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A nontrivial S matrix generally implies a production of entanglement: starting with an incoming pure
state, the scattering generally returns an outgoing state with nonvanishing entanglement entropy. It is then
interesting to ask if there exists a nontrivial S matrix that generates no entanglement. In this Letter, we
argue that the answer is the S-matrix for the scattering of classical black holes. We study the spin
entanglement in the scattering of arbitrary spinning particles. Augmenting the S-matrix with Thomas–
Wigner rotation factors, we derive the entanglement entropy from the gravitational induced 2 → 2

amplitude. In the Eikonal limit, we find that the relative entanglement entropy, defined here as the
difference between the entanglement entropy of the in and out states, is nearly zero for minimal coupling
irrespective of the in state and increases significantly for any nonvanishing spin multipole moments. This
finding suggests that minimal couplings of spinning particles, whose classical limit corresponds to a Kerr
black hole, have the unique feature of generating near zero entanglement.
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Introduction.—One of the fascinating realizations in the
interplay of gravitational scattering amplitudes and the
dynamics of compact binary systems is the equivalence of
minimally coupled spinning particles and rotating black
holes. In the analysis of three-point amplitudes of particles
with general spin, a unique amplitude for massive spin-s
particles emitting a massless graviton was defined kine-
matically in [1] and termed minimal coupling. The term
reflects its matching to minimal derivative coupling when
taking the high energy limit for s ≤ 2. Since massless
particles have spins bounded by 2 in flat space, the role of
minimal coupling with s > 2 was initially not clear.
Through a series of subsequent analyses [2–6], it was

understood that the spin multipoles generated by minimal
coupling are exactly those of a spinning black hole, i.e., the
spin moments in the effective stress-energy tensor of the
linearized Kerr solution. This was verified by reproducing
the Wilson coefficients of the one-particle effective field
theory [7,8] for a Kerr black hole [3] and the classical
scattering angle at leading order in the Newton constant G
to all orders in spin [4].

While the equivalence can be established through vari-
ous direct matchings, the principle that underlies such
correspondence remains unclear. In this Letter, we seek to
resolve this uncertainty by studying spin entanglement
entropy. We study the 2 → 2 Eikonal limit S-matrix in the
basis of two-particle spin states. By measuring the relative
entanglement entropy for the final state, defined as

ΔS≡ −tr½ρout log ρout� þ tr½ρin log ρin�; ð1Þ

where ρin;out is the reduced density matrix for the in and out
states, remarkably we find that ΔS ≈ 0 or, equivalently,
when the effective field theoryWilson coefficients are set to
the black hole value of unity. Any deviation from unity
significantly increases the relative entropy.
Entanglement via S matrix.—The study of entanglement

in scattering events has a long history (for recent develop-
ments, see [9–12]). After denoting the two-particle Hilbert
space by H ¼ Ha ⊗ Hb, for each subsystem we can
further divide the space into spin and momentum degrees
of freedom, e.g., Ha ¼ Hsa ⊗ Hpa

. In computing the
entanglement from scattering, there are two sources of
difficulty. First, the trace over momentum states lead to
divergences due to the infinite space-time volume, and
introducing a cutoff leads to regulator dependent results
(see, e.g., [13,14]). Second, under Lorentz rotations, the
spin undergoes Thomas–Wigner rotation and thus one does
not have a Lorentz invariant definition of the reduced
density matrix [15,16] (see [17] for further discussions).
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On the other hand, the same difficulty also appears in the
extraction of conservative Hamiltonians of binary systems
from relativistic scattering amplitudes. In particular, in a
2 → 2 scattering process, the spin (little group) space of the
incoming particles is invariably distinct from the outgoing
space as the particles’ momentum is distinct. However, by
augmenting the S matrix with Thomas–Wigner rotation
factors, the final state can be mapped back into the spin
Hilbert space of the incoming state. Indeed, this Hilbert
space matching procedure was used heavily in the compu-
tation of the spin-dependent part of the conservative
Hamiltonian [18–20].
We thus consider elastic scattering in the spin Hilbert

spaceH ¼ Hsa ⊗ Hsb . With a given in state, we can obtain
the out state via the amplitude as

jouti ¼ ðUa ⊗ UbÞMjini; ð2Þ

where Ua;b are the Hilbert space matching factors that will
be discussed in the next section [21]. The total density
matrix of the out state is then simply ρouta;b ¼ joutihoutj, and
the reduced density matrix is given by ρa ¼ trbρa;b.
Equipped with ρa, we can consider a variety of entangle-
ment quantifiers. A canonical choice is the entanglement
entropy, i.e., the Von Neumann entropy of the reduced
density matrix SVN ¼ −tra½ρa log ρa�. Note that here, SVN
in principle depends on the in state. For a quantifier that is
independent of the in state, we can consider the entangle-
ment power [23] given by

Ea ¼ 1 −
Z

dΩa

4π

dΩb

4π
traρ2a; ð3Þ

where Ω represents the spin-s phase space.
In the following, we will consider the elastic S matrix

acting on jini ¼ jsai ⊗ jsbi, i.e., the in state is set up as a
pure state. Thus, by computing the entanglement entropy of
the out state, we obtain the entanglement enhancement of
the scattering process.
The Eikonal amplitude in spin space.—In this section,

we compute the leading order amplitude ab → a0b0 for
general massive spinning particles in the Eikonal limit.
Working in the center of mass frame where
pa ¼ ðEa; 0; 0; p⃗Þ, pb ¼ ðEb; 0; 0;−p⃗Þ and the momentum
transfer q ¼ pa − p0

a ¼ ð0; q⃗Þ, the Eikonal limit corre-
sponds to q2 → 0. Fourier transforming to the impact
parameter space, we obtain the Eikonal phase, whose
exponentiation yields to the S matrix in the Eikonal limit.
Spin-s amplitudes and Hilbert space matching: We begin

with the scattering of spinning particles induced by
gravitational interactions. At leading order in the Newton
constant G, the four point amplitude for the ab → a0b0
illustrated in Fig. 1, can be written as [19]

Mtreeðq2Þ ¼ −8πG
m2

am2
b

q2

×
X
η¼�1

e2ηΘ½ε�a0WaðητaÞεa�½ε�b0W2ðητbÞεb� þOðq0Þ; ð4Þ

where qμ is the transfer momenta, εi is the polarization
tensor of the spinning particle, τa;b ¼ q · S=ma;b, and the
exponential parameters are defined as coshΘ≡ pa ·
pb=mamb and η ¼ �1 labeling the exchanged graviton’s
helicity. The function WðητÞ is defined as

Wa;bðητa;bÞ ¼
�X2sa;b
n¼0

Cn

n!

�
η
q · S
ma;b

�
n
�
; ð5Þ

where S is the Pauli–Lubanski spin vector and Ca;n, Cb;n
parameterizes the possible distinct couplings for particle a,
b. These are the 2s multipole moments carried by a spin-s
particle and can be directly matched to the Wilson
coefficients of the one-particle effective action (see [24]
for the all order in spin action). For rotating black holes
Ca;n ¼ Cb;n ¼ 1, and the classical spin is recovered in the
limit s → ∞, ℏ → 0 while keeping the classical spin
S≡ sℏ fixed (see [25] for a more detailed discussion).
As shown in Ref. [18], we can transform the spin vector

S in an operator acting in the little group space through the
insertion of a complete set of polarization tensors
associated with the incoming particles:

Sa;b ≡ ε�a;b;fIsgS
μεfJsga;b ; ð6Þ

where fIsg; fJsg are the SUð2Þ indices of particle a, b. In
components, we have that

Sμ
a;b ¼

�
p⃗a;b · Σ⃗
ma;b

; Σ⃗þ p⃗a;b · Σ⃗
ma;bðma;b þ Ea;bÞ

p⃗a;b

�
; ð7Þ

where Σ⃗ is the spin-s rest frame spin operator satisfying the
commutation relation ½Σi;Σj� ¼ iϵijkΣk. For detailed der-
ivation of the spin-vectors please see Ref. [29]. Then the
operator τ in the little group space is given by

q

(I) (II)
a

a’ b’

b a b

a’ b’

FIG. 1. 2 → 2 scattering of two spinning objects exchanging
gravitons. (I) Process in the leading order of the Newton constant
G. (II) Eikonal approximation, which resums the ladder
diagrams.
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Ta;b ≡ ε�a;b;fIsg
q · S
ma;b

εfJsga;b ≡ q · Sa;b

ma;b
: ð8Þ

Writing Eq. (4) in terms of T leads to an amplitude
that corresponds to an operator acting on states in a
distinct little group space as the momenta of a, b are
distinct from a0; b0. This can be rectified by the so-called
Hilbert space matching procedure that uses the Lorentz
transformation that relates the momenta of the in states to
the out states to convert the out states’ Hilbert space back to
the in states [18,19]. The result is the additional Thomas–
Wigner rotation factors for each of the two particles. For
example, for particle a this factor, in leading order in q2, is
written as

Ua ¼ exp

�
−i

mambEa

ðma þ EÞE
�
; ð9Þ

where Ea ≡ ϵðq; ua; ub; aaÞ ¼ ϵμνρσqμuνau
ρ
ba

σ
a, aa ¼

Sa=ma, ua;b ¼ pa;b=ma;b, and E ¼ Ea þ Eb. In summary,
the amplitude after the Hilbert space matching, denoted by
M̄, is given by

M̄treeðq2Þ ¼ −8πG
m2

am2
b

q2

×
X
η¼�1

e2ηΘWaðηTaÞWbðηTbÞUaUb þOðq0Þ: ð10Þ

Expanding Eq. (10) up to order OðS2siÞ gives

M̄treeðq2Þ ¼−
16πGm2

am2
b

q2

×

�Xbsac
m¼0

Xbsbc
n¼0

A2m;2nðT 2m
a ⊗ T2n

b Þ

þm2
amb

E

Xdsae−1
m¼0

Xbsbc
n¼0

A2mþ1;2nðSym½EaT 2m
a �⊗ T2n

b Þ

þmam2
b

E

Xbsac
m¼0

Xdsbe−1
n¼0

A2m;2nþ1ðT2m
a ⊗ Sym½EbT2n

b �Þ

þ
Xdsae−1
m¼0

Xdsbe−1
n¼0

A2mþ1;2nþ1ðT 2mþ1
a ⊗ T 2nþ1

b Þ
�
;

ð11Þ

where we used the shorthand notation Ta;b ≡ ðq · aa;bÞ and

Sym½EiT2n
i �

≡ 1

2nþ 1
½EiT 2n

i þ T iEiT 2n−1
i þ � � � þ T2n

i Ei� ð12Þ

for i ¼ a, b. The explicit form of the coefficients Am;n in
Eq. (11), up to m, n ¼ 2, is given by

A0;0 ¼ c2Θ; A1;0 ¼
ið2EracΘ −mbc2ΘÞ

m2
ambra

;

A1;1 ¼
c2Θs2Θmamb

E2rarb
þ c2Θ −

2mbcΘs2Θ
Era

−
2macΘs2Θ

Erb
;

A2;0 ¼
Ca;2c2Θ

2
þm2

bc2Θs
2
Θ

2E2r2a
−
2mbcΘs2Θ

Era
;

A2;1 ¼ i

�
ECa;2cΘ
mam2

b

−
Ca;2c2Θ
2m2

brb
þ c2Θ
4E2r2arb

−
c4Θ

8E2r2arb
−

cΘ
2Erambrb

þ c3Θ
2Erambrb

−
c2Θ

maramb
−

1

8E2r2arb
−

cΘ
4Emar2a

þ c3Θ
4Emar2a

�
;

A2;2 ¼
Ca;2Cb;2c2Θ

4
−
Ca;2cΘs2Θma

Erb
−
Cb;2cΘs2Θmb

Era

þ c2Θs4Θm
2
am2

b

4E4r2ar2b
−
cΘs4Θmam2

b

E3r2arb
−
cΘs4Θm

2
amb

E3rar2b

þ c2Θs2Θmamb

E2rarb
þ Cb;2c2Θs2Θm

2
b

4E2r2a
þ Ca;2c2Θs2Θm

2
a

4E2r2b
;

ð13Þ
where Ca;2 and Cb;2 are the Wilson coefficients
for each particle, ðcΘ; sΘÞ≡ ðcoshΘ; sinhΘÞ, and
ra;b ≡ 1þ Ea;b=ma;b. We can see that the Wilson coeffi-
cientsCa;n andCb;n start to appear at A2;0, which means that
we need to go to at least spin-1 to compare the difference
between black holes and other objects.
Eikonal phase: The Eikonal phase, at order OðGÞ,

is given simply by the Fourier transform of the tree-
level amplitude in Eq. (10) to the impact parameter space:

χðbÞ ¼ 1

4jp⃗jE
Z

d2q⃗
ð2πÞ2 e

iq⃗·b⃗M̄treeðq2Þ: ð14Þ

Since q2 → 0 in the Eikonal limit, we have
q⃗ · p⃗ ¼ q2=2 → 0. This orthogonality between q⃗ and p⃗
defines the impact parameter space, which is the plane
perpendicular to the incoming momentum, i.e.,
b⃗ ¼ ðbx; by; 0Þ. Note that, in this limit, we can simply
replace all S⃗ in Eq. (11) by Σ⃗, which is the rest frame spin
operator. The S matrix in the Eikonal approximation is then
the exponential of the phase

SEikonal ¼ eiχðbÞ: ð15Þ
This allows us to write the out state in the Eikonal
approximation, replacing the matrix element of UaUbS
by the ones of SEikonal in Eq. (2):

jouti ¼ SEikonaljini: ð16Þ
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Entanglement entropy of binary systems.—We now have
all the ingredients necessary to compute the entanglement
entropy and the entanglement power for the out state in the
Eikonal approximation. We first compute the entanglement
entropy for spin-1 particles, which corresponds to keeping
operators of at most degree two in spin-vectors for each
particle in the Eikonal phase. Starting with a pure state
jini ¼ j⇈i, the entanglement entropy for the resulting out
state yields directly to the relative entropy ΔS in Eq. (1).
The result is plotted in Fig. 2 against the Wilson coef-
ficients pair ðCa;2; Cb;2Þ. Remarkably, the minimum is
exactly at the Kerr black hole value Ca;2;¼ Cb;2 ¼ 1 and
deviating from this point raises the entropy of the system.
This is unchanged for a different choice of in states, which
is illustrated by the computation of entanglement power
given by Eq. (3) and shown in Fig. 2. We’ve also obtained a
similar result with mixed in states.
In order to show that this is indeed a robust result, we

also consider higher spins. Using the same setup, we
calculate the relative Von Neumann entropy for spin-3

massive particles, which has a total of 5þ 5 ¼ 10 Wilson
coefficients. In our extensive scan, we find that the black
hole value, Ca;i ¼ Cb;i ¼ 1 for i ¼ 2;…; 6, is the unique
point that gives the minimum value. As an illustrative
example, we set all Wilson coefficients to 1 except the pair
ðCa;2; Cb;2Þ and plot ΔS with respect to ðCa;2; Cb;2Þ in
Fig. 3. The results show the minimum at (1,1), while the
two orthogonal valleys represent keeping only one of the
coefficients at 1. In Fig. 4, we plot Ca;2 ¼ Cb;2 ¼ C2 and
Ca;3 ¼ Cb;3 ¼ C3, while keeping all remaining coefficients
at 1. Once again, the corresponding black hole point gives
near zero entanglement. For plots with respect to other
choices of Wilson coecients, see Ref. [29].

FIG. 2. Change in spin-entanglement for spin-1 massive par-
ticle. (I) Relative entanglement entropy ΔS and (II) the entangle-
ment power Ea for massive spin-1 particles. The initial state is set
to jini ¼ j⇈i, and the kinematic parameters are given by
jp⃗aj ¼ jp⃗bj ¼ jp⃗j, ma ¼ mb ¼ m, b⃗ ¼ ðb; 0; 0Þ, Gm2 ¼ 10−4,
jp⃗jb ¼ 1000, jp⃗j=m ¼ 100. The minimum, represented by the
black point, corresponds to the Wilson coefficient value
ðCa;2; Cb;2Þ ¼ ð1; 1Þ, ΔS ≈ 1.54 × 10−9, and Ea ≈ 1.10 × 10−10.

FIG. 3. Relative entanglement entropy for massive spin-3
particles. The initial state is set to jini ¼ j⇈i, and the kinematic
parameters are give by jp⃗aj ¼ jp⃗bj ¼ jp⃗j, ma ¼ mb ¼ m,
b⃗ ¼ ðb; 0; 0Þ, Gm2 ¼ 10−4, jp⃗jb ¼ 1000, jp⃗j=m ¼ 100. The
Wilson coefficients ðCa;i≠2; Cb;j≠2Þ are set to 1. The minimum,
represented by the black point, is at ΔS ≈ 1.26 × 10−8 and
corresponds to the Wilson coefficient value ðCa;2; Cb;2Þ ¼ ð1; 1Þ.

FIG. 4. Relative entanglement entropy for massive spin-3
particles. The initial state is set to jini ¼ j⇈i, and the kinematic
parameters are given by jp⃗aj ¼ jp⃗bj ¼ jp⃗j, ma ¼ mb ¼ m,
b⃗ ¼ ðb; 0; 0Þ, Gm2 ¼ 10−4, jp⃗jb ¼ 1000, jp⃗j=m ¼ 100,
Ca;2 ¼ Cb;2 ¼ C2, Ca;3 ¼ Cb;3 ¼ C3. All others’ Wilson coef-
ficients are set to 1. The minimum is at ΔS ≈ 1.26 × 10−8 and
corresponds to the Wilson coefficient value ðC2; C3Þ ¼ ð1; 1Þ.
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While the deformation of each Wilson coefficient away
from unity raises the entanglement entropy, comparatively,
the effect of C2 is dominant. This is illustrated in Fig. 5,
which compares ΔS for deforming the three different pairs
of Wilson coefficients in the spin-2 system. We can observe
that deforming ðCa;2; Cb;2Þ has the dominant effect in
generating entanglement.
Finally, we expect that including higher spins do not

change the main result. The minimum of the relative
entropy is always at the Kerr black hole Wilson coefficient
point. Moving away from this point quickly increases the
entanglement entropy. A comparison of the spin-1, spin-2,
and spin-3 cases, keeping all Wilson coefficients at 1 except
Ca;2, can be seen in Fig. 6.

Conclusions and outlook.—In this Letter, we consider
the entanglement entropy generated by gravitationally
coupled binary systems. By considering the Hilbert space
of spin states, we demonstrate that minimal coupling for
massive arbitrary spin particles has the unique feature of
generating nearly zero entanglement in the scattering
process. Given the correspondence between minimal cou-
pling and rotating black holes, the result suggests that this
feature can also be attributed to the entanglement properties
of spinning black holes. Note that this phenomenon is
reminiscent of what was found in strong interactions, where
entanglement suppression is associated with symmetry
enhancement [10].
While the relative entropy is near zero, it is not zero,

which may be an artifact of confining ourselves to leading
order in Eikonal approximation. This makes clear inves-
tigation at nonlinear optics desirable. As mentioned in the
introduction, there is a general correspondence between
minimal coupling and black-hole-like solutions in four
dimensions. This includes Reissner Nordstrom, Kerr
Newman [30,31], Taub–NUT [32] and Kerr–Taub–NUT.
Furthermore, gravitationally induced spin multipoles have
also been studied recently in the context of fuzzball
microstates [26–28]. For Kerr Newman, there are additional
electromagnetic spin multipoles, while for Kerr–Taub–
NUT and fuzzballs, the minimal couplings are dressed
with additional complex phase factors. It will be fascinating
to explore their features through the prism of spin
entanglement. Finally, it will also be interesting to under-
stand quantum corrections, in particular whether they
generate anomalous gravitational multipole moments.
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