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I discuss the two-flavor Schwinger model both without and with fermion masses. I argue that the
phenomenon of “conformal coalescence,” in unparticle physics in which linear combinations of short-
distance operators can disappear from the long-distance theory, makes it easy to understand some puzzling
features of the model with small fermion masses. In particular, I argue that for an average fermion massmf

and a mass difference δm, so long as both are small compared to the dynamical gauge boson mass
m ¼ e

ffiffiffiffiffiffiffiffi
2=π

p
, isospin-breaking effects in the low-energy theory are exponentially suppressed by powers of

exp½−ðm=mfÞ2=3� even if δm ≈mf . In the low-energy theory, this looks like exponential fine-tuning, but it
is done automatically by conformal coalescence.

DOI: 10.1103/PhysRevLett.125.181601

The Schwinger model with two flavors.—In his classic
paper [1] (which mostly concerns the model without
flavor), Coleman briefly discusses the two-flavor model
and identifies three puzzles.

“In the one-quark theory, everything that happened, even
for strong coupling, was qualitatively understandable in
terms of the basic ideas of the naive quark model, the
picture of quarks confined in a linear potential. For the
two-quark theory, there are three strong-coupling phe-
nomena that I cannot understand in these terms: (i) Why
are the lightest particles in the theory a degenerate
isotriplet, even if one quark is 10 times heavier than the
other? (ii) Why does the next-lightest particle have IPG ¼
0þþ rather than 0−−? (iii) For jθj ¼ π, how can an
isodoublet quark and an isodoublet antiquark, carrying
opposite electric charges, make an isodoublet bound state
with electric charge zero?”

I will argue that by taking proper account of the
unparticle physics [2] of the massless model we can easily
resolve the first two and understand why the third is not
puzzling. The ideas in this paper are closely related to the
analysis of diagonal color models in 1þ 1 [3]. See also
Refs. [4–7]. Two papers that I know of—Refs. [8,9]—
address Coleman’s puzzles explicitly, but I think that their
suggestions are quite different from mine. I will suggest
that the resolution of the first puzzle is a new mechanism
for exponential fine-tuning.

The Lagrangian is

L¼
�X2

j¼1

ψ̄ jði=∂−e=AÞψ j

�
−
1

4
FμνFμν−mf

X2
j¼1

ψ̄ jψ j: ð1Þ

I begin by discussing mf ¼ 0 and consider the mass
term below.
For gauge-invariant correlators of local fields, the result

of summing the perturbation theory to all
orders can be found simply by making the following
replacements:

Aμ ¼ ϵμν∂νðB − CÞ=m; ð2Þ

ψ j ¼ e−iðπ=2Þ1=2ðC−BÞγ5Ψj; ð3Þ

where

m2 ¼ 2e2=π ð4Þ

with the free-field Lagrangian

Lf ¼
�X2

j¼1

iΨ̄j=∂Ψj

�
−
m2

2
B2 þ 1

2
∂μB∂μB −

1

2
∂μC∂μC:

ð5Þ
So that Ψj for j ¼ 1 to 2 is a free doublet of fermion
fields, B is a spinless field with mass m, and C is a
massless ghost.
The massless model has a classical chiral Uð2Þ × Uð2Þ

symmetry broken by the chiral anomaly down to
SUð2Þ × SUð2Þ × Uð1Þ. It is a Banks-Zaks model [10]
with free-fermion behavior at distances much smaller than
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1=m and a low-energy sector with conformal symmetry
for distances much larger than 1=m. I will sometimes
follow Coleman’s lead and refer to the fermions as
“quarks.” There are fermion-antifermion operators trans-
forming like the (2,2) representation of the chiral SUð2Þ ×
SUð2Þ symmetry. They are shown below:

Oj
k12 ¼ ψ�

j1ψk2 and Oj
k21 ¼ ψ�

j2ψk1; ð6Þ

where j and k are flavor indices, γ5ψk1 ¼ ψk1, and
γ5ψk2 ¼ −ψk2. To infinite order in perturbation theory,
these flow at long distances to independent unparticle
operators with dimension 1=2. But this changes due
to nonperturbative effects associated with the chiral
SUð2Þ × SUð2Þ singlet operators (for later convenience,
we have reversed the order of the flavors on the ψ’s
compared to the ψ�’s):

Oz
12 ≡ ψ�

11ψ
�
21ψ22ψ12 and Oz

21 ≡ ψ�
12ψ

�
22ψ21ψ11 ð7Þ

for which [with the Oð1Þ constant ξ≡ eγE=2]

h0jTOz
12ðxÞOz

21ð0Þj0i ¼
ðξmÞ4
16π4

exp ½4K0ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x2 þ iϵ

p
Þ�:
ð8Þ

Note that there is no arbitrariness here, because these
composite operators do not require multiplicative renorm-
alization for mf ¼ 0, so the position-space correlators
are well defined for nonzero separation. A subtractive
renormalization is required for the two-point function
at zero separation. These “have zero anomalous
dimension”—that is, they go to constants at long dis-
tances. They were called zero-dimension operators
(ZDOPs) in Ref. [3], and I adopt that acronym here.
Cluster decomposition requires that these operators have
vacuum expectation values (VEVs)

h0jOz
12ð0Þj0i¼eiθ

ðξmÞ2
4π2

and h0jOz
21ð0Þj0i¼e−iθ

ðξmÞ2
4π2

;

ð9Þ

where θ is a parameter that labels the vacuum state
[11–13].
Conformal coalescence.—For simplicity, I will focus

on the dimension 1=2 operators with zero flavor U(1)
charge:

O1 ≡ ψ�
11ψ12 and O2 ≡ ψ�

21ψ22 ð10Þ

and their complex conjugates

O�
1 ¼ ψ�

12ψ11 and O�
2 ¼ ψ�

22ψ21: ð11Þ

The theory has a conserved axial isospin symmetry
associated with the charges

I⃗ ¼ 1

2

Z
dx1ψ̄ðxÞσ⃗γ5ψðxÞ; ð12Þ

where the Pauli matrices σ⃗ act on the flavor space and the
operators O1 and O2 have opposite charges for the third
component, I3 ¼ þ1 and −1. The perturbative two-point
functions are

h0jTOjðxÞO�
kð0Þj0i ¼ δjk

ξm
ð2πÞ2 exp

h
K0

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x2 þ iϵ

p �i

×

�
1

−x2 þ iϵ

�
1=2

: ð13Þ

The ZDOPs produce nonperturbative corrections to (13).
The perturbative three-point correlation function with an
added ZDOP can be written as

h0jTOz
21ðzÞO1ðxÞO2ð0Þj0i

¼ h0jTOz
12ðzÞO�

1ðxÞO�
2ð0Þj0i ¼

ðξmÞ3
ð2πÞ4

�
1

−x2 þ iϵ

�
1=2

× exp ½2κ0ðz − xÞ þ 2κ0ðzÞ − κ0ðxÞ�; ð14Þ

where

κ0ðxÞ ¼ K0ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x2 þ iϵ

p
Þ: ð15Þ

The form of (14) can be understood (and indeed over-
determined) as follows. The overall counting of factors of
2π comes from the free-fermion skeleton and is, thus, the
same as (8). The long-distance behavior is determined by
the anomalous dimension, and, because the ZDOP has zero
anomalous dimension, there is no long-distance depend-
ence on z. The z dependence must be entirely in the K0

terms, which are determined by the gauge coupling and
which must combine to agree with (8) as x → 0. The long-
distance x dependence and, thus, the 1=ð−x2 þ iϵÞ1=2 term
must be the same as in (13). There is no contribution to the
x dependence from the free-fermion skeleton, and, thus, the
x dependence from the 1=ð−x2 þ iϵÞ1=2 term must cancel
the x dependence from the K0’s at short distances, which
fixes the coefficient of K0ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x2 þ iϵ

p
Þ in the exponen-

tial. The power of ðξmÞ is equal to sum of the coefficients of
the K0’s in the exponential.
Now cluster decomposition can be applied to (14) just as

it can in (8). We can pull the ZDOP away to infinity and
replace it by its VEV, Eq. (9); then the exponential in (14)
goes to 1 and what remains is a nonperturbative contribu-
tion to the two-point functions of the dimension 1=2
operators. Thus, [note that if x → 0 in (16), this reduces
to (9)]
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h0jTO1ðxÞO2ð0Þj0i ¼ e−iθ
ðξmÞ
ð2πÞ2 exp ½−K0ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x2 þ iϵ

p
Þ�
�

1

−x2 þ iϵ

�
1=2

;

h0jTO�
1ðxÞO�

2ð0Þj0i ¼ eiθ
ðξmÞ
ð2πÞ2 exp ½−K0ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x2 þ iϵ

p
Þ�
�

1

−x2 þ iϵ

�
1=2

: ð16Þ

The ZDOP VEV has given us a nonperturbative contribu-
tion to the two-point function that is fixed by the calculable
three-point function. It is amusing that we can calculate this
exactly. In general, we might have to include the contri-
butions from n-point functions with more ZDOPs, but in
this example, these do not give any new contributions. But
there are more surprises in store. Define

Og ≡ eiθ=2O1 þ ge−iθ=2O�
2 and

O�
g ≡ e−iθ=2O�

1 þ geiθ=2O2; ð17Þ

where g ¼ �1.
Then

h0jTO�1ðxÞO�1ð0Þj0i ¼ h0jTO�1ðxÞO∓1ð0Þj0i ¼ h0jTO�1ðxÞO�∓1ð0Þj0i ¼ 0: ð18Þ

The first two terms in (18) must vanish because of axial isospin symmetry. The vanishing of the third term follows because
the parameter g is the multiplicative quantum number for a θ-dependent G parity that is conserved by perturbative and
nonperturbative interactions:

eiθ=2O1 ↔ e−iθ=2O�
2 and eiθ=2O2 ↔ e−iθ=2O�

1: ð19Þ

The only nonzero two-point functions are

h0jTO�1ðxÞO�
�1ð0Þj0i ¼

ðξmÞ
4π2

× 2fexp ½K0ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x2 þ iϵ

p
Þ� � exp ½−K0ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x2 þ iϵ

p
Þ�g

�
1

−x2 þ iϵ

�
1=2

: ð20Þ

At short distances, the first exponential in the penultimate
factor in (20) dominates for both þ and − and (along with
the last factor) produces the expected free-fermion scaling.
But at long distances, while the Oþ1 operator goes
smoothly to a conformal operator, the O−1 correlator goes
to zero exponentially. One of the operators, the O−1,
disappears from the conformal theory as the O1 and O�

2

pair in Oþ1 coalesce. Similar behavior was discovered in
1þ 1 diagonal color models in Ref. [3] and dubbed
“conformal coalescence.” Here we will see that it
has dramatic consequences in the massive Schwinger
model.
It is straightforward (if not particularly edifying) to write

down the general result:

�
0

����T
Yn
j¼1

OgjðxjÞO�
hj
ðyjÞ

����0
	
¼
�
ξm
4π2

�
n

2
6664
Q

j<k



½−ðxj−xkÞ2þ iϵ�½−ðyj−ykÞ2þ iϵ�

�
Q

j;k½−ðxj−ykÞ2þ iϵ�

3
7775

1=2

X1
ηj;χj¼0

�Y
j

ðgjÞηjþ1

��Y
j

ðhjÞχjþ1

�
exp

��X
j;k

ð−1Þηjþχkκ0ðxj−ykÞ
�
−
�X

j<k

ð−1Þηjþηkκ0ðxj−xkÞþð−1Þχjþχkκ0ðyj−ykÞ
�

:

ð21Þ

Again, these vanish identically if the number of O−1 ’s plus the number of O�−1 ’s is odd and vanish exponentially if any of
the O−1 or O�−1 coordinates goes to infinity.

PHYSICAL REVIEW LETTERS 125, 181601 (2020)

181601-3



Mass terms.—While I find this model endlessly fasci-
nating, it is still just a generalized free theory [14]. But I
believe that the above analysis can help us to understand the
nontrivial theory that results from adding a mass term. This
has been discussed in many works, but, as I mentioned in
the introduction, I want to focus on the three puzzles
about the strong coupling limit, mf ≪ m identified by
Coleman in Ref. [1]. (i) Why are the lightest particles in the
theory a degenerate isotriplet, even if one quark is 10
times heavier than the other? (ii) Why does the next-
lightest particle have IPG ¼ 0þþ rather than 0−−? (iii) For
jθj ¼ π, how can an isodoublet quark and an iso-
doublet antiquark, carrying opposite electric charges,
make an isodoublet bound state with electric charge
zero?
I believe that conformal coalescence resolves the first

puzzle in a very simple way. For θ ¼ 0, (17) implies that an
isospin-invariant fermion mass term at low energies is

mfðO1 þO2Þ þ H:c: ¼ mfðOþ1 þO�
þ1Þ

→
mf

ffiffiffiffiffiffi
ξm

p

π
ðO1=2 þO�

1=2Þ; ð22Þ

where O1=2 is a normalized dimension 1=2 conformal
operator with

h0jTO1=2ðxÞO�
1=2ð0Þj0i ¼

�
1

−x2 þ iϵ

�
1=2

: ð23Þ

Note that (22) implies that the only quantity with dimen-
sions that survives in the low-energy theory is mf

ffiffiffiffi
m

p
, and

so the masses of the particles that appear as a result of the
breaking of the conformal symmetry must be proportional
to ðm2

fmÞ1=3, in agreement with Coleman’s result. It is easy
to see that if δm ¼ 0 for arbitrary θ ≠ �π, the mass
parameter becomes mf

ffiffiffiffi
m

p
cosðθ=2Þ, also in agreement

with Coleman.
In the presence of an isospin-breaking term for θ ¼ 0,

(22) goes to

mfðO1 þO2Þ þ H:c:þ δmðO1 −O2Þ þ H:c:

¼ mfðOþ1 þO�
þ1Þ þ δmðO−1 þO�

−1Þ: ð24Þ

All correlators involving the δm term go to zero exponen-
tially at long distances, because they involve powers of
K0ðmxÞ. Because the only mass scale in the low-energy
theory is ðm2

fmÞ1=3, we expect that the isospin-breaking
contribution is suppressed by powers of

K0½m=ðm2
fmÞ1=3� ∝ exp½−ðm=mfÞ2=3� ð25Þ

even if δm ≈mf. The power of 2=3 was missing in an
earlier version. I am grateful to a referee for encouraging
me to make the argument more explicit.

I believe that the resolution of the second puzzle is in
some sense obvious but that it is telling us something novel
about the conformal theory. For θ ¼ 0, (17) implies that the
unparticle stuff produced by Oþ1 and O�

þ1 is G even. The
G-odd stuff produced by O−1 and O�

−1 always involves
the massive gauge boson and does not survive at long
distances. Evidently, if we think of decreasing mf=m
from weak coupling, mf=m ≫ 1, to strong coupling,
mf=m ≪ 1, the G-odd quark-antiquark states get
stuck at masses of the order of m, while the G-even
states continue to move down into the low-energy
theory.
Finally, I believe that the resolution of the third puzzle is

that it is a problem of logic rather than a problem of
physics. The puzzle starts from the hypothesis that the
low-energy theory for an isospin-invariant mass term with
θ ¼ π is a theory of particles. I believe that this hypothesis
is false. For θ ¼ π, (17) implies that the isospin-invariant
mass term

mfðO1 þO2Þ þ H:c: ¼ −imfðO−1 −O�
−1Þ → 0: ð26Þ

Thus, this term does not survive in the low-energy
conformal theory, and the low-energy conformal symmetry
persists even in the presence of the mass term. If this is
correct, then I think that there must be a phase transition
between weak and strong coupling that frustrates
Coleman’s attempt to understand the model in terms of
the naive quark model.
Directions for future work.—While I believe that I have

answered each of Coleman’s questions, the answers sug-
gest further questions. For θ ¼ 0 with nonzero δm, isospin
symmetry-breaking effects are present at low energies but
exponentially suppressed. In the low-energy theory, this
like looks fine-tuning. Is this new mechanism for generat-
ing an exponential hierarchy of parameters useful for any of
the hierarchy puzzles that afflict the standard model? Is
there a more physical description of what it means for
the unparticle stuff to have only even G parity? And, for
θ ¼ π, what does the transition to the long-distance
conformal theory look like? I hope to explore these
questions further.
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for comments by Jacob Barandes, Alvaro DeRujula,
David Kaplan, and Ashvin Vishwanath. This work was
supported in part by National Science Foundation Grant
No. PHY-1719924.
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