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We study how perturbations affect dynamics of integrable many-body quantum systems, causing
transition from integrability to chaos. Looking at spin transport in the Heisenberg chain with impurities we
find that in the thermodynamic limit transport gets diffusive already at an infinitesimal perturbation. Small
extensive perturbations therefore cause an immediate transition from integrability to chaos. Nevertheless,
there is a remnant of integrability encoded in the dependence of the diffusion constant on the impurity
density, namely, at small densities it is proportional to the square root of the inverse density, instead of to the
inverse density as would follow from Matthiessen’s rule. We show that Matthiessen’s rule has to be
modified in nonballistic systems. Results also highlight a nontrivial role of interacting scattering on a single
impurity, and that there is a regime where adding more impurities can actually increase transport.
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Integrable systems form one of the cornerstones on
which our understanding of nature rests. Their solvability
leads to an enhanced understanding of that particular
system, while on the other hand often enough such
simplified models do actually describe realistic systems
with a sufficient precision. An example is physics at low
energies where description in terms of non- or weakly
interacting quasiparticles often applies, and if on top of that
the “environmental” effects are small, one has a perfect
experimental test bed of integrable physics. The last decade
has seen a broad expansion of interest to genuine many-
body systems with interactions that are not integrable and
to generic high energy states. A pertinent question is, how,
if at all, is integrability that is often only weakly broken,
reflected in properties of a nonintegrable model as probed
in an out-of-equilibrium situation [1,2]?
We study two questions: (i) breaking of integrability in a

many-body system and, in particular, at what perturbation
strength does one get a full generic complexity associated
with ergodicity, decay of correlations and in our case
diffusive transport, and (ii) after integrability is broken
and transport goes from nondiffusive (typical of integrable
systems [3]) to diffusive, is there some remaining signature
of the parent integrability, or it vanishes completely,
making integrable systems an utterly singular notion that
immediately goes into “featureless” diffusion in the
thermodynamic limit (TDL)? We find that the critical
perturbation strength for the transition from integrability
to chaos is zero in the TDL. Nevertheless, the original
integrability is still reflected in a modified Matthiessen’s
rule—in general the diffusion constant is not simply
inversely proportional to the density of impurities.
From a single-particle quantum chaos [4], or few-

degrees-of-freedom classical systems, we know that the
transition from integrability to chaos typically happens at a

finite perturbation strength (for classical systems the KAM
theorem makes that rigorous [5]). For many-body quantum
systems one might expect that the transition strength will
instead go to zero in the TDL, results though are not always
as clear cut despite a long history, e.g., Refs. [6–9]. For
instance, while traditional criteria of single-particle quan-
tum chaos like the nearest-neighbor level spacing distri-
bution (LSD) typically do show a transition at zero
perturbation strength [7,8,10] in the TDL, looking at the
decay of correlation functions there are observations of
nonergodicity at finite perturbations [9]. An important
point to keep in mind is that the LSD probes unobservable
exponentially small energy scales and is not always a
suitable indicator of complexity (chaos). For instance, a
small local perturbation suffices to make a system “chaotic”
according to the LSD [11–14], despite transport remaining
that of an integrable model (ballistic) [12]. Coexistence of
chaotic LSD and nonergodic wave functions can be
observed also in disordered systems [15,16]. It is therefore
important to better understand integrability to chaos tran-
sition in many-body systems in terms of observables in as
large systems as possible in order to correctly account for
long timescales and length scales emerging at weak
perturbations, a problem which can plague exact diago-
nalization studies of the transition.
We do that by studying transport in the Heisenberg spin-

1=2 chain with integrability-breaking impurities (Fig. 1).
The model is appealing for a number of reasons. (i) Without
impurities it is integrable, with spin transport at high
temperature well understood. (ii) The chosen perturbation
allows us to study three different kinds of integrability
breaking: the interaction Δ, the impurity strength h, and the
impurity density 1=λ. (iii) The model is experimentally
relevant, realized in a number of spin-chain materials like
strontium cuprate, where high heat conductivity measured
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at low T is attributed to ballistic spin transport along
Heisenberg chains [17]. Because crystals are never perfect
[18], or by deliberately introducing impurities [19,20], one
in fact always deals with the Heisenberg model with low
density of impurities—precisely what we study. Transport
in the Heisenberg model has also been studied in cold-
atoms experiments [21–23] and with neutron scattering
[24], promising an even greater controllability in the future.
(iv) Importantly, transport at an infinite T can be studied in
large systems, avoiding finite-size effects.
What we find is that the faster-than-diffusive spin

transport of the integrable model goes upon integrability
breaking immediately to diffusion, with a diverging dif-
fusion constant D at small perturbations (see Fig. 2). For
dilute impurities, λ ≫ 1, one would expect D ∝ λ because
the scattering on different impurities is independent, mak-
ing the rates 1=τi additive, leading under a simple kinetic
Drude formula D ∼ v2τ to D ∝ λ—the famous
Matthiessen’s rule [25] that is indeed observed in the
mentioned Heisenberg spin-chain materials [20] or, e.g.,
dilute alloys [25]. What we find, however, is that
Matthiessen’s rule has to be modified to D ∝ λ2−z, where
z is the dynamical transport exponent of the integrable
model (z ¼ 3

2
for the superdiffusive isotropic Heisenberg

chain at T ¼ ∞). We also find other intriguing features: for
Δ < 1 and large λ the diffusion constant has a nontrivial
dependence on h that can be explained by interacting
scattering on a single impurity, and there is a regime of high
impurity density where spin transport gets faster upon
increasing the number of impurities.
Because we focus on transport that is defined in the TDL

limt→∞ limL→∞ we do not directly probe finite-time behav-
ior. However, one can note that the way D diverges for
small perturbations is indicative of relaxation timescales.
We therefore expect that the physics we find inD should be
also reflected in finite-time phenomena like prethermaliza-
tion [26]. Another approach dealing with near-integrable
systems is using generalized hydrodynamics [27,28]
and/or conserved quantities to study dynamics upon weak
integrabilty breaking [29–34].
Results.—The anisotropic Heisenberg spin-1=2 chain

[35] with periodic impurities is

H ¼
XL−1

r¼0

σxrσ
x
rþ1 þ σyrσ

y
rþ1 þ Δσzrσzrþ1 þ h

XM¼L=λ

k¼1

σzbk L
Mþ1

c;

ð1Þ

where M ¼ ðL=λÞ is the number of impurities, λ the
distance between them, and h the size of magnetic field
(see Fig. 1) [36]. We shall focus on spin transport at an
infinite temperature and zero magnetization (half-filling).
Chaos is a property of generic states and so the ensemble
with T ¼ ∞ is the most unbiased, and at the same time the
easiest to simulate with our numerical method. Without
impurities the model is integrable, with spin transport at
half-filling and T ¼ ∞ being ballistic for Δ < 1 [37–39],
and superdiffusive at Δ ¼ 1 [40–42]. Because we will
focus on the breaking of this faster-than-diffusive inte-
grable transport to diffusion we shall not consider Δ > 1
where it is diffusive already without impurities [41]. Any
nonzero number of impurities makes the model in general
nonintegrable [11]. We note that with a single impurity
(finite L and λ ¼ ∞) the spin transport is the same [12] as
for the clean integrable model. Previous studies of transport
in the Heisenberg model at high-T under various (weak)
perturbations include Refs. [43–52].
To numerically assess spin transport we are going to couple

the spin chain at first and last sites tomagnetization reservoirs
described by Lindblad operators L1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1þ μÞp

σþ0 ,
L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1 − μÞp

σ−0 , L3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1 − μÞp

σþL−1, and L4 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1þ μÞp

σ−L−1, such that the evolution of the density
matrix is described by the Lindblad master equation
[53,54]. Its solution converges at long times to a unique
nonequilibrium steady state (NESS) whose properties deter-
mine transport, in particular the NESS spin current
j ¼ trðρð2σxkσykþ1 − 2σykσ

x
kþ1ÞÞ, and magnetization at site k,

zk ¼ trðρσzkÞ. For zero H the chosen Lindblad operators
would induce a steady-state ρ ∼ 1þ μσz0 on the 1st site,
and ρ ∼ 1 − μσzL−1 on the last site (independent of Γ). They
therefore try to inducemagnetizationþμ and−μ, respectively,
and so2μ can be thought of as the driving potential difference.
NonzeroHmakesdynamicsandtheNESSnontrivial,with the
transport type being encoded in the dependence of j on L, as
well as in the shape of themagnetization profile. For diffusive
systems in the linear response regime (small μ; we use

FIG. 1. XXZ chain (1) with magnetic field of amplitude h at
sites separated by distance λ (shown is λ ¼ 3).

(a) (b)

FIG. 2. Summary: (a) When any small parameter h, Δ or 1=λ is
0 one has known ballistic transport. For nonzero perturbations
one gets diffusion with white arrows indicating how diffusion
constant D diverges. (b) Δ ¼ 1, where one has superdiffusion
(green) without perturbation.
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μ ¼ 0.1) the profilewill be on average linear [see Fig. 4(c) for
an example] while the current will scale as j ≍ −Dð2μ=LÞ,
fromwhich one can extract the diffusion constantD. Atμ ¼ 0
the NESS is a trivial ∼1 corresponding to an equilibrium
T ¼ ∞ driving. At μ ≪ 1 the NESS is still close to 1, energy
density is zero, and so the driving probes transport at T ¼ ∞
and at zero average magnetization. The coupling strength Γ,
which only influences the boundary resistance, is set toΓ ¼ 1
(see Ref. [55] for more details on μ and Γ). Note that the
particular choice of driving does not influence the bulk
transport properties, specifically, the extracted diffusion con-
stant is the same as the one obtained from the Green-Kubo
approach [56].
To represent a solution of the Lindblad equation ρðtÞ

efficiently we use a matrix product operator ansatz with
matrices of size χ and the tDMRG method [57] to evolve
ρðtÞ in time. The method has proved itself in the past, see,
e.g., Ref. [58] and references therein for more details, and
allows at “easy” parameter values to simulate systems as
large as L ≈ 2000 sites. The crucial parameter that deter-
mines its efficiency is χ. The largest χ we can afford is
about χ ∼ 100 at L ∼ 1000 (χ ≈ 300 for some smaller L).
For parameters where truncation errors are larger we run
simulations at different χ and use extrapolation to gain in
accuracy (Fig. 3).

We first check the isotropic chain, Δ ¼ 1. Fixing λ ¼ 4
we calculate the NESS for increasingly smaller values of
magnetic field h, each time studying the scaling of jwith L.
In all cases we find diffusive j ∼ 1=L, see Ref. [55] for data.
In Fig. 4(a) we plot the obtained DðhÞ. According to
Fermi’s golden rule, the scattering rate should scale as
1=τ ∼ h2. In a system with dynamical exponent z, defined
by the scaling of distance with time as xz ∼ t (and the NESS
current as j ∼ 1=Lz−1), e.g., z ¼ 1 for ballistic, z ¼ 2 for
diffusion, the scattering length should go as l ∼ 1=h2=z. For
the isotropic model at an infinite temperature z ¼ 3

2
[40],

predicting divergence D ∼ 1=h2=3, similarly as for a dis-
ordered potential [58]. Numerical results in Fig. 4(a) agree
with that scaling (the agreement is achieved only at very
small h≲ 0.3; at larger h the scaling power is larger). From
an experimental point of view we would in particular like to
understand the case of dilute impurities, λ ≫ 1. To that end
we plot in Fig. 4(b) the scaling of D with λ for several
values of h. We see that D is not proportional to λ. This is
due to nonballistic transport between impurities and can be
explained as follows. Focusing on a segment of length λ
between two impurities, the magnetization difference
across the segment is δz ≈ 2μ=M ¼ 2μλ=L and will drive
the current of size j ∼ δz=λz−1 through the segment. The
last relation comes because an excitation needs time ∼λz to
travel across the length λ, resulting in a current ∼λ=λz
(at fixed excitation density there are ∼λ excitations in a
segment of length λ). The NESS current therefore scales as
j ∼ ð2μ=LÞðλ=λz−1Þ, giving

D ∼ λ2−z: ð2Þ

Using z ¼ 3
2
of the isotropic model we see that the resulting

D ∼
ffiffiffi
λ

p
agrees within numerical errors with data in

Fig. 4(b). Deviations seen for smaller h ¼ 0.6, 0.3 are
presumably due to the scattering length being larger than
λ ¼ 32, which is the largest λ we can reliably simulate. In
Fig. 4(c) we plot the magnetization profile across a chain,
showing nonequilibrium spikes at locations of impurities
(spikes are not visible for all parameters, and are typically
stronger at smaller D).

FIG. 3. Determining diffusion constant (λ ¼ 32, Δ ¼ 0.6,
h ¼ 0.5). Main plot: convergence with the bond dimension χ
of a finite-size value of DðLÞ, together with the extrapolated
values plotted at 1=χ ¼ 0 (for L ¼ 32, 64 no extrapolation is
used). Inset: relative precision of DðLÞ improves as ∼1=L, as
predicted [56], but with a large prefactor ≈180.

(a) (b) (c)

FIG. 4. Isotropic chain, Δ ¼ 1. (a) Dependence of D on h for λ ¼ 4. (b) Diffusion constant scaling with λ;
for λ ≫ 1 it is not proportional to λ (inverse impurity density) but is rather D ∼ λ0.5. (c) Magnetization profile has spikes at impurities
(h ¼ 1, λ ¼ 16, L ¼ 512).
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Next, we focus on Δ < 1 where the integrable model is
ballistic. Fixing λ ¼ 4, we have two possible small per-
turbations, either taking small Δ, or small h. We again find
that small integrability breaking immediately leads to
diffusion. For the two perturbation types, Fermi’s golden
rule gives the scattering length l ∼ 1=Δ2, or l ∼ 1=h2,
leading to diffusion constant divergence D ∼ 1=Δ2, or
D ∼ 1=h2, respectively. This is inline with numerical data;
see Ref. [55] for data. Increasing λ at fixed h, and using
ballistic z ¼ 1, Eq. (2) predicts D ∝ λ at λ ≫ 1, which
agrees with numerics (Fig. 5). What is interesting is the
behavior at small λ. Between λ ¼ 2 and 4 the diffusion
constant increases by decreasing λ, meaning that the
transport gets faster when we add more impurities. The
effect is more prominent at small Δ, and was also visible at
h ¼ 1 in the isotropic case [Fig. 4(b)]. Let us now focus on
λ ≫ 1 and in particular on how D depends on parameters.
Using the same argument as in deriving Eq. (2) we can
see that between rare impurities the magnetization profile
will be flat, with a jump happening only at impurities
[Fig. 6(a)]. We also observe that at λ ≫ 1 it does not matter
whether impurities are equidistant, like in our simulations,

or at random positions—D is the same in both cases (the
same holds at Δ ¼ 1). Therefore one should be able to getD
just from studying the size of the jump at a single impurity.
This is what we do in Fig. 6(c). Placing the single impurity at
the middle of the chain, we study how the jump size dz
scales with h, and, in particular, how a single-impurity
resistance Rsingle ¼ dz=j scales. We determine dz from the 5
central sites around the impurity (for those the profile is
independent of L in the TDL). Numerics indicates that
Rsingle ∼ h1.5 at small h [Fig. 6(b)]. In the noninteracting
case Δ ¼ 0 one can solve the corresponding Lindblad
equation exactly (following, e.g., Ref. [59]), obtaining the
odd-L NESS values j ¼ 4μ½Γþ 1=Γ�=½ðΓþ 1=ΓÞ2 þ h2�,
z1;…;ðL−1Þ=2−1¼−zðL−1Þ=2þ1;…;L−2¼μh2=½ðΓþ1=ΓÞ2þh2�,
z0¼−zL−1¼μ½1þΓ2þh2�=½ðΓþ1=ΓÞ2þh2�, zðL−1Þ=2¼0,
giving RsingleðΔ ¼ 0Þ ¼ h2=½2ðΓþ 1=ΓÞ� (the scaling of
current with h in the single-impurity situation, including
at Δ ¼ 0, was numerically studied in Ref. [12]). We see that
the power ≈1.5 in Rsingle at Δ ¼ 0.6 is different than 2
obtained at Δ ¼ 0. It is also different than the scaling power
D ∼ 1=h0.66 at Δ ¼ 1 (see Supplemental Material [55] for
data). It very weakly, if at all, depends on Δ and could
therefore be discontinuous at Δ ¼ 0 and Δ ¼ 1 (see
Ref. [55]). Scattering on a single impurity in an interacting
wire therefore seems to be qualitatively different than in a
noninteracting one; we were not able to obtain the power
≈1.5 using perturbation theory, leaving this as an interesting
problem. Rsingle can now be used to calculate the diffusion
constant for λ ≫ 1 in a system that is ballistic without
impurities (e.g., Δ < 1), obtaining

D ¼ λ=Rsingle: ð3Þ

Data in Fig. 6(b) for full many-impurity numerics agree with
that well (due to numerical errors the accuracy of the fitted
power 1.5 is about 10%). We have an interesting situation
where D is very sensitive to having either Δ ¼ 0, or Δ ¼ 1.
Changing the interaction Δ just a little away from either of

(a) (b) (c)

FIG. 6. Anisotropic XXZ with Δ ¼ 0.6. (a) Magnetization profile for h ¼ 0.5 and λ ¼ 32 in a chain with L ¼ 512 (red), and for
randomly placed L=λ ¼ 16 impurities (dashed blue). Inset: scaling of the NESS current with L giving D ≈ 140. Blue points
(overlapping with red squares for λ ¼ 32) show the current for the random case. (b) Scaling of DðhÞ for λ ¼ 32 (4 black circles). Red
squares are obtained (no fitting parameters) from the single-impurity scattering in frame (c). Green squares is the exact noninteracting
result for Rsingle. (c) Magnetization profile for a single impurity at the middle site (μ ¼ 0.005). The main plot shows results for L ¼ 128
(enlarged also for L ¼ 32 and h ¼ 0.5). Magnetization jump at the impurity, dz ≔ zL=2−2 − zL=2þ2, and the NESS j is used to plot red
squares in frame (b).

FIG. 5. Diffusion scaling for Δ < 1 (h ¼ 0.5). For λ ≫ 1 it is
linear, with the prefactor given by a single-impurity physics
(Fig. 6), while in the shaded strip D counterintuitively increases
by increasing impurities.

PHYSICAL REVIEW LETTERS 125, 180605 (2020)

180605-4



the two points changesD drastically. In fact, in the TDL and
λ → ∞, or h → 0, the relative change is infinite, coming
from different scaling of D with λ (2) as well as different
scaling of Rsingle with h. As an example, taking chaotic
model with λ ¼ 32 and h ¼ 0.5 we can predict that D
increases by about tenfold as one changes the interaction
from Δ ¼ 1 to Δ ¼ 0.8.
Conclusion.—Using transport at an infinite temperature

as an indicator we studied the transition from integrability
to chaos in the Heisenberg spin chain with impurities. By
large-scale numerical simulations of systems with up to
2000 spins we find that one gets diffusion already for an
infinitesimal perturbation strength, in line with a simple
Fermi’s golden rule. For the important case of dilute
impurities we find that the diffusion constant scales as
D ∼ λ2−z, where z is the dynamical exponent of the clean
integrable model and λ the distance between impurities.
In particular, for the isotropic Heisenberg model
Matthiessen’s rule has to be changed to D ∝

ffiffiffi
λ

p
, instead

of the usual textbook D ∝ λ. Such scaling arises due to a
combination of an anomalous coherent propagation
between impurities interspersed by scattering events on
impurities. One can obtain D by analyzing scattering on a
single impurity in an interacting model. Also interesting is
that increasing the impurity density from ð1=λÞ ¼ 1

4
to 1

2

can cause diffusion to become faster. D is for λ ≫ 1 very
sensitive to being at the isotropic point. We expect our
results to hold also at finite (high) temperatures.
Traditionally, the quantum chaos community has

focused on looking for signatures of chaos (generic
behavior)—here we instead find signatures of integrability
(rare behavior) in the form of a modified Matthiessen’s
rule in an otherwise chaotic model. While we studied a
particular model and type of impurities, arguments are
general and should hold for other dilute perturbations,
e.g., bond disorder [60], and different interacting models
with anomalous transport [61–63], perhaps even for the
Fibonacci model [64]. Checking the relation (2) for other
conserved quantities, like energy, is also an interesting
problem.
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