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The inspiral phasing of binary black holes at intermediate mass ratios (m,/m; ~ 1073) is important for
gravitational wave observations, but not accessible to standard modeling techniques: The accuracy of the
small mass-ratio (SMR) expansion is unknown at intermediate mass ratios, whereas numerical relativity
simulations cannot reach this regime. This article assesses the accuracy of the SMR expansion by extracting
the first three terms of the SMR expansion from numerical relativity data for nonspinning, quasicircular
binaries. We recover the leading term predicted by SMR theory and obtain a robust prediction of the next-
to-leading term. The influence of higher-order terms is bounded to be small, indicating that the SMR series
truncated at next-to-leading order is quite accurate at intermediate mass ratios and even at nearly
comparable mass binaries. We estimate the range of applicability for SMR and post-Newtonian series for

nonspinning, quasicircular inspirals.
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Inspiraling and merging black hole (BH) binaries are the
most numerous source of gravitational waves (GWs)
observed by the Laser Interferometer Gravitational Wave
Observatory (LIGO) and Virgo detectors [1,2] and are one
of the key science targets for third-generation ground-based
GW detectors [3], as well as the space-based Laser
Interferometer Space Antenna (LISA) observatory [4].
The mass ratio ¢ = m,/m; <1 is one of the key param-
eters in the dynamics of these systems. The LIGO and
Virgo observations [5—7] mostly report g close to unity,
with GW190412 [8] and GW 190814 [9] the first systems
with clearly unequal masses (¢ ~0.28 and g ~0.11).

In the future, observations of binaries with lower g are
expected: Continued observations with the current detec-
tors [10] may reveal binaries with smaller g. Third-gen-
eration ground-based detectors with improved low
frequency sensitivity will be able to detect the capture of
stellar mass BHs by intermediate mass BHs with mass
ratios down to g ~ 1073 [11]. LISA will observe the mergers
of massive BHs of millions of solar masses. While the
majority of these are expected to have g = 0.1, there could
a significant tail of events down to ¢ ~ 0.01 [12,13]. LISA
will also be sensitive to mergers of intermediate mass BHs
with massive BHs (g~ 107%) and extreme mass-ratio
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inspirals (g ~107) as sensitive probes of black hole
physics [4].

The modeling of inspiraling binaries at all mass ratios is
therefore of paramount importance for detection and analy-
sis of GW sources. The three primary modeling approaches
are post-Newtonian slow-velocity perturbation theory [14],
numerical relativity (NR), i.e., direct numerical integration
of the full nonlinear Einstein equations [15], and small mass-
ratio (SMR) perturbation theory [16]. Effective one-body
methods [17] provide a means to combine and resum
information from all three approaches and also from newer
developments like post-Minkowski expansions [18].

This article examines whether the SMR and NR
approaches combined can accurately model binaries with
any mass ratio or whether there is a “gap” at intermediate
mass ratios where neither SMR nor NR is sufficiently
accurate. The SMR approximation expands the dynamics
of a coalescing binary in powers of ¢ or the symmetric mass
ratio v=mymy/(m; +my)> =g+ O(¢*). At leading
order, the secondary object follows a geodesic in the
background space-time generated by the primary. The
impact of the secondary’s mass on the dynamics can be
included as an effective force term, the gravitational self-
force (GSF). Calculation of the GSF has progressed rapidly
over the past two decades (see [19] for a review), but the
full next-to-leading-order contribution to the orbital phas-
ing has not yet been obtained. While the main motivation
for SMR lies in extreme mass-ratio inspirals, there is
increasing evidence [20-26] that the SMR may be appli-
cable even at comparable masses.

Numerical relativity directly solves the full nonlinear
Einstein equations [15]. The vast majority of simulations
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performed to date are at comparable masses, with only very
few simulations at ¢ < 0.1 (see, e.g., [27], but note [28,29]
for simulations from ¢ = 1/18 to ¢ = 1/128). The limited
coverage in ¢ has two causes. First, the number of orbits the
binary spends in the strong field region grows ow~!.
Second, because of the Courant limit on the time step of
the numerical simulations, the number of time steps per
orbit increases «g~'. Combined, these effects cause an
increase in computational cost at least quadratically in mass
ratio. The need for higher numerical resolution to resolve
the ever smaller secondary (as ¢ — 0) and to preserve phase
accuracy over the increasingly longer inspiral will increase
computational cost further.

Given the expectation of binaries at all mass ratios, the
question arises how to model intermediate mass-ratio
binaries at small separation: post-Newtonian theory is
not accurate close to merger, owing to the high velocities;
numerical relativity simulations are limited to large mass
ratios, ¢ 2 0.1; and the SMR approximation is presently
only available at leading order in ¢, and thus may be
inaccurate at intermediate mass ratios. This Letter inves-
tigates the existence of a mass-ratio gap where none of the
modeling approaches is applicable. We analyze NR sim-
ulations at mass ratios 0.1 < ¢ < 1 computed with the SpEC
code [27,30] and extract the first three terms in the SMR
expansion of the orbital phasing. Analyzing these terms, we
conclude that SMR results at next-to-leading order can
likely bridge the mass-ratio gap up to mass ratios g large
enough to be covered by numerical relativity.

Methodology—We use geometric units such that
¢ = G =1 and examine the orbital phase extracted from
the gravitational radiation at future null infinity,

1
¢E§argh22. (1)
Here h,, is the spin weight s = —2 spherical harmonic

(Z,m) = (2,2) mode of the complex GW strain. The
current Letter focuses on nonprecessing binaries where
Eq. (1) is sufficient.

Introducing the orbital frequency

d¢
Q= dr’ @)
we consider the orbital phase as a function of the orbital
frequency ¢(Q). In the SMR approximation, ¢ can be
calculated by a two timescale expansion [31] leading to a
power series in the mass ratio, known as the postadiabatic
(PA) expansion,

ZV “ pupa(MQ). 3)
n=0

Here, ¢, ps are functions of MQ, where M = m| + m, is
the total mass of the binary. Alternatively, one can consider

¢.pa as functions of m;Q and/or expand in g as the small
parameter (shown later).
The leading-order term [31,32] ¢pgpa (called “‘adiabatic”
r “0 postadiabatic”) is independent of the choice of
expansion parameter or mass normalization. It can be
computed by energy balance,

doen _ , dE (dE
dQ aQ\dr)

(4)

where E(Q) is the specific energy of the circular geodesic
with orbital frequency Q, and dE/dt is its energy loss to
GWs. We compute dE/dt with the Black Hole Perturbation
Toolkit [33], utilizing the arbitrary precision Teukolsky
code developed in [34-40], and denote the result as
DR below.

The 1PA term in the expansion requires knowledge of
the full first-order GSF for nearly circular orbits, and the
dissipative part of second-order GSF for quasicircular
inspirals [31,32]. Calculation of the first-order GSF for
nonspinning binaries is now routine [41-45]. The calcu-
lation of second-order GSF for quasicircular orbits, how-
ever, remains an open challenge in GSF theory, although
steady progress has been made [46-53].

We use numerical relativity simulations from the SpEC
code, which utilizes the quasilocal angular momentum
formalism to monitor the black hole spins [54-57], iterative
eccentricity reduction to achieve orbital eccentricities
e <107* [58,59], and solves the Einstein evolution equa-
tions in the generalized harmonic formulation [60-63] with
constraint damping and minimally reflective outer boun-
dary conditions [63-65] (see [27] for more details).
Because of the use of spectral methods and a dual-frame
approach [66], SpEC achieves very high accuracies even for
long inspiral simulations that cover a comparatively large
range in orbital frequencies. Gravitational radiation is
extracted using the Regge-Wheeler-Zerilli formalism,
extrapolated to future null infinity [27,67] and corrected
for center of mass drifts [68].

This study utilizes 55 NR simulations of nonspinning
quasicircular inspirals from the public SXS catalog [27,69]
with mass ratios ¢ € [0.1, 1]. The initial orbital frequency is
in the range MQ~0.015,...,0.02. Simulations with
smaller ¢ tend to start at the higher frequencies, to achieve
a computationally manageable overall duration of the
simulations. All simulations are available at multiple
numerical resolutions for convergence tests.

The orbital phase ¢NR(MQ) is determined by locally
fitting a low-order polynomial in ¢ to ¢NR(z). The width of
the fitting window is variable such that at low frequencies it
encompasses several radial oscillations of any residual
eccentricity in the simulations, while at larger frequencies
it is small enough to avoid systematic bias due to the
rapidly changing frequency. The constant of integration
when integrating Eq. (2) is chosen such that ¢ =0 at
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FIG. 1. Top: leading-order in mass-ratio contribution to the

orbital phasing of the quasicircular inspiral of nonspinning black
holes. Shown are the results derived here from NR simulations, as
well as the SMR perturbation theory. For both curves, the 3.5PN
result [14] was subtracted for clarity of plotting. Bottom: differ-
ence between SMR and the NR result. The shaded areas indicate
the estimated uncertainty of the numerical calculation and Qgco
indicates the last stable orbit for v = 0.

MQ = 0.046. At a given value of MQ, the postadiabatic
coefficients ¢,ps(MQ) are determined by fitting a poly-
nomial in v to the data points (v4, PYR(MQ)), where
A =1,...,55 labels the NR simulations, and v, is the
symmetric mass ratio of each simulation. This fit is repeated
for many values of MQ. Error estimates are obtained by
repeating this procedure with (i) medium-resolution NR
simulations, (ii) using the Weyl scalar ¥, instead of the GW
strain in Eq. (1), (iii) varying the order with which the GW
strain is extrapolated to future null infinity, and (iv) changing
the number of terms in the fit of form Eq. (3) between three
and four. The range of these calculations is reported as error
bars in our results. At each frequency, only those NR
simulations are used that have a starting frequency below;
for MQ <0.02, the reduced number of available NR
simulations causes larger error bars.

Results.—The leading-order term ¢gps (M) can be
extracted with good accuracy from the NR simulations,
as shown in Fig. 1. To reduce the dynamic range on the y
axis, this figure shows the difference to the post-Newtonian

P result at order (v/c)’, taken from [14]. The blue curve
represents the result of our analysis of NR simulations
(with error bar), whereas the red line is the leading-order
SMR result computed by Eq. (4). The agreement between
the two is quite remarkable and is a first indication that the
PA expansion of the phase in the mass ratio is well behaved
for comparable mass ratios.

— T — T
5k ¢NR NR NR ,
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FIG. 2. Top: the three leading terms in the mass-ratio expansion
of the orbital phase, as computed here. Bottom: residuals R, for
all 55 NR simulations indicating the combined contributions of
2PA and higher, as well as an envelope bounding these residuals
in a v-independent manner.

At higher frequencies, MQ = 0.055, we find an appa-
rently systematic deviation between NR and the SMR
result. This deviation may arise from a breakdown of the
PA expansion near the last stable orbit as the binary
transitions from inspiral to plunge. Studies of this transition
regime [70,71] lead to order v~1/5 corrections to Eq. (3).
Including such a term in our fit does indeed eliminate the
systematic deviation at MQ = 0.055. However, the addi-
tional term is nearly degenerate with the OPA and 1PA
terms at low frequencies, making it impossible to get robust
numerical results for ¢py and higher. Therefore, we
proceed in our analysis without such transition terms.

Given how well the numerically extracted OPA term
agrees with its SMR prediction, we henceforth set it to the
SMR value when fitting for the higher-order PA terms.
Figure 2 shows the 1PA and 2PA terms obtained from the
NR simulations, together with the OPA term already
discussed in Fig. 1. The coefficients ¢,,p5 are of comparable
magnitude in the frequency range covered by our analysis,
suggesting that the PA series is convergent at equal masses.
Moreover, for frequencies MQ < 0.05, the 2PA coefficient
is almost consistent with zero, i.e., the OPA and 1PA terms
already capture essentially all variation due to mass ratio in
the numerical data at these frequencies. In fact, “goodness-
of-fit” indicators, such as the adjusted R> value, show only
marginal improvements when adding terms to the fit
beyond the 1PA coefficient.

The lower panel of Fig. 2 provides a different view on the
importance of terms beyond ¢ps: For each of the 55 NR
simulations, this panel plots
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FIG. 3. TImpact of the choice of expansion parameters on the

1PA and 2PA contributions to the orbital phasing. The different
curves differ in whether in Eq. (3) is expanded in powers of v or in
q and whether the ¢ functions are written in terms of MQ or m; Q.
The combination v, MQ yields an exceptionally small 2PA term
at low frequencies.

1 1
Ry = s <¢NR - ;¢OPA - ¢11\11§A) , (5)

i.e., the contribution of all terms n > 2 in Eq. (3), with
overall v scaling compensated. All R, can be bounded
independent of mass ratio by an envelope function, con-
sisting of the known 3.5 PN terms of ¢,ps and a higher-
order polynomial in MQ fitted by eye.

So far, we have expanded in symmetric mass ratio v,
while scaling orbital frequencies by total mass M
[cf. Eq. (3)]. One can also use the mass ratio g =
my/m; as the small parameter and/or scale orbital fre-
quency by the large body’s mass m;. This yields four
variations, all of which agree at the leading OPA order.
Figure 3 presents the results for the 1PA and 2PA
contributions. In all four cases, the extracted 1PA and
2PA coefficients remain of similar magnitude, implying
that the expansion is not dominated by higher-order terms.
However, the 2PA term is remarkably small only when
expanding using the symmetric mass ratio v and total mass
M. The choice v, M is indeed preferred as it is invariant
under exchange of the two bodies 1 <> 2 [20,72].

Discussion.—The phasing of inspiraling BH binaries is
of utmost importance for GW astronomy to find signals,
determine their parameters, and perform tests of general
relativity. Binaries at intermediate mass ratios ¢ ~ 1073 are
in a regime not accessible to NR, while potentially out of
reach for SMR perturbation theory. This situation is
compounded by the difficulty of calculations of the
SMR expansion, for which today only the leading order
(called the zeroth postadiabatic order) is fully known. Here,
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FIG. 4. Region of applicability of different approximation
techniques for nonspinning quasicircular binary black hole
inspiral. The shaded regions indicate ranges within which the
cumulative orbital phase error is less than z/4 and z/16 rad,
respectively.

we extract the first three terms of the SMR expansion from
NR simulations at comparable masses, ¢ > 0.1, and use
these results to perform the first comparison between NR
and SMR expanded results for a gauge invariant quantity
that includes both dissipative and conservative effects,
namely, the accumulated orbital phase as a function of
orbital frequency ¢(MQ). We have successfully extracted
the postadiabatic expansion of this quantity as a power
series in the mass ratio from nonspinning quasicircular NR
simulations.

The leading adiabatic (OPA) term agrees with the result
from SMR calculations. In addition, we obtain a robust
determination of the 1PA term, serving as a concrete
prediction for the ongoing SMR calculation of this term,
which requires the dissipative part of the second-order
gravitational self-force. We also estimate the 2PA term ¢hopp
from the NR data. Its amplitude is comparable to ¢gp, and
¢pa for the frequency range considered here, indicating
that the PA expansion remains well behaved. In particular,
when the PA series is expanded in powers of the symmetric
mass ratio while keeping the total mass fixed, the 2PA and
higher-order terms are consistent with zero within the
numerical accuracy for 0.015 < MQ < 0.05. For higher
frequencies (approaching the last stable circular orbit), we
find indications of a transition regime to plunge where the
series in integer powers of v is no longer applicable.

Our analysis allows us to delineate the regions of
applicability of SMR, NR, and PN in a quantitative way,
as shown in Fig. 4: Assuming ¢p, Will become available
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through GSF calculations, the envelope to the R, in Fig. 2
gives a bound on the secular contributions of higher PA
terms. The red shaded areas in Fig. 4 show the largest MQ
interval that can be covered, such that the total accumulated
phase error due to > 2PA terms is below a certain value.
The region of applicability of SMR increases toward
smaller mass ratios, but is still non-negligible even at
comparable masses. The post-Newtonian errors are esti-
mated by fits against ¢™R(MQ) (cf. top panel of Fig. 1).
The green shaded areas indicate regions where the cumu-
lative 3.5 PN phase error for the entire inspiral up to the
given frequency is below a certain value. Finally, the blue
shaded area indicates the region covered by the NR
simulations used here. These simulations have phase
accuracy better than the z/16 contour line, indicating that
the usability of NR is not limited by accuracy but rather by
the length of the simulations. The three modeling
approaches deliver complementary information, covering
different regions of the parameter space. The region of
validity of each method depends on the desired accuracy,
and it also depends on the use of the waveforms: For GW
astronomy, only the accuracy within the frequency band of
the relevant GW detectors is important, and this will
depend on the total mass of the binary. Moreover, the
needed accuracy will depend on the signal-to-noise ratio at
which it is observed.

We note that the adiabatic ¢gp, term is never accurate
enough in the metric of Fig. 4, because ¢p, contributes
tens of radians in the frequency range considered, inde-
pendent of the mass ratio. This underlines the importance of
calculating the 1PA term (and therefore the second-order
gravitational self-force) for modeling binaries of any mass
ratio. Furthermore, the application of the 1PA approxima-
tion for low frequencies is limited by a (MQ)~'/3 diver-
gence of the 2PA term. This motivates the development of
models that incorporate both SMR and PN results, e.g.,
using effective one-body theory [73-76].

The results in this Letter come with two important
caveats. First, our results are limited to nonspinning
quasicircular black hole binaries. Adding spin or eccen-
tricity makes the waveform considerably more complex
and could make the convergence of the PA series signifi-
cantly worse. Future studies are needed to explore the full
parameter space. Even for nonspinning quasicircular case,
NR simulations at smaller mass ratio are needed to
investigate the transition to plunge, as well as longer
simulations, to extend our analysis to smaller frequencies.

Second, the current analysis applies only to the
inspiral, since the PA expansion is known to breakdown
at the last stable orbit. Our results motivate the development
of 1PA accurate models that also include plunge,
merger, and ringdown, as has previously been done at
OPA order [77].

The authors acknowledge use of public NR data from the
SXS Collaboration [27].
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