 limit of the double copy is currently of particular
relevance for gravitational wave physics [41,45,46].

We will begin in the second section with a brief review of
the color-kinematics duality, and we will also discuss
double copying with effective matter fields. In the next
two sections we demonstrate the double copy at tree level
for three-point and Compton amplitudes for spins 0, 1=2,
and 1, respectively. We offer our conclusions in the final
section. The Lagrangians used to produce the amplitudes in
this Letter are presented in the Supplemental Material [54].
Among them are novel all-order-in-mass Lagrangians for
spin-1 HQET and HBET.
Color-kinematics duality and heavy fields.—A tree-level

n-point gauge-theory amplitude, potentially with external
matter, can be written as follows (we omit coupling
constants for the sake of clarity; reinstating them is
straightforward: after double copying the gauge theory
coupling undergoes the replacement gs →

ffiffiffi
κ

p
=2):

An ¼
X
i∈Γ

cini
di

; ð2Þ

where Γ is the set of all diagrams with only cubic vertices.
Also, ci are color factors, ni encode the kinematic infor-
mation, and di are propagator denominators. A subset of
the color factors satisfies the identity

ci þ cj þ ck ¼ 0: ð3Þ
If the corresponding kinematic factors satisfy the analogous
identity,

ni þ nj þ nk ¼ 0; ð4Þ
and have the same antisymmetry properties as the color
factors, then the color and kinematic factors are dual. In this
case, the color factors in Eq. (2) can be replaced by
kinematic factors to form the amplitude

Mn ¼
X
i∈Γ

n0ini
di

; ð5Þ
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which is a gravity amplitude with antisymmetric tensor and
dilaton contamination. [For an amplitude of arbitrary
multiplicity containing massive external states with an
arbitrary spectrum, Eq. (5) may not represent a physical
amplitude [56]. However, for the cases under consideration
in this Letter, the application of the double copy will yield a
well-defined gravitational amplitude.] In general, n0i and ni
need not come from the same gauge theory, and only one of
the sets must satisfy the color-kinematics duality.
In this Letter, we are interested in applying the double-

copy procedure to HQET. A complicating factor to double
copying effective field theories (EFTs) is that Lagrangian
descriptions of EFTs are not unique, as the Lagrangian can
be altered by redefining one or more of the fields. The
Lehmann, Symanzik, and Zimmermann (LSZ) procedure
[57] guarantees the invariance of the S matrix, and in
particular Eqs. (2) and (5), under such field redefinitions by
accounting for wave function normalization factors
(WNFs) R−1=2, which contribute to the on-shell residues
of two-point functions. Note thatR−1=2 ¼ 1 for canonically
normalized fields. TheWNF for an effective state ε̃ can thus
be determined by relating it to a canonically normalized
state ε through

ε ¼ R−1=2 · ε̃: ð6Þ

Under the double copy the WNFs from each matter copy
combine in a spin-dependent manner, which complicates
the matching of the double-copied amplitude to one derived
from a gravitational Lagrangian.
In order to ease the double copying of HQET to HBET,

we would like to avoid having to compensate for the
WNFs. This can be achieved by ensuring that HQET and
HBET have the same WNFs—i.e., that the asymptotic
states for the spin-s particles in HQET and HBET are equal
—and double copying HQET with QCD, which has a
trivial WNF.
The asymptotic states—that is, the states in the free-field

limit—of the canonically normalized theories (given by
complex Klein-Gordon, Dirac, and symmetry-broken
Proca actions) are related to their respective asymptotic
heavy states (labeled by a velocity v) in position space
through

φðxÞ ¼ e−imvxffiffiffiffiffiffiffi
2m

p
�
1 −

1

2mþ iv · ∂ þ ∂2⊥
2m

∂2⊥
2m

�
ϕvðxÞ; ð7aÞ

ψðxÞ ¼ e−imvx

�
1þ i

2mþ iv · ∂ ð=∂ − v∂Þ
�
QvðxÞ; ð7bÞ

AμðxÞ ¼ e−imvxffiffiffiffiffiffiffi
2m

p
�
δμν −

ivμ∂ν − ∂μ∂ν=2m
mþ iv · ∂=2

�
Bν
vðxÞ; ð7cÞ

where aμ⊥ ¼ aμ − vμðvaÞ for a vector aμ. Here, the momen-
tum is decomposed as pμ ¼ mvμ þ kμ in the usual heavy-

particle fashion. The Lagrangians for the heavy fields in
Eq. (7) are given in the Supplemental Material [54].
Converting to momentum space, Eq. (7) gives the WNFs

R−1=2
s¼0 ðpÞ ¼ 1ffiffiffiffiffiffiffi

2m
p

�
1þ k2⊥

4m2 þ 2mv · k − k2⊥

�
; ð8aÞ

R−1=2
s¼1=2ðpÞ ¼ 1þ 1

2mþ v · k
ð=k − v · kÞ; ð8bÞ

ðR−1=2
s¼1 ðpÞÞνμ ¼

1ffiffiffiffiffiffiffi
2m

p
�
δνμ −

vμkν þ kμkν=2m

mþ v · k=2

�
: ð8cÞ

We will demonstrate that spin-s HBET amplitudes can
directly be obtained by double copying spin-s HQET
amplitudes with scalar QCD for spins s ≤ 1. At s ¼ 1
there is also the possibility to double copy using two spin-
1=2 amplitudes. We will discuss this point further below.
Spin-0 gravitational amplitudes.—We begin with the

simplest case of spinless amplitudes. Consider first the
three-point amplitude. For scalar HQETwe have that [with
ϕ�
v ¼ ϕ�

vðp2Þ;ϕv ¼ ϕvðp1Þ]

AH;s¼0
3 ¼ −Ta

ijϵ
�μ
q ϕ�

v

�
1þ k21 þ k22

4m2

�
ϕv

×

�
vμ þ

ðk1 þ k2Þμ
2m

�
þOðm−4Þ; ð9Þ

where k2 ¼ k1 − q. For scalar QCD the amplitude is

As¼0
3 ¼ −Ta

ijϵ
�μ
q ½2mvμ þ ðk1 þ k2Þμ�: ð10Þ

Note that we have left the external heavy scalar factor ϕv
explicit in the HQETamplitude. This is because, in contrast
to the canonically normalized scalar fields, the heavy scalar
factors are not equal to 1 in momentum space. Indeed, for
the HQETamplitude to be equal to the QCD amplitude, the
heavy scalar factor in momentum space must be equal to
the inverse of Eq. (8a). This will cancel the extra factor in
round brackets in Eq. (9) up to Oðm−4Þ. Note
that k2⊥ ¼ k2 þOðm−2Þ.
The double copy at three points is simply given by a

product of amplitudes:

As¼0
3 AH;s¼0

3 ¼ ϵ�μq ϵ�νq ϕ�
v

�
1þ k21 þ k22

4m2

�
ϕv

× 2m

�
vμvν þ vμ

k1ν þ k2ν
m

þ ðk1 þ k2Þμðk1 þ k2Þν
4m2

�

þOðm−3Þ: ð11Þ

As the only massless particle in this process is external, we
can easily eliminate the massless nongraviton degrees of
freedom by identifying the outer product of gluon
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polarization vectors with the graviton polarization tensor.
After doing so, Eq. (11) agrees with the three-point
amplitude derived from the Supplemental Material [54].
As another example, consider the Compton amplitude.

The color decomposition for Compton scattering is

As
4 ¼

csns
ds

þ ctnt
dt

þ cunu
du

; ð12aÞ

where

cs ¼ Ta
ikT

b
kj; ct ¼ ifabcTc

ij; cu ¼ Tb
ikT

a
kj: ð12bÞ

[We have computed all Compton amplitudes using NRQCD
propagators. It is also possible to perform the computations
using HQET propagators: in that case, a comparison to the
Compton amplitude for the emission of biadjoint scalars
from heavy particles (described by the Lagrangians in the
Supplemental Material [54])—analogous to the treatment in
Ref. [58]—is necessary to identify kinematic numerators.
Both methods produce the same results.] The kinematic
numerators for scalar HQET are

nH;s¼0
s ¼ −2mϕ�

vϵ
�μ
q1 ϵ

�ν
q2vμvν

�
1þ k21 þ k22

4m2

�
ϕv; ð13aÞ

nH;s¼0
t ¼ 0; ð13bÞ

nH;s¼0
u ¼ nH;s¼0

s jq1↔q2 ; ð13cÞ

where k2 ¼ k1 − q1 − q2. Those for scalar QCD are

ns¼0
s ¼ −4m2ϵ�μq1ϵ

�ν
q2vμvν; ð14aÞ

ns¼0
t ¼ 0; ð14bÞ

ns¼0
u ¼ ns¼0

s jq1↔q2 : ð14cÞ

For brevity we have written the numerators under the
conditions k1 ¼ qi · ϵj ¼ ϵi·ϵj ¼ 0; the initial residual
momentum can always be set to 0 by reparametrizing v,
and such a gauge exists for opposite helicity gluons. We
have checked explicitly up to and including Oðm−2Þ that
the following results hold when relaxing all of these
conditions.
Both the HQET and QCD numerators satisfy the color-

kinematics duality in the form

cs − cu ¼ ct ⇔ ns − nu ¼ nt: ð15Þ

We can therefore replace the color factors in the HQET
amplitude with the QCD kinematic numerators,

MH;s¼0
4 ¼ ns¼0

s nH;s¼0
s

ds
þ ns¼0

t nH;s¼0
t

dt
þ ns¼0

u nH;s¼0
u

du
: ð16Þ

Identifying once again the outer products of gluon polari-
zation vectors with graviton polarization tensors, we find
that the Compton amplitude derived from the Supplemental
Material [54] agrees with Eq. (16).
To summarize, we have explicitly verified that

ðQCDs¼0Þ × ðHQETs¼0Þ ¼ HBETs¼0 ð17Þ

for three-point and Compton amplitudes.
Spin-1=2 gravitational amplitudes.—We now move on

to the double copy of spin-1=2 HQET with scalar QCD to
obtain spin-1=2 HBET. The three-point spin-1=2 HQET
amplitude is [with ūv ¼ ūvðp2Þ; uv ¼ uvðp1Þ]

AH;s¼1=2
3 ¼ −Ta

ijūvuvϵ
�μ
q

�
vμ þ

k1μ
m

þ k21 − k1 · q
4m2

vμ

�

−
iTa

ij

2m
ūvσαβuvϵ

�μ
q

�
qαηβμ −

1

2m
qαk1βvμ

�

þOðm−3Þ: ð18Þ

Double copying with scalar QCD, we find

MH;s¼1=2
3 ¼ As¼0

3 AH;s¼1=2
3 ; ð19Þ

where MH;s¼1=2
3 is the amplitude derived from the

Supplemental Material [54].
We turn now to Compton scattering. For brevity we write

here the amplitudes in the case k1 ¼ qi·ϵj ¼ ϵi · ϵj ¼ 0. We
have checked explicitly that the results hold when these
conditions are relaxed. Also, we have performed the
calculation up to Oðm−2Þ but only present the kinematic
numerators up to Oðm−1Þ. They are

nH;s¼1=2
s ¼ −2mūv

�
v·ϵ�q1v · ϵ

�
q2

−
ivρ
2m

σμνðϵ�μq1qν1ϵ�ρq2 þ ϵ�μq2q
ν
2ϵ

�ρ
q1 − qρ2ϵ

�μ
q2ϵ

�ν
q1Þ

�
uv;

ð20aÞ

nH;s¼1=2
t ¼ 0; ð20bÞ

nH;s¼1=2
u ¼ nH;s¼1=2

s jq1↔q2 : ð20cÞ

In this case, the color-kinematic duality Eq. (15) is violated
at Oðm−2Þ. Nevertheless, since the scalar QCD kinematic
numerators satisfy the duality we can use them to double
copy the spin-1=2 Compton amplitude. Doing so we find

MH;s¼1=2
4 ¼ ns¼0

s nH;s¼1=2
s

ds
þ ns¼0

t nH;s¼1=2
t

dt
þ ns¼0

u nH;s¼1=2
u

du
;

ð21Þ
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whereMH;s¼1=2
4 is the spin-1=2HBET Compton amplitude

derived from the Supplemental Material [54].
We have seen that

ðQCDs¼0Þ × ðHQETs¼1=2Þ ¼ HBETs¼1=2 ð22Þ

for the three-point and Compton amplitudes.
Spin-1 gravitational amplitudes.—Gravitational ampli-

tudes with spin-1 matter can be obtained by double copying
two gauge theories with matter in two ways: spin- 0× spin-
1 or spin-1=2× spin-1=2 [47,49,50]. This fact also holds for
heavy particles. We now show this in two examples by
deriving the spin-1 gravitational three-point and Compton
amplitudes using both double-copy procedures.
Double copy: The three-point spin-1 HQET amplitude is

AH;s¼1
3 ¼ Ta

ijε
�β
v εαvϵ

�μ
q

�
ηαβvμ

þ 1

2m
½ηαβðk1 þ k2Þμ − 2qβηαμ þ 2qαηβμ�

þ 1

2m2
vμð−k1βqα þ qαqβ þ qβk1αÞ

�
; ð23Þ

where kμ2 ¼ kμ1 − qμ and ε�μv ¼ ε�μv ðp2Þ; εμv ¼ εμvðp1Þ.
Double copying with scalar QCD we find

MH;s¼1
3 ¼ As¼0

3 AH;s¼1
3 ; ð24Þ

where MH;s¼1
3 is the amplitude derived from the

Supplemental Material [54].
Compton scattering for spin-1 HQET is given by the

kinematic numerators

nH;s¼1
s ¼ 2mε�βv εαv

�
v·ϵ�q1v·ϵ

�
q2ηαβ

þ vρ
m

ðηανηβμ − ηαμηβνÞðϵ�μq1qν1ϵ�ρq2 þ ϵ�μ2 qν2ϵ
�ρ
q1 Þ

−
vq2
2m

ðϵ�q1αϵ�q2β − ϵ�q2αϵ
�
q1β

Þ
�
; ð25aÞ

nH;s¼1
t ¼ 0; ð25bÞ

nH;s¼1
u ¼ nH;s¼1

s jq1↔q2 ; ð25cÞ

where, for brevity, we again write the numerators up to
Oðm−1Þ and in the case where k1 ¼ ϵi·ϵj ¼ qi·ϵj ¼ 0. We
have performed the calculation up to Oðm−2Þ and checked
the general case explicitly. The double copy becomes

MH;s¼1
4 ¼ ns¼0

s nH;s¼1
s

ds
þ ns¼0

t nH;s¼1
t

dt
þ ns¼0

u nH;s¼1
u

du
; ð26Þ

where MH;s¼1
4 is derived from the Supplemental

Material [54].

Thus, we find that

ðQCDs¼0Þ × ðHQETs¼1Þ ¼ HBETs¼1 ð27Þ

for three-point and Compton amplitudes.
1=2 × 1=2 double copy: The spin-1 gravitational ampli-

tudes can also be obtained by double copying the spin-1=2
HQET amplitudes. To do so, we use the on-shell heavy
particle effective theory (HPET) variables of Ref. [59] to
modify Eq. (2.11) of Ref. [50] for the case of heavy
particles. Using the fact that the on-shell HPET variables
correspond to momenta pμ

v ¼ mkvμ with mass
mk ¼ mð1 − k2=4m2Þ, following the derivation of
Ref. [50] leads to

MH;1=2×1=2
n ¼ mk1mk2

m

X
αβ

KαβTr½AH;1=2
n;α Pþ=εvĀ

H;1=2
n;β P−=ε�v�;

ð28Þ

where P� ¼ ð1� =vÞ=2, Kαβ is the KLT kernel, and α, β
represent color orderings. Here AH and ĀH are amplitudes
with the external states stripped, and ĀH ¼ −γ5ðAHÞ†γ5.
We have also adopted the convention that only the initial
matter momentum is incoming. Converting to the on-shell
HPET variables, it can be easily seen that

εIJvμðpÞ ¼
1

2
ffiffiffi
2

p
mk

ūIvðpÞγ5γμuJvðpÞ; ð29Þ

with I, J being massive little group indices. Given the WNF
for the heavy spinors, the WNF for the polarization vector
can easily be computed by comparing Eq. (29) to its
canonical polarization vector analog. We find that it is
indeed given by Eq. (8c).
Applying Eq. (28) to Eq. (18) with the three-point KLT

kernel K3 ¼ 1, we immediately recover the left-hand side
of Eq. (24). For Compton scattering the KLT kernel is

K4 ¼
ðs −m2Þðu −m2Þ

2q1 · q2
: ð30Þ

Then, applying Eq. (28) to the spin-1=2 HQET Compton
amplitude with k1; qi · ϵj; ϵi · ϵj ≠ 0 up to and including
terms of order Oðm−2Þ, we find Eq. (26) up to Oðm−1Þ.
When imposing k1 ¼ qi · ϵj ¼ ϵi·ϵj ¼ 0, cancellations
make the double copy valid up to Oðm−2Þ. The extension
to higher inverse powers of the mass amounts to simply
including the contributions of higher-order operators in the
HQET and HBET amplitudes.
Therefore, by using Eq. (28) to convert heavy spinors in

amplitudes to heavy polarization vectors, we have shown
that
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ðHQETs¼1=2Þ × ðHQETs¼1=2Þ ¼ HBETs¼1 ð31Þ

for three-point and Compton amplitudes.
Conclusion.—We have shown that the three-point and

Compton amplitudes derived from HQET can be double
copied to those of HBET for spins s ≤ 1. As long as the
matter states of HQET and HBET are related through the
double copy, in the sense described in the second section,
and as long as higher-point amplitudes obey the spectral
condition of Ref. [56], we see no obstacles to extending the
double copy to higher-point amplitudes.
As mentioned in the introduction, due to the operator

expansion of HPETs, the double-copy relation between
HQET and HBET can be studied at each order in the ℏ
expansion, with the classical limit being of special interest.
Studying the double copy of HPETs through this lens may
provide some insight into the connection between the
double copy with matter at the quantum and classical
levels. We leave this study for future work.
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